Advertisement

Thienamycin, imipenem and new members of the carbapenem class of β-lactam antibiotics

  • F. Baker
  • L. D. Cama
  • B. G. Christensen
  • W. J. Leanza
  • D. H. Shih
  • K. J. Wildonger

Abstract

Thienamycin (Figure 1a) was initially isolated from Streptomyces cattleya and was the first member of the carbapenem class to be characterized. Two observations became immediately obvious. First, its antibacterial spectrum and potency has no equal among either the naturally-occurring or semi-synthetic β-lactam antibiotics (Kropp et al., 1976). Secondly, its structure is equally unique. (1a) is the initial member of a large series of antibiotics having the carbapenem nucleus (2) (Albers-Schonberg et a1., 1978). Also, the two hydrogen atoms at the adjacent 5,6 positions of the bicyclic ring structure are trans rather than the cis configuration found in the penicillins and cephalosporins. Although a sulphur atom is contained in the thienamycin structure, it is appended in the exocyclic cysteamine side chain rather than located within the nucleus itself. However, the most remarkable feature of the structure is the replacement of the conventional amide side chain with the hydroxyethyl group.

Keywords

Total Synthesis Lactam Antibiotic Tetrahedron Letter Hydroxyethyl Group Amide Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALBERS-SCHONBERG, G., ARISON, B.H., HENSENS, O.D., HIRSHFIELD, J., HOOGSTEEN, K., KACZKA, E.A., RHODES, R.E., KAHAN, J.S., KAHAN, F.M., RATCLIFFE, R.W., WALTON, E., RUSWINKLE, MORIN, R.B. & CHRISTENSEN, B.G. (1978). Structure and absolute configuration of thienamycin. J. Am. Chem. Soc., 100, 6491–6499.CrossRefGoogle Scholar
  2. ASHTON, W.T., BARASH, L., BROWN, J.E., BROWN, R.D., CANNING, L.F., CHEN, A., GRAHAM, D.W.L., KAHAN, F.M., KROPP, H., SUNDELOF, J.G. & ROGERS, E.F. (1980). Z-2-Acylamino-3-substituted propenoates, inhibitors of the renal dipeptidase (Dehydropeptidase-I) responsible for thienamycin metabolism. 20th Intersci. Conf. Antimicr. Agents & Chemoth., New Orleans, La., Abstract 271.Google Scholar
  3. CAMA, L.D. & CHRISTENSEN, B.G. (1974). Total synthesis of β-lactam antibiotics VII. Total synthesis of (±)-1-oxacephalothin. J. Am. Chem. Soc., 96, 7582–7584.PubMedCrossRefGoogle Scholar
  4. GUTHIKONDA, R.N., CAMA, L.D. & CHRISTENSEN, B.G. (1974). Total synthesis of β-lactam Antibiotics. VIII. Stereospecific total synthesis of (+)-1-carbacephalothin. J. Am. Chem. Soc. , 96, 7584–7585.PubMedCrossRefGoogle Scholar
  5. KAHAN, J.S., KAHAN, F.M., GOEGELMAN, R., CURRIE, S.A., JACKSON, M., STAPLEY, E.O., MILLER, T.W., MILLER, A.K., HENDLIN, D., MOCHALES, S., HERNANDEZ, S., WOODRUFF, H.B. & BIRNBAUM, J. (1979). Thienamycin, a new β-lactam antibiotic. I. Discovery, taxonomy, isolation, and physical properties. J. Antibiot., 32, 1–12.PubMedCrossRefGoogle Scholar
  6. KROPP, H., KAHAN, F.M., SUNDELOF, J., DARLAND, G. & BIRNBAUM, J. (1976). 15th Intersci. Conf. Antimicr. Agents & Chemoth., Chicago, Ill., Abstract 228.Google Scholar
  7. KROPP, H., SUNDELOF, J.G., HAJDU, R., & KAHAN, F.M. (1982). Metabolism of thienamycin and related car- bapenem antibiotics by the renal dehydropeptidase-I. Antimicr. Agents & Chemoth., 22, 62–70.CrossRefGoogle Scholar
  8. LEANZA, W.J., WILDONGER, K.J., HANNAH, J., SHIH, D.H., RATCLIFFE, R.W., BARASH, L., WALTON, E., FIRESTONE, R.A., PATEL, G.F., KAHAN, F.M., KAHAN, J.S. & CHRISTENSEN, B.G. (1981). Structureactivity relationships in the thienamycin series. In Recent Advances in the Chemistry of β-lactam antibiotics, Gregory, G.I. (ed.) pp. 240–254, London: The Royal Society of Chemistry.Google Scholar
  9. LEANZA, W.J., WILDONGER, K.J., MILLER, T.W. & CHRISTENSEN, B.G. (1979). N-Acetimidoyl- and N-formimidoylthienamycin derivatives: antipseudomonal β-lactam antibiotics. J. med. Chem., 22, 1435–1436.PubMedCrossRefGoogle Scholar
  10. MELILLO, D.G., SHINKAI, I., LIU, T., RYAN, K. & SLETZINGER, M. (1980). A practical synthesis of (+)-thilenamycin. Tetrahedron Letters, 21, 2783–2786.CrossRefGoogle Scholar
  11. RATCLIFFE, R.W., SALZMANN, T.N. & CHRISTENSEN, B.G. (1980). A novel synthesis of the carbapen-2-em ring system. Tetrahedron Letters, 21, 31–34.CrossRefGoogle Scholar
  12. SALZMANN, T.N., RATCLIFFE, R.W., CHRISTENSEN, B.G. & BOUFFARD, F.A. (1980). A stereocontrolled synthesis of (+)-thienamycin. J. Am. Chem. Soc., 102, 6161–6163.CrossRefGoogle Scholar
  13. SHIH, D.H., FAYTER, J.A., BAKER, F., CAMA, L.D. & CHRISTENSEN, B.G. (1983). New Synthetic Carbapenem Antibiotics. 1,2,6-Substituted-1-carbapen-2-em-3-carboxylic acid. 23rd Intersci. Conf. Antimicr. Agents & Chemoth., Las Vegas, Nev., Abstract 333.Google Scholar
  14. TISCHHAUSER, G. & KAYSER, F.H. (1983). The in vitro activity of N-formimidoyl thienamycin compared with other broad-spectrum cephalosporins and with clindamycin and metronidazole. Infections, 11, 219–226.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • F. Baker
    • 1
  • L. D. Cama
  • B. G. Christensen
  • W. J. Leanza
  • D. H. Shih
  • K. J. Wildonger
  1. 1.Merck Sharp & Dohme Research LaboratoriesUSA

Personalised recommendations