Localization of functional activity in the central nervous system by metabolic probes

  • L. Sokoloff


The brain is a complex, heterogeneous organ composed of many anatomical components with markedly different levels of functional activity that vary independently with time and function. Other tissues are generally far more homogeneous with most of their cells functioning similarly and synchronously in response to a common stimulus or regulatory influence. The central nervous system, however, consists of innumerable subunits, each integrated into its own set of functional pathways and networks and subserving only one or a few of the many activities in which the nervous system participates. Understanding how the nervous system functions requires knowledge not only of the mechanisms of excitation and inhibition but even more so of their precise localization in the nervous system and the relationships of neural subunits to specific functions.


Superior Colliculus Glucose Utilization Superior Cervical Ganglion Striate Cortex Lateral Geniculate Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABRAMS, R., ITO, M., FRISINGER, J.E., PATLAK, C.S., PETTIGREW, K.P. & KENNEDY, C. (1984). Local cerebral glucose utilization in fetal and neonatal sheep. Am. J. Physiol. (in press).Google Scholar
  2. BACHELARD, H.S. (1971). Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro. J. Neurochem., 18, 213–222.PubMedCrossRefGoogle Scholar
  3. BATIPPS, M., MIYAOKA, M., SHINOHARA, M., SOKOLOFF, L. & KENNEDY, C. (1981). Comparative rates of local cerebral glucose utilization in the visual system of conscious albino and pigmented rat. Neurology, 31, 58–62.PubMedCrossRefGoogle Scholar
  4. BIDDER, T.G. (1968). Hexose translocation across the blood-brain interface: configurational aspects. J Neurochem., 15, 867–874.PubMedCrossRefGoogle Scholar
  5. BIRREN, J.E., BUTLER, R.N., GREENHOUSE, S.W., SOKOLOF, L. & YARROW, M.R. (eds) (1963). Human Ageing. A Biological and Behavioural Study. Public Health Service Publication No. 986, Washington, D.C., 1963, U.S. Government Printing Office.Google Scholar
  6. BROWN, L.L. & WOLFSON, L.I. (1978). Apomorphine increases glucose utilization in the substantia nigra, sub-thalamic nucleus and corpus striatum of rat. Brain Res., 140, 188–193.PubMedCrossRefGoogle Scholar
  7. CAVENESS, W.F. (1969). Ontogeny of focal seizures. In Basic Mechanisms of the Epilepsies, Jasper, H.H., Ward, A.A. & Pope, A. (eds), pp. 517–534. Boston, Little, Brown & Co.Google Scholar
  8. COLLINS, R.C., KENNEDY, C., SOKOLOFF, L. & PLUM, F. (1976). Metabolic anatomy of focal motor seizures. Arch. Neurol., 33, 536–542.CrossRefGoogle Scholar
  9. DES ROSIERS, M.H., SAKURADA, O., JEHLE, J., SHINOHARA, M., KENNEDY, C. & SOKOLOFF, L. (1978). Functional plasticity in the immature striate cortex of the monkey show by the [14C]dexyglucose method. Science, 200, 447–449.PubMedCrossRefGoogle Scholar
  10. DiCHIRO, G., BROOKS, R.A., SOKOLOFF, L., PATRONAS, N.J., DELAPAZ, R.L., SMITH, B.H. & KORNBLITH, P.L. (1983). Glycolytic rate and histologic grade of human cerebral gliomas: a study with [18F]fluorodeoxyglucose and positron emission tomography. In Position Emission Tomography of the Brain, Heiss, E.-D. & Phelps, M.E. (eds), pp. 181–191, Berlin/Heidelberg/New York, Springer-Verlag.CrossRefGoogle Scholar
  11. DUFFY, T.E., CAVAZZUTI, M., CRUZ, N.F. & SOKOLOFF, L. (1982). Local cerebral glucose metabolism in newborn dogs: effects of hypoxia and halothane anesthesia. Ann. Neurol, 11, 233–246.PubMedCrossRefGoogle Scholar
