Skip to main content

Putative Transmitters

  • Chapter
Physiology of the Nervous System
  • 216 Accesses

Abstract

It is now generally agreed that most neurons in the central nervous system communicate with one another by releasing chemical transmitters. Despite arduous efforts, only a few compounds have been identified which can with various degrees of certainty be considered as neurotransmitters. To be identified as a transmitter, a substance should fulfil certain criteria. The main properties to be established are the presence of the substance in the presynaptic terminals and its release during presynaptic activity. Furthermore, there should be a correlation between its release and the amount of presynaptic activity; local administration of the compound should produce the same effect as presynaptic activity and substances antagonistic to the putative transmitter should block synaptic transmission. Actually, none of the compounds generally considered to be transmitters in the central nervous system fulfils all these criteria. Because of the complexity of the central nervous system, it is technically difficult to prove the release of a putative transmitter or to administer it locally at the synapse. The rigorous criteria which are applied to the peripheral system therefore cannot be easily satisfied within the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Suggested Reading and Reviews

  • Bennett, M. V. L. (1972). A comparison of electrically and chemically mediated transmission, in Structure and Function of Synapses, eds G. D. Pappas and D. P. Purpura, Raven Press, New York, pp. 221–256

    Google Scholar 

  • Bennett, M. V. L. (ed.) (1974). Synaptic Transmission and Neuronal Interaction, Raven Press, New York

    Google Scholar 

  • Bloom, F. E. (1975). Central noradrenergic synaptic mechanisms, in The Nervous System, vol. 1, ed. D. B. Tower, Raven Press, New York, pp. 373–380

    Google Scholar 

  • Bodian, D. (1972). Synaptic diversity and characterization by electron microscopy, in Structure and Function of Synapses, eds G. D. Pappas and D. P. Purpura, Raven Press, New York, pp. 45–65

    Google Scholar 

  • Brownstein, M. (1977). Biological active peptides in the mammalian central nervous system, in Peptides in Neurobiology, ed. H. Gainer, Plenum Press, New York, pp. 145–170

    Chapter  Google Scholar 

  • Costa, E. and Trabucchi, M. (eds) (1978). The Endorphins, Advances in Biochemical Psychopharmacology, vol. 18, Raven Press, New York

    Google Scholar 

  • Dahlstrom, A. (1969). Fluorescence histochemistry of monoamines in the CNS, in Basic Mechanisms of the Epilepsies, eds H. H. Jasper, A. A. Ward and A. Pope, Little, Brown and Co.

    Google Scholar 

  • Boston Eccles, J. C. (1961). The mechanism of synaptic transmission, Ergebn. Physiol., 51, 299–430

    Article  Google Scholar 

  • Eccles, J. C. (1963). Presynaptic and postsynaptic inhibitory actions in the spinal cord, in Brain Mechanisms, ed. G. Moruzzi, Elsevier, Amsterdam

    Google Scholar 

  • Eccles, J. C. (1964). The Physiology of Synapses, Springer-Verlag, Berlin

    Book  Google Scholar 

  • Eccles, J. C. (1967). Postsynaptic inhibition in the central nervous system, in The Neurosciences. A Study Program, eds. G. C. Quarton, T. Mel- nechuk and F. O. Schmitt, Rockefeller University Press, New York, pp. 408–427 Gainer, H., Loh, Y. P. and Same, Y. (1977). Biosynthesis of neuronal peptides, in Peptides in Neurobiology, ed. H. Gainer, Plenum Press, New York, pp. 183–219 Grundfest, H. (1957). Electrical inexcitability of synapses and some consequences in the central nervous system, Physiol Rev., 37, 337–361 Grundfest, H. (1967). Synaptic and ephaptic transmission, in The Neurosciences. A Study Program, eds G. C. Quarton, T. Melnechuk and F. O. Schmitt, Rockefeller University Press, New York, pp. 353–372

    Google Scholar 

  • Hall, Z. W., Hildebrand, J. G. and Kravitz, E. A. (1972). Chemistry of Synaptic Transmission, Chiron Press, Newton

    Google Scholar 

  • Hökfelt, T. (1971). Ultrastructural localization of intraneuronal monoamines. Some aspects of methodology, in Histochemistry of Nervous Transmission, Progress in Brain Research, ed. O. Eränkö, Elsevier, Amsterdam, pp. 213–222

    Google Scholar 

  • Hökfelt, T., Johansson, O., Kellerth, J.-O., Ljung- dahl, Ä., Nilsson, G., Nygards, A. and Pernow, B. (1976). Immunohistochemical distribution of substance P, in Substance P, eds U. S. von Euler and B. Pernow, Raven Press, New York, pp. 117–145

    Google Scholar 

  • Hornykiewicz, O. (1973). Dopamine in the basal ganglia: Its role and therapeutic implications (including the clinical use of LDOPA), Br. Med. Bull., 29, 172–178 Iversen, L L. (1970). Neurotransmitters, neurohormones and other small molecules in neurons, in The Neurosciences. Second Study Program, ed. F. O. Schmitt, Rockefeller University Press, New York, pp. 768–781

