Skip to main content

Structural and Functional Features of Sensory End Organs

  • Chapter
Physiology of the Nervous System
  • 218 Accesses

Abstract

In sensory physiology, the term ‘receptors’ is used to designate a cell, or part of a cell, the function of which is to convert a stimulus into an electrical signal. Receptors thus function as transducers, translating the stimulus into a language comprehensible to the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Suggested Reading and Reviews

  • Adrian, E. D. (1928). The Basis of Sensation, Christophers, London

    Google Scholar 

  • Adrian, E. D. (1931). The message in sensory nerve fibres and their interpretation, Proc. R Soc. B, 109, 1–18

    Article  Google Scholar 

  • Flock, Å. (1971). Sensory transduction in hair cells, in Principles of Receptor Physiology, Handbook of Sensory Physiology, vol. I, ed. W. R. Loewenstein, Springer-Verlag, Heidelberg, pp. 396–441

    Google Scholar 

  • Fuortes, M. G. F. (1971). Generation of responses in receptor, in Principles of Receptor Physiology, Handbook of Sensory Physiology, vol. I, ed. W. R. Loewenstein, Springer-Verlag, Heidelberg, pp. 243–268

    Google Scholar 

  • Kuffler, S. W. (1960). Excitation and inhibition in single nerve cells, Harvey Lecture, Academic Press, New York, pp. 176–218

    Google Scholar 

  • Loewenstein, W. R. (1971). Mechano-electric transduction in the Pacinian corpuscle. Initiation of sensory impulses in mechanoreceptors, in Principles of Receptor Physiology, Handbook of Sensory Physiology, vol. I, ed. W. R. Loewenstein, Springer-Verlag, Heidelberg, pp. 269–290

    Chapter  Google Scholar 

  • MacNichol, E. F., Jr (1956). Visual receptors as biological transducers, in Molecular Structure and Functional Activity of Nerve Cells, eds R. G. Grenell and L. J. Mullins, American Institute of Biological Sciences, Washington, pp. 34–52

    Google Scholar 

  • Matthews, B. H. C. (1931). The response of a single end organ, J. Physiol (Lond.), 71, 64–110

    Article  CAS  Google Scholar 

  • Munger, B. L. (1971). Patterns of organization of peripheral sensory receptors, in Principles of Receptor Physiology, vol. 1, ed. W. R. Loewenstein, Springer-Verlag, New York, pp. 523–556

    Chapter  Google Scholar 

  • Ottoson, D. (1974). Generator potentials, in Transduction Mechanisms in Chemoreception, eds T. M. Poynder, L. H. Bannister, H. Bostock and G. H. Dodd, IRL, London, pp. 231–239

    Google Scholar 

  • Ottoson, D. and Shepherd, G. M. (1971). Transducer properties and integrative mechanisms in the frog’s muscle spindle, in Principles of Receptor Physiology, Handbook of Sensory Physiology, vol. I, ed. W. R. Loewenstein, Springer-Verlag, Heidelberg, pp. 443–499

    Google Scholar 

  • Perkel, D. H. and Bullock, T. H. (1968). Neural coding, Neurosci. Res. Prog. Bull, 6, 221–347 Tomita, T. (1970). Electrical activity of vertebrate photoreceptors, Q. Rev. Biophys., 3, 179–222

    Google Scholar 

Original Papers

  • Adrian, E. D. and Zotterman, Y. (1926). The impulses produced by sensory nerve endings. II. The response of a single end-organ, J. Physiol. (Lond.), 61, 151–171

    Google Scholar 

  • Alexandrowicz, J. S. (1951). Muscle receptor organs in the abdomen of Homarus vulgaris and Palinurus vulgaris, Q. J. Microsc. Sci, 92, 163–199

    Google Scholar 

  • Baylor, D. A. and Fuortes, M. G. F. (1970). Electrical responses of single cones in the retina of the turtle, J. Physiol (Lond.), 207, 77–92

    Article  CAS  Google Scholar 

  • Boeckh, J., Kaissling, K. E. and Schneider, D. (1965). Insect olfactory receptors, Cold Spring Harbour Symp. Quant. Biol, 30, 263–280

    Article  CAS  Google Scholar 

  • Brown, H. M. and Ottoson, D. (1976). Dual role for K+ in Balanus photoreceptor: antagonist of Ca++ and suppression of light induced current, J. Physiol (Lond), 257, 355–378

    Article  CAS  Google Scholar 

  • Brown, H. M., Ottoson, D. and Rydqvist, B. (1978). Crayfish stretch receptor: An investigation with voltage-clamp and ion-sensitive electrodes, J. Physiol (Lond) 284, 155–179

    Article  CAS  Google Scholar 

  • Edwards, C. and Ottoson, D. (1958). The site of impulse initiation in a nerve cell of a crustacean stretch receptor, J Physiol (Lond), 143, 138–148

    Article  CAS  Google Scholar 

  • Eyzaguirre, C. and Kuffler, S. W. (1955). Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish, J. Gen. Physiol, 39, 87–119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fatt, P. and Katz, B. (1952). Spontaneous subthreshold activity at motor nerve endings, J. Physiol (Lond.), 117, 109–128

    CAS  Google Scholar 

  • Gray, J. A. B. and Sato, M. (1953). Properties of the receptor potential in Pacinian corpuscle, J. Physiol (Lond.), 122, 610–636