  12. DURHAM, D. & WOOLSEY, T.A. (1977). Barrels and columnar cortical organization: evidence from 2-deoxyglucose (2-DG) experiments. Brain Res., 137, 169–174.PubMedCrossRefGoogle Scholar
  13. FOSTER, N.L., CHASE, T.N., FEDIO, P., PATRONAS, N.J., BROOKS, R.A. & DiCHIRO, G. (1983). Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology, 33, 961–965.PubMedCrossRefGoogle Scholar
  14. FRIEDLI, C. (1978). Kinetics of changes in pO2 and extracellular potassium activity in stimulated rat sympathetic ganglia. In Adv. in Exper. Med. and Biol., Oxygen Transport to Tissue III, Vol. 94, Silver, I.A., Erecinska, M. & Bicher, H.I. (eds), pp. 747–754, New York, Plenum Press.CrossRefGoogle Scholar
  15. FURLOW, T.W., HALLENBECK, J.M. & GOODMAN, J.C. (1980). Adrenergic blocking agents modify the auditory-evoked response in the rat. Brain Res., 189, 269–273.PubMedCrossRefGoogle Scholar
  16. GALVAN, M., TENBRUGGENCATE, G. & SENEKOWITSCH, R. (1979). The effects of neuronal stimulation and oubain upon extracellular K+ and Ca2+ levels in rat isolated sympathetic ganglia. Brain Res., 160, 544–548.PubMedCrossRefGoogle Scholar
  17. GOOCHEE, C., RASBAND, W. & SOKOLOFF, L. (1980). Computerized densitometry and color coding of [14C]deoxyglucose autoradiographs. Ann. Neurol., 7, 359–370.Google Scholar
  18. HAND, P.J. (1981). The 2-deoxyglucose method. In Neuroanatomical Tract Tracing Methods, Heimer, L. and Robards, M.J. (eds.), pp 511–538, New York, Plenum Press.CrossRefGoogle Scholar
  19. HAND, P.J., GREENBERG, J.H., MISELIS, R.R., WELLER, W.L. & REIVICH, M. (1978). A normal and altered cortical column: a quantitative and qualitative (14C)-2 deoxyglucose (2 DG) mapping study. Soc. Neurosci. Abstr., 4, 553.Google Scholar
  20. HERS, H.G. (1957). Le Métabolisme du Fructose, p 102, Brucelles, Editions Arscia.Google Scholar
  21. HOROWICZ, P. & LARRABEE, M.G. (1958). Glucose consumption and lactate production in a mammalian sympathetic ganglion at rest and in activity. J. Neurochem., 2, 102–118.PubMedCrossRefGoogle Scholar
  22. HUBEL, D.H. & WIESEL, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. J. Physiol., 195, 215–243.PubMedPubMedCentralCrossRefGoogle Scholar
  23. HUBEL, D.H. & WIESEL, T.N. (1972). Laminar and columnar distribution of geniculo-cortical fibers in the Macaque monkey. J. Comp. Neurol., 146, 421–450.PubMedCrossRefGoogle Scholar
  24. HUBEL, D.H., WIESEL, T.N. & STRYKER, M.P. (1978). Anatomical demonstration of orientation columns in Macaque monkey. J. Comp. Neurol., 177, 361–380.PubMedCrossRefGoogle Scholar
  25. KENNEDY, C., DES ROSIERS, M., REIVICH, M., SHARP, F., JEHLE, J.W. & SOKOLOFF, L. (1975). Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C]deoxyglucose. Science, 187, 850–853.PubMedCrossRefGoogle Scholar
  26. KENNEDY, C., Des ROSIERS, M.H., SAKURADA, O., SHINOHARA, M., REIVICH, M., JEHLE, J.W. & SOKOLOFF, L. (1976). Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C] deoxyglucose technique. Proc. natn. Acad. Sci. U.S.A., 73, 4230–4234.CrossRefGoogle Scholar
  27. KENNEDY, C., GILLIN, J.C., MENDELSON, W., SUDA, S., MIYAOKA, M., ITO, M., NAKAMURA, R.K., STORCH, F.I., PETTIGREW, K., MISHKIN, M. & SOKOLOFF, L. (1982). Local cerebral glucose utilization in non-rapid eye movement sleep. Nature, 297, 325–327.PubMedCrossRefGoogle Scholar
