Mechanisms of β-lactamase action

  • R. Bicknell
  • S. J. Cartwright
  • E. L. Emanuel
  • S. G. Waley


β-Lactamases continue to play an important part in antibiotic resistance in bacteria (see, for example, Medeiros, 1984). The prevalence of β-lactamases thus concerns clinicians, and stimulates pharmaceutical companies to produce (supposedly) β-lactamaseresistant drugs. β-Lactamases appear to be as diverse as they are efficient, and one of the reasons for studying their mechanisms is to bring order into their classification. This has been successful, in that a simple binary classification may apply widely. It is perhaps worth mentioning that most of the detailed knowledge of β-lactamase mechanisms dates from 1978. Thus from the point of view of their mechanisms, we can now divide those β-lactamases (or rather, those that have been studied in enough depth) into ‘serine’ enzymes and ‘metal’ enzymes. A second division splits the ‘serine’ enzymes into two classes (called class A and class C), based on their amino acid sequences (Ambler, 1980; Jaurin & Grundström, 1981).


Bacillus Cereus Bacillus Licheniformis Boronic Acid Phenylboronic Acid fromEscherichia Coli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AMBLER, R.P. (1980). The structure of β-lactamases. Phil. Trans. R. Soc. Lond., B289, 321–331.CrossRefGoogle Scholar
  2. ANDERSON, E.G. & PRATT, R.F. (1983). Pre-steady state β-lactamase kinetics. J. biol. Chem., 258, 13120–13126.PubMedGoogle Scholar
  3. BALDWIN, G.S., GALDES, A., HILL, H.A.O., SMITH, B.E., WALEY, S.G. & ABRAHAM, E.P. (1978). Histidine residues as zinc ligands in β-lactamase II. Biochem. J., 175, 441–447.PubMedPubMedCentralCrossRefGoogle Scholar
  4. BALDWIN, G.S., GALDES, A., HILL, H.A.O., WALEY, S.G. & ABRAHAM, E.P. (1980). A spectroscopic study of metal ion and ligand binding to β-lactamase II. J. Inorg. Biochem., 13, 189–204.PubMedCrossRefGoogle Scholar
  5. BEESLEY, T., GASCOYNE, N., KNOTT-HUNZIKER, V., PETURSSON, S., WALEY, S.G., JAURIN, B. & GRUND-STRÖM, T. (1983). The inhibition of class C β-lactamases by boronic acids. Biochem. J., 209, 229–233.PubMedPubMedCentralCrossRefGoogle Scholar
  6. CARTWRIGHT, S.J. & FINK, A.L. (1982). Isolation of a covalent intermediate in β-lactamase I catalysis. FEBS Len., 137, 186–188.CrossRefGoogle Scholar
  7. CARTWRIGHT, S.J. & WALEY, S.G. (1984). Purification of β-lactamases by affinity chromatography on phenylboronic acid-aearose. Biochem. J.. 221, 505–512.PubMedPubMedCentralCrossRefGoogle Scholar
  8. CHARNAS, R.L. & KNOWLES, J.R. (1981). Inhibition of the RTEM β-lactamase from Escherichia coli. Interaction of enzyme with derivatives of olivanic acid. Biochemistry, 20, 2732–2737.PubMedCrossRefGoogle Scholar
  9. DAVIES, R.B. & ABRAHAM, E.P. (1974). Metal cofactor requirements of β-lactamase II. Biochem. J., 143, 129–135.PubMedPubMedCentralCrossRefGoogle Scholar
  10. FISHER, J., BELASCO, J.G., KHOSLA, S. & KNOWLES, J.R. (1980). β-lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. Biochemistry, 19, 2895–2901.PubMedCrossRefGoogle Scholar
  11. GALDES, A., HILL, H.A.O., BALDWIN, G.S., WALEY, S.G. & ABRAHAM, E.P. (1980). The 1H nuclear-magneticresonance spectroscopy of cobalt(II)-β-lactamase II. Biochem. J., 187, 789–795.PubMedPubMedCentralCrossRefGoogle Scholar
