Skip to main content
  • 144 Accesses

Abstract

There is ample evidence to support, although there is also some against, the theory that cyclic AMP (cAMP) mediates the relaxant effects of adenylate cyclase stimulating agents such as β-adrenergic stimulants and adenosine in smooth muscle (see reviews by Hardman, 1981; Kukovetz et al., 1981; Baer et al., 1983). Evidence was also obtained for a similar role of cyclic GMP (cGMP) in relaxation caused by direct stimulants (nitrates) and, more recently, by indirect stimulants of guanylate cyclase, particularly acetylcholine (ACh). This review will mainly deal with relaxation of coronary arterial smooth muscle and will focus on our present knowledge concerning such functions of cyclic nucleotides in the relaxant effects of stimulants of both types of cyclases including relaxation by prostacyclin and forskolin, and also on their involvement in the relaxant effects of phosphodiesterase (PDE) inhibitors. Some consideration will be given to the mechanisms by which cAMP and cGMP achieve relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADELSTEIN, R.S., CONTI, M.A., HATHAWAY, D.R. & KLEE, C.B. (1978). Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3′,5′-monophosphate-dependent protein kinase. J. biol. Chem., 253, 8347–8350.

    PubMed  CAS  Google Scholar 

  • ANAND-SRIVASTAVA, M.B., FRANKS, D.J., CATIN, M. & GENEST, J. (1982). Presence of ‘Ra’ and ‘P’-site receptors for adenosine coupled to adenylate cyclase in cultured vascular smooth muscle cells. Biochem. biophys. Res. Commun., 108, 213–219.

    Article  PubMed  CAS  Google Scholar 

  • APPLEMAN, M.M., ARIANO, M.A., TAKEMOTO, D.J. & WHITSON, R.H. (1982). Cyclic Nucleotide Phosphodiesterases. In Handbook of Experimental Pharmacology Vol. 58/I, Cyclic Nucleotides I: Biochemistry. Nathanson, J.A. & Kebabian, J.W. (eds) pp. 261–300, Berlin/Heidelberg/New York: Springer-Verlag.

    Google Scholar 

  • BAER, H.P., MULLER, M.J. & VRIED, R. (1983). Adenosine receptors in smooth muscle. In Physiology and Pharmacology of Adenosine Derivatives. Daly, J.W., Kuroda, Y., Phillis, J.W., Shimizu, H. & Ui, M. (eds) pp. 77–84, New York: Raven Press.

    Google Scholar 

  • BERGSTRAND, H., KRISTOFFERSON, I., LUNDQUIST, B., & SCHURMANN, A. (1977). Effects of antiallergic agents, compound 48/80, and some reference inhibitors of the activity of partially purified human lung tissue adenosine cyclic 3′,5′-monophosphate and guanosine cyclic 3′,5′-monophosphate phosphodiesterases. Mol. Pharmac., 13, 38–43.

    CAS  Google Scholar 

  • BROOKER, G., PEDONE, C. & BAROVSKY, K. (1983). Selective reduction of forskolin-stimulated cyclic AMP accumulation by inhibitors of protein synthesis. Science, 220, 1169–1170.

    Article  PubMed  CAS  Google Scholar 

  • CASNELLIE, J.E., IVES, H.E., JAMIESON, J.D. & GREENGARD, P. (1980). Cyclic GMP-dependent protein phosphorylation in intact medial tissue and isolated cells from vascular smooth muscle. J. biol. Chem., 255, 3770–3776.

    PubMed  CAS  Google Scholar 

  • DEMBINSKA-KIEC, A., RÜCKER, W. & SCHÖNHÖFER, P.S. (1980). Effects of PGI2 and PGI-analogues on cAMP levels in cultured endothelial and smooth muscle cells derived from bovine arteries. Naunyn Schmiedeberg’s Arch. Pharmac., 311, 67–70.

    Article  CAS  Google Scholar 

  • DUSTING, G.J., MONCADA, S. & VANE, J.R. (1977). Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins, 13, 3–15.