  28. KENNEDY, C., MIYAOKA, M., SUDA, S., MACKO, K., JARVIS, C., MISHKIN, M. & SOKOLOFF, L. (1980). Local metabolic responses in brain accompanying motor activity. Trans. Amer. Neurol. Assoc., 105, 13–17.Google Scholar
  29. KENNEDY, C., SAKURADA, O, SHINOHARA, M., JEHLE, J. & SOKOLOFF, L. (1978). Local cerebral glucose utilization in the normal conscious Macaque monkey. Ann. Neurol., 4, 293–301.PubMedCrossRefGoogle Scholar
  30. KETY, S.S. & SCHMIDT, C.F. (1948). Effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J. din. Invest., 27, 484–492.Google Scholar
  31. KUHL, D., ENGEL, J., PHELPS, M. & SELIN, C. (1979). Patterns of local cerebral metabolism and perfusion in partial epilepsy by emission computed tomography of 18F-fluorodeoxyglucose and 13N-ammonia. Acta neurol. scand. Suppl. 72, 60, 538–539.Google Scholar
  32. KUHL, D.E., ENGEL, J. Jr., PHELPS, M.E. & SELIN, C. (1980). Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3 Ann. Neurol., 8, 348–360.PubMedCrossRefGoogle Scholar
  33. KUHL, D.E., PHELPS, M.E., MARKHAM, C.H., METTER, E.J., RIEGE, W.H. & WINTER, J. (1982). Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann. Neurol., 12, 425–434.PubMedCrossRefGoogle Scholar
  34. KUHL, D.E., METTER, E.J., RIEGE, W.H., HAWKINS, R.A., MAZZIOTTA, J.C., PHELPS, M.E., & KLING, A.S. (1983). Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia, and Alsheimer’s disease. J. Cerebr. Blood Flow Metab., 3(1), S494–S495.Google Scholar
  35. LARRABEE, M.G. (1958). Oxygen consumption of excised sympathetic ganglia at rest and in activity. J. Neurochem., 2, 81–101.PubMedCrossRefGoogle Scholar
  36. MACKO, K.A., JARVIS, C.D., KENNEDY, C., MIYAOKA, M., SHINOHARA, M., SOKOLOFF, L. & MISHKIN, M. (1982). Mapping the primate visual system with [2-14C]deoxyglucose. Science, 218, 394–396.PubMedCrossRefGoogle Scholar
  37. MATA, M., FINK, D.J., GAINER, H., SMITH, C.B., DAVIDSEN, L., SAVAKI, H., SCHWARTZ, W.J. & SOKOLOFF, L. (1980). Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J. Neurochem., 34, 213–215.PubMedCrossRefGoogle Scholar
  38. McCULLOCH, J., SAVAKI, H.E., McCULLOCH, M.C. & SOKOLOFF, L. (1979). Specific distribution of metabolic alterations in cerebral cortex following apomorphine administration. Nature, 282, 303–305.PubMedCrossRefGoogle Scholar
  39. McCULLOCH, J., SAVAKI, H.E. & SOKOLOFF, L. (1980). Influence of dopaminergic systems on the lateral habenular nucleus of the rat. Brain Res., 194, 117124.PubMedCrossRefGoogle Scholar
  40. McCULLOCH, J., SAVAKI, H.E., McCULLOCH, M.C. & SOKOLOFF, L. (1980). Retina-dependent activation by apomorphine of metabolic activity in the superficial layer of the superior colliculus. Science, 207, 313–315.PubMedCrossRefGoogle Scholar
  41. McCULLOCH, J. (1982). Mapping functional alterations in the CNS with [14C]deoxyglucose. In Handbook of Psychopharmacology, Vol. 15, Iverson, L., Iverson, S. and Snyder, S. (eds.), pp 331–410, New York, Plenum Publishing Corp.Google Scholar
  42. MIYAOKA, M., SHINOHARA, M., BATIPPS, M., PETTIGREW, K.D., KENNEDY, C. & SOKOLOFF, L. (1979a). The relationship between the intensity of the stimulus and the metabolic response in the visual system of the rat. Acta neurol. scand. Suppl. 72, 60, 16–17.Google Scholar
  43. MIYAOKA, M., SHINOHARA, M., KENNEDY, C. & SOKOLOFF, L. (1979b). Alterations in local cerebral glucose utilization (LGU) in rat brain during hypoxeimia. Trans. Am. Neurol. Assoc., 104, 151–154.PubMedGoogle Scholar