  12. JAURIN, B. & GRUNDSTROM, T. (1981). ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type. Proc. natn. Acad. Sci. U.S.A., 8, 4897–4901.CrossRefGoogle Scholar
  13. IUENER, P.A. & WALEY, S.G. (1978). Reversible inhibitors of penicillinases. Biochem. J., 169, 197–204.CrossRefGoogle Scholar
  14. KIENER, P.A, KNOTT-HUNZIKER, V., PETURSSON, S. & WALEY, S.G. (1980). Mechanism of substrate-induced inactivation of β-lactamase I. Eur. J. Biochem., 109, 575–580.PubMedCrossRefGoogle Scholar
  15. KNOTT-HUNZIKER, V., WALEY, S.G., ORLEK, B.S. & SAMMES, P.G. (1979). Penicillinase active sites: labelling of serine-44 in β lactamase I by 6β-bromopenicillanic acid. FEBS Lett., 99, 59–61.PubMedCrossRefGoogle Scholar
  16. KNOTT-HUNZIKER, V., REDHEAD, K., PETURSSON, S. & WALEY, S.G. (1980). β-Lactamase action: isolation of an active-site serine peptide from the Pseudomonas enzyme and a penicillin. FEBS Lett., 121, 8–10.CrossRefGoogle Scholar
  17. KNOTT-HUNZIKER, V., PETURSSON, S., JAYATILAKE, G.S., WALEY, S.G., JAURIN, B. & GRUNDSTRÖM, T. (1982a). Biochem. J., 201, 621–627.PubMedPubMedCentralCrossRefGoogle Scholar
  18. KNOTT-HUNZIKER, V., PETURSSON, S., WALEY, S.G., JAURIN, B. & GRUNDSTRÖM, T. (1982b). The acylenzyme mechanism of β-lactamase action: the evidence for class C β-lactamases. Biochem. J., 207, 315–322.PubMedPubMedCentralCrossRefGoogle Scholar
  19. KUWABARA, S. & ABRAHAM, E. P. (1967). Some properties of two extra-cellular β-lactamases from Bacillus cereus 569/H. Biochem. J., 103, 27c–30c.CrossRefGoogle Scholar
  20. MEDEIROS, A. A. (1984). β-Lactamases. Brit.Med.Bull., 40, 18–27.PubMedGoogle Scholar
  21. NIKAIDO, H., ROSENBERG, LE.Y. & FOULDS, J. (1983). Porin channels in Escherichia coli: studies with β-lactams in intact cells. J. Bacteriol., 153, 232–240.PubMedPubMedCentralGoogle Scholar
  22. PRATT, R.F. & LOOSEMORE, M.J. (1978). 6β-Bromopenicillanic acid, a potent β-lactamase inhibitor. Proc. natn. Acad. Sci. U.S.A., 75, 4145–4149.CrossRefGoogle Scholar
  23. SABATH, L.D. & ABRAHAM, E.P. (1966). Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem. J., 98, 1lc–13c.CrossRefGoogle Scholar
  24. SAINO, Y., KOBAYASHI, F., INOUE, M. & MITSUHASHI, S. (1982). Purification and properties of inducible penicillin β-lactamase isolated from Pseudomonas maltophilia. Antimicrob.Ag. & Chemother., 22, 564–570.CrossRefGoogle Scholar
  25. WALEY, S.G. (1980). Kinetics of suicide substrates. Biochem.J., 185, 771–773.PubMedPubMedCentralCrossRefGoogle Scholar
  26. WAXMAN, D.J. & STROMINGER, J.L. (1983). Penicillinbinding proteins and the mechanism of action of β-lactam antibiotics. Ann.Rev.Biochem., 52, 825–869.PubMedCrossRefGoogle Scholar
  27. ZIMMERMANN, W. & ROSSELET, A. (1977). Function of the outer membrane of Escherichia coli as a permeability barrier to β-lactam antibiotics. Antimicrob.Ag. & Chemother., 12, 368–372.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • R. Bicknell
    • 1
  • S. J. Cartwright
  • E. L. Emanuel
  • S. G. Waley
  1. 1.Sir William Dunn School of PathologyUniversity of OxfordOxfordUK

Personalised recommendations