    Article  PubMed  CAS  Google Scholar 

  • EDVINSSON, L. & FREDHOLM, B.B. (1983). Characterization of adenosine receptors in isolated cerebral arteries of cat. Br. J. Pharmac., 80, 631–637.

    Article  CAS  Google Scholar 

  • FURCHGOTT, R.F. (1983). Role of endothelium in responses of vascular smooth muscle. Circ. Res., 53, 557–573.

    Article  PubMed  CAS  Google Scholar 

  • FURCHGOTT, R.F. & ZAWADZKI, J.V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373–376.

    Article  Google Scholar 

  • GOLDMAN, S.J., DICKINSON, E.S. & SLAKEY, L.L. (1983). Effect of adenosine on synthesis and release of cyclic AMP by cultured vascular cells from swine. J. Cycl. Nucl. Res., 9, 69–78.

    CAS  Google Scholar 

  • GORMAN, R.R., BUNTING, S. & MILLER, O.V. (1977). Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins, 13, 377–388.

    Article  PubMed  CAS  Google Scholar 

  • GRIFFITH, T.M., EDWARDS, D.H., LEWIS, M.J., NEWBY, A.C. & HENDERSON, A.H. (1984). The nature of endothelium-derived vascular relaxant factor. Nature, 308, 645–647.

    Article  PubMed  CAS  Google Scholar 

  • HARDMAN, J.G. (1981). Cyclic nucleotides and smooth muscle contraction: some conceptual and experimental consideration. In Smooth Muscle: an assessment of current knowledge. Bülbring, E., Brading, A.F., Jones, A.W. & Tomita, T. (eds) pp. 249–262, London: Edward Arnold.

    Google Scholar 

  • HOLZMANN, S. (1982a). Relaxant and cAMP-increasing effects of forskolin in bovine coronary arteries. Naunyn Schmiedeberg’s Arch. Pharmac., 321, (Suppl.) R42.

    Google Scholar 

  • HOLZMANN, S. (1982b). Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J. Cycl. Nucl. Res., 8, 409–419.

    CAS  Google Scholar 

  • HOLZMANN, S. (1983). Cyclic GMP as a possible mediator of coronary arterial relaxation by nicorandil (SG-75). J. cardiovasc. Pharmac., 5, 364–370.

    Article  CAS  Google Scholar 

  • HOLZMANN, S., KUKOVETZ, W.R. & SCHMIDT, K. (1980). Mode of action of coronary arterial relaxation by prostacyclin. J. Cycl. Nucl. Res., 6, 451–460.

    CAS  Google Scholar 

  • HOLZMANN, S., SCHMIDT, K., DITTRICH, P. & KUKOVETZ, W.R. (1982). Zum Mechanismus der positiv inotropen und gefäßerweiternden Wirkung von Forskolin aus Coleus forskohlii. Planta Medica, 45, 133.

    Article  PubMed  CAS  Google Scholar 

  • IGNARRO, L.J., BURKE, T.M., WOOD, K.S., WOLIN, M.S. & KADOWITZ, P.J. (1984). Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J. Pharmac. exp. Ther., 228, 682–690.

    CAS  Google Scholar 

  • ITO, T., OGAWA, K., ENOMOTO, I., HASHIMOTO, H., KAI, I. & SATAKE, T. (1980). Comparison of the effects of PGI2 and PGE on coronary and systemic hemodynamics and coronary arterial cyclic nucleotide levels in dog. In Advances in Prostaglandin and Thromboxane Research Vol. 7. Samuelsson, B., Ramwell, P.W. & Paoletti, R. (eds) pp. 641–646, New York: Raven Press.

    Google Scholar 

  • IVES, H.E., CASNELLIE, J.E., GREENGARD, P. & JAMIESON, J.O. (1980). Subcellular localization of cyclic GMP-dependent protein kinase and its substrates in vascular smooth muscle. J. biol. Chem., 255, 3777–3785.

    PubMed  CAS  Google Scholar 

  • KATSUKI, S., ARNOLD, W., MITTAL, C. & MURAD, F. (1977). Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J. Cycl. Nucl. Res., 3, 23–35.