  44. NELSON, T., KAUFMAN, E. & SOKOLOFF, L. (1984). 2-Deoxyglucose incorporation into rat brain glycogen during measurement of local cerebral glucose utilization by the 2-deoxyglucose method. J. Neurochem. (in press).Google Scholar
  45. OLDENDORF, W.H. (1971). Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol., 221, 1629–1638.PubMedGoogle Scholar
  46. PHELPS, M.E., HUANG, S.C., HOFFMAN, E.J., SELIN, C., SOKOLOFF, L. & KUHL, D.E. (1979). Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method. Ann. Neurol., 6, 371–388.PubMedCrossRefGoogle Scholar
  47. PHELPS, M.E., KUHL, D.E. & MAZZIOTTA, J.E. (1981). Metabolic mapping of the brain’s response to visual stimulation: studies in man. Science, 211, 1445–1448.PubMedCrossRefGoogle Scholar
  48. PLUM, F., GJEDDE, A. & SAMSON, F.E. (eds.) (1976). Neuroanatomical functional mapping by the radioactive 2-deoxy-D-glucose method. Neurosci. Res. Prog. Bull., 14, 457–518.Google Scholar
  49. PULSINELLI, W.A. & DUFFY, T.E. (1978). Local cerebral glucose metabolism during controlled hypoxemia in rats. Science, 204, 626–629.CrossRefGoogle Scholar
  50. RAKIC, P. (1976). Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature, 261, 467471.PubMedCrossRefGoogle Scholar
  51. REIVICH, M., JEHLE, J., SOKOLOFF, L. & KETY, S.S. (1969). Measurement of regional cerebral blood flow with antipyrine-14C in awake cats. J. Appl. Physiol., 27, 296–300.PubMedGoogle Scholar
  52. REIVICH, M., KUHL, D., WOLF, A., GREENBERG, J., PHELPS, M., IDO, T., CASSELLA, V., FOWLER, J., HOFFMAN, E., ALAVI, A., SOM, P. & SOKOLOFF, L. (1979). The [18F]fluoro-deoxyglucose method for the measurment of local cerebral glucose utilization in man. Circ. Res., 44, 127–137.PubMedCrossRefGoogle Scholar
  53. ROTH, R.H. (1976). Striatal dopamine and gammahydroxybutyrate. Pharmac. and Ther., 2, 71–88.Google Scholar
  54. ROTH, R.H. & GIARMAN, N.J. (1966). γ-Butyrolactone and γ-hydroxybutyric acid --I. Distribution and metabolism. Biochem. Pharmac., 15, 1333–1348.CrossRefGoogle Scholar
  55. SAVAKI, H.E., KADEKARO, M., JEHLE, J. & SOKOLOFF, L. (1978). α-And β-adrenoreceptor blockers have opposite effects on energy metabolism of the central auditory system. Nature, 276, 521–523.PubMedCrossRefGoogle Scholar
  56. SAVAKI, H.E., KADEKARO, M., McCULLOCH, J. & SOKOLOFF, L. (1982a). Central noradrenergic systems in the rat: a metabolic mapping with three α-blocking agents. Brain Res., 234, 65–79.PubMedCrossRefGoogle Scholar
  57. SAVAKI, H.E., McCULLOCH, J., KADEKARO, M. & SOKOLOFF, L. (1982b). Influence of a-receptor blocking agents upon metabolic activity in nuclei involved in central control of blood pressure. Brain Res., 233, 347–358.PubMedCrossRefGoogle Scholar
  58. SCHUIER, F., ORZI, F., SUDA, S., KENNEDY, C. & SOKOLOFF, L. (1981). The lumped constant for the [14C]deoxyglucose method in hyperglycemic rats. J. Cerb. Blood Flow Metab., 1(1), S63.Google Scholar
  59. SCHWARTZ, W.J. & GAINER, H. (1977). Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science, 197, 1089–1091.PubMedCrossRefGoogle Scholar
  60. SCHWARTZ, W.J., DAVIDSEN, L.C. & SMITH, C.B. (1980). In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus. J. Comp. Neurol., 189, 157–167.PubMedCrossRefGoogle Scholar
  61. SHARP, F.R., KAUER, J.S. & SHEPHERD, G.M. (1975). Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation. Brain Res., 98, 596–600.PubMedCrossRefGoogle Scholar