    Google Scholar 

  • Iversen, L. L (1975). Dopamine receptors in the brain, Science, 188, 1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L. L (1979). The chemistry of the brain, Scient. Am., 241, 118–129

    Article  Google Scholar 

  • Jones, D. G. (1975). Synapses and Synaptosomes. Morphological Aspects, Chapman and Hall, London

    Google Scholar 

  • Kandel, E. R. (1979). Small systems of neurons, Scient. Am., 241, 61–70

    Article  Google Scholar 

  • Kosterlitz, H. W. and McKnight, A. T. (1981). Opioid peptides and sensory function, in Progress in Sensory Physiology, vol. 1, ed. D. Ottoson, Springer-Verlag, Heidelberg, pp. 32–95

    Google Scholar 

  • McLennan, H. (1970). Synaptic Transmission, W. B. Saunders, Philadelphia

    Google Scholar 

  • Nicoli, R. A. (1975). Peptide receptors in CNS, in Handbook of Psychopharmacology, vol. 4, eds L. L. Iversen, S. D. Iversen and S. H. Snyder, Plenum Press, New York, pp. 229–263

    Google Scholar 

  • Otsuka, M. and Takahashi, T. (1977). Putative peptide neurotransmitters, Ann. Rev. Pharmacol. Toxicol 17, 425–439

    Article  CAS  Google Scholar 

  • Pappas, G. D. (1975). Ultrastructural basis of synaptic transmission, in The Nervous System, vol. 1, ed. D. B. Tower, Raven Press, New York, pp. 19–30

    Google Scholar 

  • Pappas, G. D. and Purpura, D. P. (1972). Structure and Function of Synapses, Raven Press, New York

    Google Scholar 

  • Pappas, G. D. and Waxman, S. G. (1972). Synaptic fine structure — morphological correlates of chemical and electrotonic transmission, in Structure and Function of Synapses, eds G. D. Pappas and D. P. Purpura, Raven Press, New York, pp. 1–43

    Google Scholar 

  • Peters, A. (1968). The morphology of axons of the central nervous system, in The Structure and Function of Nervous Tissue, vol. 1, ed. G. H. Bourne, Academic Press, New York, pp. 141–186

    Google Scholar 

  • Pfenninger, K. H. (1973). Synaptic morphology and cytochemistry, Prog. Histochem. Cyto- chem., 5(1), 1–86

    Google Scholar 

  • Pfenninger, K. H. (1979). Synaptic-membrane differentiation, in The Neurosciences. Fourth Study Program, eds. F. O. Schmitt and F. G. Worden, MIT Press, Cambridge, MA, pp. 779–795

    Google Scholar 

  • Phillis, J. W. (1966). The Pharmacology of Synapses, Pergamon Press, Oxford

    Google Scholar 

  • Schmidt, R. F. (1971). Presynaptic inhibition in the vertebrate central nervous system, Ergebn. Physiol, 63, 21–108

    Google Scholar 

  • Shapiro, E., Klein, M. and Kandel, E. (1981). Ionic mechanisms and behavioral functions of presynaptic facilitation and presynaptic inhibition in Aplysia: A model system for studying the modulation of signal transmission in sensory neurons, in Progress in Sensory Physiology, vol. 1, eds H. Autrum, D. Ottoson, E. R. Perl and R. F. Schmidt, Springer-Verlag, Heidelberg, pp. 97–137

    Chapter  Google Scholar 

  • Snyder, S. H. and Bennett, J. P., Jr (1976). Neurotransmitter receptors in the brain: biochemical identification, Ann Rev. Physiol, 38, 153–175

    Article  CAS  Google Scholar 

  • Triggle, D. J. and Triggle, C. R. (1976). Chemical Pharmacology of the Synapse, Academic Press, New York

    Google Scholar 

  • Ungerstedt, U. (1974). Brain dopamine neurones and behavior, in The Neurosciences. Third Study Program, eds. F. O. Schmitt and F. G. Worden, MIT Press, Cambridge, MA, pp. 695–703

    Google Scholar 

  • Vale, W. and Brown, M. (1979). Neurobiology of peptides, in The Neurosciences. Fourth Study Program, eds F. O. Schmitt and F. G. Worden, MIT Press, Cambridge, MA, pp. 1027–1041

    Google Scholar 

Original Papers

  • Bennett, M. V. L., Nakajima, Y. and Pappas, G. D. (1967). Physiology and ultrastructure of electrotonic junctions, I. Supramedullary neurons, J. Neurophysiol., 30, 161–179

    PubMed  CAS  Google Scholar 

  • Bodian, D. (1966). Synaptic types on spinal motoneurons: an electron microscopic study, Bull Johns Hopkins Hosp., 119, 16–45