    CAS  Google Scholar 

  • KRAMER, G.L. & WELLS, J.N. (1979). Effects of phosphodiesterase inhibitors on cyclic nucleotide levels and relaxation of pig coronary arteries. Mol. Pharmac., 16, 813–822.

    CAS  Google Scholar 

  • KRAMER, G.L., GARST, J.E., MITCHEL, S.S. & WELLS, J.N. (1977). Selective inhibition of cyclic nucleotide phosphodiesterases by analogues of 1-methyl-3-isobutyl-xanthine. Biochemistry, 16, 3316–3321.

    Article  PubMed  CAS  Google Scholar 

  • KUKOVETZ, W.R. & HOLZMANN, S. (1983). Mechanism of nitrate-induced vasodilation and tolerance. Z. Kardiol., 72, Suppl. 3, 14–19.

    PubMed  CAS  Google Scholar 

  • KUKOVETZ, W.R. & HOLZMANN, S. (1984). Der Wirkungs-mechanismus von Molsidomin und Nitraten. Med. Praxis, Sondernummer 1, 12–17.

    Google Scholar 

  • KUKOVETZ, W.R., HOLZMANN, S. & POCH, G. (1982a). Function of cyclic GMP in acetylcholine-induced con- traction of coronary smooth muscle. Naunyn Schmiedeberg’s Arch. Pharmac., 319, 29–33.

    Article  CAS  Google Scholar 

  • KUKOVETZ, W.R., HOLZMANN, S., STRAKA, M., & SCHMIDT, K. (1982b). Mechanismus der gefäßer-weiternden Wirkung von Molsidomin. In Molsidomin: Neue Aspekte zur Therapie der ischämischen Herzerkrankung. Bassenge, E. & Schmutzler, H. (eds) pp. 32–36, München/Wien/Baltimore: Urban & Schwarzenberg.

    Google Scholar 

  • KUKOVETZ, W.R., HOLZMANN, S., WURM, A. & PÖCH, G. (1979a). Evidence for cyclic GMP-mediated relaxant effects of nitrocompounds in coronary smooth muscle. Naunyn Schmiedeberg’s Arch. Pharmac., 310, 129–138.

    Article  CAS  Google Scholar 

  • KUKOVETZ, W.R., HOLZMANN, S., WURM, A. & PÖCH, G. (1979b). Prostacycin increases cAMP in coronary arteries. J. Cycl. Nucl. Res., 5, 469–476.

    CAS  Google Scholar 

  • KUKOVETZ, W.R. & PÖCH, G. (1970). Inhibition of cyclic3′,5′-nucleotide-phosphodiesterase as a possible mode of action of papaverine and similarly acting drugs. Naunyn SchmiedebergsArch. Pharmac., 267, 189–194.

    Article  CAS  Google Scholar 

  • KUKOVETZ, W.R., PÖCH, G. & HOLZMANN, S. (1981). Cyclic nucleotides and relaxation of vascular smooth muscle. In Vasodilatation. Vanhoutte, P.M. & Leusen, I. (eds) pp. 339–353, New York: Raven Press.

    Google Scholar 

  • KUKOVETZ, W.R., PÖCH, G. & HOLZMANN, S. (1982c). Adenosine-stimulation of adenylate cyclase as a mechanism of smooth muscle relaxation. Naunyn Schmiedeberg’s Arch. Pharmac., 321, (Suppl) R9.

    Google Scholar 

  • KUKOVETZ, W.R., PÖCH, G., HOLZMANN, S., WURM, A. & RINNER, I. (1978). Role of cyclic nucleotides in adenosine-mediated regulation of coronary flow. In Advances in Cyclic Nucleotide Research Vol. 9. George, W.J. & Ignaao, L.J. (eds) pp. 397–409, New York: Raven Press.

    Google Scholar 

  • KUKOVETZ, W.R., PÖCH, G., HOLZMANN, S., WURM, A. & RINNER, I. (1979c). Cyclic nucleotides and coronary flow. In Cyclic Nucleotides and Therapeutic Perspectives. Cehovic, G. & Robison, G.A. (eds) pp. 109–125, Oxford/New York: Pergamon Press.