  62. SHINOHARA, M., DOLLINGER, B., BROWN, G., RAPOPORT, S. & SOKOLOFF, L. (1979). Cerebral glucose utilization: local changes during and after recovery from spreading cortical depression. Science, 203, 188–190.PubMedCrossRefGoogle Scholar
  63. SILVERMAN, M.S., HENDRICKSON, A.E. & CLOPTON, B.M. (1977). Mapping of the tonotopic organization of the auditory system by uptake of radioactive metabolites. Soc. Neurosci. Abstr., 3, 11.Google Scholar
  64. SMITH, C.B., GOOCHEE, C., RAPOPORT, S.I. & SOKOLOFF, L. (1980). Effects of ageing on local rates of cerebral glucose utilization in the rat. Brain, 103, 351–365.PubMedCrossRefGoogle Scholar
  65. SOKOLOFF, L. (1966). Cerebral circulatory and metabolic changes associated with ageing. Res. Publ. Assoc. Nerv. Ment. Dis., 41, 237–254.Google Scholar
  66. SOKOLOFF, L. (1976). Circulation and energy metabolism of the brain. in Basic Neurochemistry, Second Edition, Siegel, G.J., Albers, R.W., Katzman, R. & Agranoff, B.W. (eds.), pp. 388–413, Boston, Little, Brown & Co.Google Scholar
  67. SOKOLOFF, L. (1977). Relation between physiological function and energy metabolism in the central nervous system. J. Neurochem., 29, 13–26.PubMedCrossRefGoogle Scholar
  68. SOKOLOFF, L. (1978). Mapping cerebral functional activity with radioactive deoxyglucose. Trends NeuroSci., 1(3), 75–79.CrossRefGoogle Scholar
  69. SOKOLOFF, L., REIVICH, M., KENNEDY, C., DES ROSIERS, M.H., PATLAK, C.S., PETTIGREW, K.D., SAKURADA, O. & SHINOHARA, M. (1977). The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anaesthetized albine rat. J. Neurochem., 28, 897–916.PubMedCrossRefGoogle Scholar
  70. SOLS, A. & CRANE, R.K. (1954). Substrate specificity of brain hexokinase. J. Biol. Chem., 210, 581–595.PubMedGoogle Scholar
  71. SUDA, S., SHINOHARA, M., MIYAOKA, M., KENNEDY, C., & SOKOLOFF, L. (1981). Local cerebral glucose utilization in hypoglycemia. J. Cerebr. Blood Flow Metab., 1(1), S62, 1981.Google Scholar
  72. WEBSTER, W.R., SERVIERE, J., BATINI, C. & LAPLANTE, S. (1978). Autoradiographic demonstration with 2-[14C]deoxyglucose of frequency selectivity in the auditory system of cats under conditions of functional activity. Neurosci. Len., 10, 43–48.CrossRefGoogle Scholar
  73. WECHSLER, L.R., SAVAKI, H.E. & SOKOLOFF, L. (1979). Effects of d- and 1-amphetamine on local cerebral glucose utilization in the conscious rat. J. Neurochem., 32, 15–22.PubMedCrossRefGoogle Scholar
  74. WIESEL, T.N., HUBEL, D.H. & LAM, D.M.K. (1974). Autoradiographic demonstration of ocular dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res., 79, 273–279.PubMedCrossRefGoogle Scholar
  75. WOLFSON, L.I., SAKURADA, 0. & SOKOLOFF, L. (1977). Effects of γ-butyrolactone on local cerebral glucose utilization in the rat. J. Neurochem., 29, 777–783.CrossRefGoogle Scholar
  76. YAROWSKY, P.J., CRANE, A.M. & SOKOLOFF, L. (1980). Stimulation of neuronal glucose utilization by antidromic electrical stimulation in the superior cervical ganglion of the rat. Soc. Neurosci. Abstr., 6, 340.Google Scholar
  77. YAROWSKY, P., KADEKARO, M. & SOKOLOFF, L. (1983). Frequency-dependent activation of glucose utilization in the superior cervical ganglion by electrical stimulation of cervical sympathetic trunk. Proc. natn. Acad. Sci. U.S.A., 80, 4179–4183.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • L. Sokoloff
    • 1
  1. 1.Department of Health and Human ServicesLaboratory of Cerebral Metabolism, National Institute of Mental Health, U.S. Public Health ServiceBethesdaUSA

Personalised recommendations