    Article  CAS  Google Scholar 

  • Grundfest, H. (1965). Electrophysiology and pharmacology of different components of bioelectric transducers, Cold Spring Harbour Symp. Quant. Biol, 30, 1–14

    Article  CAS  Google Scholar 

  • Hagins, W. A. (1965). Electrical signs of information flow in photoreceptors, Cold Spring Harbour Symp. Quant. Biol, 30, 403–418

    Article  CAS  Google Scholar 

  • Hagins, W. A., Penn, R. D. and Yoshikami, S. (1970). Dark current and photocurrent in retinal rods, Biophys. J., 10, 380–412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hawkins, J. E. (1965). Cytoarchitectural basis of the cochlear transducer, Cold Spring Harbour Symp. Quant. Biol, 30, 147–157

    Article  Google Scholar 

  • Hunt, C. C. and Ottoson, D. (1975). Impulse activity and receptor potential of primary and secondary endings of isolated mammalian muscle spindles, J Physiol (Lond.), 252, 259–281

    Article  CAS  Google Scholar 

  • Katz, B. (1937). Experimental evidence for anon- conducted response of nerve to subthreshold stimulation, Proc. R. Soc. Lond. B, 124, 244–276

    Article  Google Scholar 

  • Katz, B. (1950). Depolarization of sensory terminals and the initiation of impulses in the muscle spindle, Physiol (Lond.), 111, 261–283

    Google Scholar 

  • Kuffler, S. W. and Eyzaguirre, C. (1955). Synaptic inhibition in an isolated nerve cell, J. Gen Physiol, 39, 155–184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Loewenstein, W. R. (1959). The generation of electric activity in a nerve ending, Ann N. Y. Acad Sci, 81, 367–387

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein, W. R. (1961). Excitation and inactivation in a receptor membrane, Ann N. Y. Acad Sci, 94, 510–534

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein, W. R. and Mendelson, M. (1965). Components of receptor adaptation in Pacinian corpuscle, J Physiol (Lond), 177, 377–397

    Article  CAS  Google Scholar 

  • Loewenstein, W. R. and Skalak, R. (1966). Mechanical transmission in a Pacinian corpuscle. An analysis and a theory, J Physiol (Lond), 182, 346–378

    Article  CAS  Google Scholar 

  • Matthews, B. H. C. (1931). The response of a single end organ, J Physiol (Lond.), 71, 64–110

    Article  CAS  Google Scholar 

  • Murray, R. W. (1965). Receptor mechanisms in the ampullae of Lorenzini of elasmobranch fishes, Cold Spring Harbour Symp. Quant. Biol, 30, 233–243

    Article  CAS  Google Scholar 

  • Ottoson, D. (1964). The effect of sodium deficiency on the response of the isolated muscle spindle, J Physiol (Lond.), 171, 109–118

    Article  CAS  PubMed Central  Google Scholar 

  • Ottoson, D. (1972). Mechanisms of spindle adaptation, Int. Congr. Ser. No. 240, Excerpta Medica, Amsterdam, pp. 43–54

    Google Scholar 

  • Ottoson, D. and Shepherd, G. M. (1965). Receptor potential and impulse generation in the isolated spindle during controlled extension, Cold Spring Harbour Symp. Quant. Biol, 30, 105–114

    Article  CAS  Google Scholar 

  • Ottoson, D. and Shepherd, G. M. (1970). Length changes within isolated frog muscle spindle during and after stretching, J Physiol (Lond.), 207, 747–759

    Article  CAS  Google Scholar 

  • Ratliff, F. and Hartline, H. K. (1959). The responses of Limulus optic nerve fibres to patterns of illumination on the receptor mosaic, J. Gen Physiol, 42, 1241–1255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shepherd, G. M. and Ottoson, D. (1965). Response of the isolated muscle spindle to different rates of stretching, Cold Spring Harbour Symp. Quant. Biol, 30, 95–103

    Article  CAS  Google Scholar 

  • Skoglund, C. R. (1942). The response to linearly increasing currents in mammalian motor and sensory nerves, Acta Physiol Scand, 4, Suppl. 12

    Google Scholar 

  • Stieve, H. (1965). Interpretation of the generator potential in terms of ionic processes, Cold Spring Harbour Symp. Quant. Biol, 30, 451–456

    Article  CAS  Google Scholar 

  • Teorell, T. (1971). A biophysical analysis of mechano-electrical transduction, in Principles of Receptor Physiology, Handbook of Sensory Physiology, vol. I, ed. W. R. Loewenstein, Springer-Verlag, Heidelberg, pp. 291–339

    Google Scholar 

  • Werner, G. and Mountcastle, V. B. (1965). Neural activity in mechanoreceptive cutaneous afferents: stimulus-response relations, Weber functions and information transmission, J. Neurophysiol, 28, 359

    PubMed  CAS  Google Scholar 

  • Wersäll, J., Flock, Å. and Lundqvist, P. G. (1965). Structural basis for directional sensitivity in cochlear and vestibular receptors, Cold Spring Harbour Symp. Quant Biol, 30, 115–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1983 D. Ottoson

About this chapter

Cite this chapter

Ottoson, D. (1983). Structural and Functional Features of Sensory End Organs. In: Physiology of the Nervous System. Palgrave, London. https://doi.org/10.1007/978-1-349-16995-5_4

Download citation

Publish with us

Policies and ethics