Advertisement

Abstract

Penicillin, discovered more than fifty years ago, has given rise to a flourishing family of drugs whose members (penicillins, cephalosporins and monobactams) are designated collectively as β-lactam antibiotics. The multiplicity of β-lactam molecules produced by the pharmaceutical industry has been a necessity dictated by the countermoves — tolerance, intrinsic resistance and, above all, β-lactamase production — made by the bacteria to control our most effective armoury of modern antibacterial chemotherapy. Resistance to β-lactams is a progressive process which is occurring before our eyes, and the need for new antibiotics remains urgent.

Keywords

Lactam Antibiotic Acyl Enzyme Scissile Bond Active Serine Amino Acceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CHARLIER, P., DIDEBERG, O., DIVE, G., DUSART, J., FRERE, J.M., GHUYSEN, J.M., JORIS, B., LAMOTTE-BRASSEUR, J., LEYH-BOUILLE, M. & NGUYENDISTÈCHE, M. (1983). In The Target of Penicillin. The Murein Sacculus of Bacterial Cell Walls. Architecture and Growth. Hakenbeck, R., Höltje, J.V. and Labischinski, H. (eds), pp. 369–386, West Berlin: Walter de Gruyter & Co.Google Scholar
  2. CHARLIER, P., DIDEBERG, O., JAMOULLE, J.C., FRERE, J.M., GHUYSEN, J.M., DIVE, G. & LAMOTTE-BRASSEUR, J. (1984). Active-site directed inactivators of the Zn2+ D-alanyl-D-alanine-cleaving carboxypeptidase of Streptomyces albus G. Biochem. J., 219, 763–772.PubMedPubMedCentralCrossRefGoogle Scholar
  3. CUSHMAN, D.W., CHEUNG, H.S., SABO, E.F. & ONDETTI, M.A. (1977). Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry, 16, 5484–5491.PubMedCrossRefGoogle Scholar
  4. DIDEBERG, O., CHARLIER, P., DIVE, G., JORIS, B., FRERE, J.M. & GHUYSEN, J.M. (1982). Structure at 2.5 Å resolution of a Zn++-containing D-alanyl-D-alaninecleaving carboxypeptidase. Nature, 299, 469–470.PubMedCrossRefGoogle Scholar
  5. GHUYSEN, J.M., FRERE, J.M., LEYH-BOUILLE, M., COYETTE, J., DUSART, J. & NGUYEN-DISTÈCHE, M. (1979). Use of model enzymes in the determination of the mode of action of penicillins and Δ3-cephalosporins. A. Rev. Biochem., 48, 73–101.CrossRefGoogle Scholar
  6. GHUYSEN, J.M., FRERE, J.M., LEYH-BOUILLE, M., DIDEBERG, O., LAMOTTE-BRASSEUR, J., PERKINS, H.R. & DE COEN, J.L. (1981). In: Topics in Molecular Pharmacology. A.S.V. Burgen and G.C.K. Roberts (eds) 63–97, Elsevier North-Holland Biomedical Press.Google Scholar
  7. GHUYSEN, J.M., FRERE, J.M., LEYH-BOUILLE, M., NGUYEN-DISTECHE, M., COYETTE, J., DUSART, J., JORIS, B., DUEZ, C., DIDEBERG, O., CHARLIER, P., DIVE, G. & LAMOTTE-BRASSEUR, J. (1984). Bacterial wall peptidoglycan, DD-peptidases and β-lactam antibiotics. Scand. J. Infect. Dis. (in press).Google Scholar
  8. JORIS, B., VAN BEEUMEN, J., CASAGRANDE, F., GERDAY, Ch., FRERE, J.M. & GHUYSEN, J.M. (1983). The complete amino acid sequence of the Zn++-containing D-alanyl-D-alanine-cleaving carboxypeptidase of Streptomyces albus G. Eur. J. Biochem., 130, 53–69.PubMedCrossRefGoogle Scholar
  9. KELLY, J.A., MOEWS, P.C., KNOX, J.R., FRERE, J.M. & GHUYSEN, J.M. (1982). Structure of a penicillin target enzyme and location of the antibiotic binding site. Science, 218, 479–481.PubMedCrossRefGoogle Scholar
  10. KELLY, J.A. (1983). In The Target of Penicillin. The Murein Sacculus of Bacterial Cell Walls. Architecture and Growth. Hakenbeck, R., Höltje, J.V. & Labischinski, H. (eds), pp. 387–392, West Berlin: Walter de Gruyter & Co.Google Scholar
  11. LABISCHINSKI, H., GIESBRECHT, P., FISCHER, E., BARNICKEL, G., BRADACZEK, H., FRERE, J.M., HOUSSIER, Cl., CHARLIER, P., DIDEBERG, O. & GHUYSEN, J.M. (1984). Study of the Zn-containing DD—carboxypeptidase of Streptomyces albus G by small angle X-ray scattering in solution. Eur. J. Biochem., 138, 83–87.PubMedCrossRefGoogle Scholar
  12. LAMOTTE-BRASSEUR, J., DIVE, G. & GHUYSEN, J.M. (1984). On the structural analogy between D-alanyl-D-alanine terminated peptides and β-lactam antibiotics. Eur. J. med. Chem. (in press).Google Scholar
  13. NGUYEN-DISTÈCHE, M., LEYH-BOUILLE, M. & GHUYSEN, J.M. (1982). Isolation of the membrane-bound 26 000-Mr penicillin-binding protein of Streptomyces strain K15 in the form of a penicillin-sensitive D-alanyl-D-alanine-cleaving transpeptidase. Biochem. J., 207, 109–115.PubMedPubMedCentralCrossRefGoogle Scholar
  14. PRATT, R.F. & GOVARDHAN, C.P. (1984). β-Lactamase catalysed hydrolysis of acyclic depsipeptides and acyl transfer to specific amino acid acceptors. Proc. natn. Acad. Sci. U.S.A., 81, 1302–1306.CrossRefGoogle Scholar
  15. ROQUES, B.P., LUCAS-SOROCA, E., CHAILLET, P., COSTENTIN, J. & FOURNIE-ZALUSKI, M.C. (1983). Complete differentiation between enkephalinase and angiotensin-converting enzyme inhibition by retro-thiorphan. Proc. natn. Acad. Sci. U.S.A., 80, 3178–3182.CrossRefGoogle Scholar
  16. SPRATT, B.G. (1983). Penicillin binding proteins and the future of β-lactain antibiotics. J. gen. Microbiol., 129, 1247–1260.PubMedGoogle Scholar
  17. WAXMAN, D.J. & STROMINGER, J.L. (1983). Penicillin binding proteins and the mechanism of action of β-lactam antibiotics. A. Rev. Biochem., 52, 825–869.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • J. -M. Ghuysen
    • 1
  1. 1.Service de Microbiologie, Faculté de MédecineUniversité de Liège, Institut de Chimie, B6Sart Tilman (Liège)Belgium

Personalised recommendations