    Google Scholar 

  • KUKOVETZ, W.R., PÖCH, G., WURM, A., HOLZMANN, S. & PAIETTA, E. (1976). Effect of phosphodiesteraseinhibition on smooth muscle tone. In Ionic Actions on Vascular Smooth Muscle, Betz, E. (ed.) pp. 124–131, Berlin/Heidelberg/New York: Springer-Verlag.

    Chapter  Google Scholar 

  • KUKOVETZ, W.R., WURM, A., HOLZMANN, S. & PÖCH, G. (1979d). Evidence for an adenylate cyclase-linked adenosine receptor mediating coronary relaxation. In Physiological and regulatory function of adenosine and adenine nucleotides. Baer, H.P. & Drummond, C.I. (eds) pp. 205–213, New York: Raven Press.

    Google Scholar 

  • KUKOVETZ, W.R., WURM, A., RINNER, I., HOLZMANN, S. & POCH, G. (1977). Stimulation of adenylyl cyclase in coronary smooth muscle by adenosine. In Excitation-Contraction Coupling in Smooth Muscle. Casteels, R., Godfraind, T. & Rüegg, J.C. (eds) pp. 399–406, Amsterdam: Elsevier/North-Holland/Biomedical Press.

    Google Scholar 

  • LINDNER, E., DOHADWALLA, A.N. & BHATTACHARYA, B.K. (1978). Positive inotropic and blood pressure lowering activity of a diterpene derivative isolated from Coleus forskohlii: Forskolin. Arzneimittelforschung (Drug Res.), 28, 284–289.

    Google Scholar 

  • LITOSCH, I., HUDSON, T.H., MILLS, T., LI, S.Y. & FAIN, J.N. (1982). Forskolin as an activator of cyclic AMP accumulation and lipolysis in rat adipocytes. Mol. Pharmac., 22, 109–115.

    CAS  Google Scholar 

  • MILLER, O.V., AIKEN, J.W., HEMKER, D.P., SHEBUSKI, R.J. & GORMAN, R.R. (1979). Prostacyclin stimulation of dog arterial cyclic AMP levels. Prostaglandins, 18, 915–925.

    Article  PubMed  CAS  Google Scholar 

  • MISTRY, G. & DRUMMOND, G.I. (1983). Effects of adenosine, its analogs, adrenergic agents, and prostaglandins on heart microvessels. In Regulatory Function of Adenosine. Berne, R.M., Rall, R.W. & Rubio, R. (eds) p. 529, Boston: Martinus Nijhoff Publ.

    Google Scholar 

  • MONCADA, S. & VANE, J.R. (1981). Prostacyclin: its biosynthesis, actions and clinical potential. Phil. Trans. R. Soc., B294, 305–329.

    Article  CAS  Google Scholar 

  • MORIWAKI, K., ITOH, Y., HDA, S. & ICHIHARA, K. (1982). Forskolin potentiates adrenocorticotropin-induced cyclic AMP production and steroidgenesis in isolated rat adrenal cells. Life Sci., 30, 2235–2240.

    Article  PubMed  CAS  Google Scholar 

  • MULLER, M.J. & BAER, H.P. (1982). Forskolin-induced smooth muscle relaxation: involvement of cyclic AMP. Proc. Can. Fed. Biol. Sci., 25, 627.

    Google Scholar 

  • MULLER, M.J. & BAER, H.P. (1983). Relaxant effects of forskolin in smooth muscle. Naunyn Schmiedeberg’s Arch. Pharmac., 322, 78–82.

    Article  CAS  Google Scholar 

  • OLLINGER, P. & KUKOVETZ, W.R. (1983). [3H]Adenosine binding to bovine coronary arteries and myocardium. Eur. J. Pharmac., 93, 35–43.

    Article  CAS  Google Scholar 

  • OLSSON, R.A. (1983). Adenosine receptors on vascular smooth muscle. In Regulatory Function of Adenosine. Berne, R.A., Rall, T.W. & Rubio, R. (eds) pp. 33–45, Boston: Martinus Nijhoff Publ.