    Google Scholar 

  • Burke, R. E. (1967). Composite nature of the monosynaptic excitatory postsynaptic potential, J. Neurophysiol., 30, 1114–1137

    PubMed  CAS  Google Scholar 

  • Conradi, S. (1909). On motoneuron synaptology in adult cats, Acta Physiol Scand., Suppl 332, 1–115

    Google Scholar 

  • Curtis, D. R. (1959). Pharmacological investigations upon inhibition of spinal neurones, J. Physiol. (Lond.), 145, 175–192

    Article  CAS  Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D. and Johnston, G. A. R. (1970). GABA, bicuculline and central inhibition, Nature, 226, 1222–1224

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R. and Eccles, R. M. (1958). The excitation of Renshaw cells by pharmacological agents applied electrophoretically, J. Physiol (Lond.), 141, 435–445

    Article  CAS  Google Scholar 

  • Curtis, D. R. and Eccles, J. C. (1959). The time courses of excitatory and inhibitory synaptic actions, J. Physiol (Lond.), 145, 520–546

    Google Scholar 

  • Curtis, D. R. and Eccles, J. C. (1960). Synaptic action during and after repetitive stimulation, J. Physiol (Lond.), 150, 374–398

    Article  CAS  Google Scholar 

  • Curtis, D. R., Lodge, D. and Brand, S. J. (1977). GABA and spinal afferent terminal excitability in the cat, Brain Res., 130, 360–363

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R. and Ryall, R. W. (1966). The synaptic excitations of Renshaw cells, Exp. Brain Res., 2, 81–96

    PubMed  CAS  Google Scholar 

  • Dale, H. H. (1935). Pharmacology and nerve-endings, Proc. R. Soc. B, 28, 319–322

    CAS  Google Scholar 

  • Eccles, J. C. (1949). A review and restatement of the electrical hypothesis of synaptic excitatory and inhibitory action, Arch. Sci Physiol., 3, 567–584

    Google Scholar 

  • Eccles, J. C., Eccles, R. M. and Lundberg, A. (1957). Synaptic actions on motoneurones in relation to the two components of the group I muscle afferent volley, J. Physiol. (Lond.), 136, 527–546

    Article  CAS  PubMed Central  Google Scholar 

  • Eccles, J. C., Eccles, R. M. and Magni, F. (1961). Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys, J. Physiol (Lond.), 159, 147–166

    Article  CAS  Google Scholar 

  • Eccles, J. C., Schmidt, R. F. and Willis, W. D. (1963). Pharmacological studies on presynaptic inhibition, J Physiol (Lond.), 168, 500–530

    Article  CAS  Google Scholar 

  • Eccles, J. C., Schmidt, R. F. and Willis, W. D. (1963). The mode of operation of the synaptic mechanism producing presynaptic inhibition, J. Neurophysiol, 26, 523–536

    Google Scholar 

  • Eccles, R. M., Shealy, C. N. and Willis, W. D. (1963). Patterns of innervation of kitten motoneurones, J. Physiol (Lond.), 165, 392–402

    Article  CAS  Google Scholar 

  • Henneman, E., Somjen, G. and Carpenter, D. O. (1965). Functional significance of cell size in spinal motoneurons, J. Neurophysiol., 28, 560–580

    PubMed  CAS  Google Scholar 

  • Henneman, E., Somjen, G., and Carpenter, D. O. (1965). Excitability and inhibitibility of motoneurons of different sizes, J. Neurophysiol., 28, 599–620

    PubMed  CAS  Google Scholar 

  • Hökfelt, T. (1967). On the ultrastructural localization of noradrenaline in the central nervous system of the rat, Z. Zellforsch., 79, 110–117

    Article  PubMed  Google Scholar 

  • Hokfelt, T., Johansson, O., Fuxe, K., Goldstein, M. and Park, D. (1976). Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes- and diencephalon, Med. Biol, 54, 427–453

    PubMed  CAS  Google Scholar 

  • Jankowska, E. and Roberts, W. J. (1972). Synaptic actions of single interneurons mediating reciprocal la inhibition of motoneurons, J. Physiol. (Lond.), 222, 623–642

    Article  CAS  PubMed Central  Google Scholar 

  • Kravitz, E. A. (1967). Acetylcholine, γ-aminobutyric acid and glutamic acid: physiological and chemical studies related to their roles as neurotransmitter agents, in The Neurosciences. A Third Study Program, eds G. C. Quarton, T. Melnechuk and F. O. Schmitt, Rockefeller University Press, New York, pp. 433–444

    Google Scholar 

  • Otsuka, M. and Konishi, S. (1976). Substance P and excitatory transmitter of primary sensory neurons, Cold Spring Harbour Symp. Quant. Biol., 40, 135–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1983 D. Ottoson

About this chapter

Cite this chapter

Ottoson, D. (1983). Putative Transmitters. In: Physiology of the Nervous System. Palgrave, London. https://doi.org/10.1007/978-1-349-16995-5_8

Download citation

Publish with us

Policies and ethics