    Chapter  Google Scholar 

  • POCH, G. & HOLZMANN, S. (1980). Quantitative estimation of overadditive and underadditive drug effects by means of theoretical, additive dose response curves. J. Pharmac. Meth., 4, 179–188; Erratum: J. Pharmac. Meth., 5, 183.

    Article  Google Scholar 

  • RAPOPORT, R.M. & MURAD, F. (1983). Agonist-induced endothelium-dependent in rat thoracic aorta may be mediated through cGMP. Circ. Res., 52, 352–357.

    Article  PubMed  CAS  Google Scholar 

  • SCHMIDT, K. & BAER, H.P. (1983). Forskolin binding sites in rat liver and brain membranes. Eur. J. Pharmac., 94, 337–340.

    Article  CAS  Google Scholar 

  • SCHRÖR, K. & RÖSEN, P. (1979). Prostacyclin (PGI2) decreases the cyclic AMP levels in coronary arteries. Naunyn Schmiedeberg’s Arch. Pharmac., 306, 101–103.

    Article  Google Scholar 

  • SCHULTZ, K.D., SCHULTZ, K. & SCHULTZ, G. (1977). Sodium nitroprusside and other smooth musclerelaxants increase cyclic GMP levels in rat ductus deferens. Nature, 265, 750–751.

    Article  PubMed  CAS  Google Scholar 

  • SCHÜTZ, W. & BRUGGER, G. (1982). Characterization of [3H]-adenosine binding to media membranes of hog carotid arteries. Pharmacology, 24, 26–34.

    Article  PubMed  Google Scholar 

  • SEAMON, K.B. & DALY, J.W. (1981a). Forskolin: A unique diterpene activator of cyclic AMP-generating system. J. Cycl. Nucl. Res., 7, 201–224.

    CAS  Google Scholar 

  • SEAMON, K.B. & DALY, J.W. (1981b). Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J. biol. chem., 256, 9799–9801.

    PubMed  CAS  Google Scholar 

  • SEAMON, K.B., PADGETT, W. & DALY, J.W. (1981). Forskolin: Unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. man. Acad. Sci.U.S.A., 78, 3363–3367.

    Article  CAS  Google Scholar 

  • SIEGL, A.M., DALY, J.W. & SMITH, J.B. (1982). Inhibition of aggregation and stimulation of cyclic AMP generation in intact human platelets by the diterpene forskolin. Mol. Pharmac., 21, 680–687.

    CAS  Google Scholar 

  • SILVER, P.J. & DiSALVO, J. (1979). Adenosine 3′,5′monophosphate-mediated inhibition of myosin light chain phosphorylation in bovine actomyosin. J. biol. Chem., 254, 9951–9954.

    PubMed  CAS  Google Scholar 

  • SILVER, P.J., SCHMIDT-SILVER, C. & DiSALVO, J. (1982). β-adrenergic relaxation and cAMP kinase activation in coronary arterial smooth muscle. Am. J. Physiol., 242, H177–H184.

    Google Scholar 

  • SUTHERLAND, E.W., ROBISON, G.A. & BUCHER, R.W. (1968). Some aspects of the biological role of adenosine 3′,5′-monophosphate (cyclic AMP). Circulation, 37, 279–306.

    Article  CAS  Google Scholar 

  • WATSON, E.L. & DOWD, F.J. (1983). Forskolin: Effects on mouse parotid gland function. Biochem. biophys. Res. Commun., 111, 21–27.

    Article  PubMed  CAS  Google Scholar 

  • ZSOTÉR, T.T., HENEIN, N.F. & WOLCHINSKY, C. (1977). The effect of sodium nitroprusside on the uptake and efflux of 45Ca from rabbit and rat vessels. Eur. J. Pharmac., 45, 7–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William Paton James Mitchell Paul Turner

Copyright information

© 1984 Macmillan Publishers Limited

About this chapter

Cite this chapter

Kukovetz, W.R., Holzmann, S. (1984). Cyclic nucleotides in smooth muscle relaxation. In: Paton, W., Mitchell, J., Turner, P. (eds) IUPHAR 9th International Congress of Pharmacology London 1984. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-17613-7_15

Download citation

Publish with us

Policies and ethics