Skip to main content

Muscle

  • Chapter
  • 214 Accesses

Abstract

A variety of cells in the body are able to move. For instance, white blood cells migrate out of the capillaries into the tissue, and sperm use their tails for propulsion. Parts of a cell may exhibit movements, such as the cilia on the surface of certain cells or the chromosomes which are pulled by spindle fibres to the poles of the cell during cell division. Motility is thus not unique to muscle cells. However, in muscle cells rapid and forceful movement is a primary function, while in other cells it is secondary to other more important functions. Until recently, little was known about the processes underlying the movements of different kinds of cells. Abundant evidence now shows that the basic mechanisms of cellular movements are similar in different types of cells and are mediated by the interaction of contractile proteins.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Suggested Reading and Reviews

  • Amstrong, C. M. (1975). Ionic pores, gates and gating currents, Q. Rev. Biophys., 7, 179–210

    Article  Google Scholar 

  • Ashley, G G (1971). Calcium and the activation of skeletal muscle, Endeavour, 109, 18–25

    Google Scholar 

  • Baker, P. F. (1972). Transport and metabolism of calcium ions in nerve, Prog. Biophys. Mol Biol, 24, 177–223

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. R. (1972). Autonomic Neuromuscular Transmission, Cambridge University Press, London

    Google Scholar 

  • Bennett, M. V. L. (1966). Electrotonic junctions, Ann N. Y. Acad Sci, 137, 509–539

    Article  PubMed  CAS  Google Scholar 

  • Björklund, A. and Stenevi, U. (1979). Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system, Physiol Rev., 59(1), 62–100

    PubMed  Google Scholar 

  • Bulbring, E., Brading, A. F., Jones, A. W. and Tomita, T. (1970). Smooth Muscle, Edward Arnold, London

    Google Scholar 

  • Buller, A. J. (1970). The neural control of the contractile mechanism in skeletal muscle, Endeavour; 29, 107–111

    PubMed  CAS  Google Scholar 

  • Cohen, J. B. and Changeux, J. P. (1975). The cholinergic receptor protein in its membrane environment, Ann Rev. Pharmacol, 15, 83–103

    Article  PubMed  CAS  Google Scholar 

  • Cole, K. S. (1968). Membranes, Ions and Impulses, ed. C. A. Tobias, Biophysics Series, University of California Press, Berkeley

    Google Scholar 

  • Cowan, M. W. and Cuenod, M. (1975). The Use of Axonal Transport for Studies of Neuronal Connectivity, Elsevier, Amsterdam

    Google Scholar 

  • Dahlstrom, A. (1973). Aminergic transmission: introduction and short review, Brain Res., 62, 441–460

    Article  PubMed  CAS  Google Scholar 

  • Dale, H. H. (1935). Pharmacology and nerve endings, Proc. R. Soc. Med, 28, 319–322

    PubMed  CAS  PubMed Central  Google Scholar 

  • Danielli, J. F. (1952). Structural factors in cell permeability and secretion, Symp. Soc. Exp. Biol, 6, 1–15

    Google Scholar 

  • Davson, H. and Danielli, J. F. (1952). Permeability of Natural Membranes, Cambridge University Press, London

    Google Scholar 

  • Ebashi, S. (1976). Excitation-contraction coupling, Ann Rev. Physiol, 38, 293–313

    Article  CAS  Google Scholar 

  • Ebashi, S. and Endo, M. (1968). Calcium ion and muscle contraction, Prog. Biophys. Mol Biol, 18, 123–183

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J. C. (1957). The Physiology of Nerve Cells, Johns Hopkins Press, Baltimore

    Google Scholar 

  • Erlanger, J. and Gasser, H. S. (1937). Electrical Signs of Nervous Activity, University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • Grafstein, B. and Forsman, D. S. (1980). Intracellular transport in neurons, Physiol Rev., 60(4), 1167–1283

    PubMed  CAS  Google Scholar 

  • Gray, E. G. (1967). The synapse, Sci J., 3, 66

    Google Scholar 

  • Guth, L. (1968). ‘Trophic’ influences of nerve, Physiol Rev., 48, 645–687

    PubMed  CAS  Google Scholar 

  • Gutmann, E. (1976). Neurotrophic relations, Ann Rev. Physiol, 38, 177–216

    Article  CAS  Google Scholar 

  • Hill, A. V. (1953). The mechanics of active muscle, Proc. R. Soc. B, 141, 104–117

    Article  CAS  Google Scholar 

  • Hille, B. (1976). Gating in sodium channels, Ann Rev. Physiol, 38, 139–152

    Article  CAS  Google Scholar 

  • Hodgkin, A. L. (1951). The ionic basis of electrical activity in nerve and muscle, Biol Rev., 26, 339–409

    Article  CAS  Google Scholar 

  • Hodgkin, A. L. (1964). The Conduction of the Nervous Impulse, Liverpool University Press

    Google Scholar 

  • Hubbard, J. I. (1973). Microphysiology of vertebrate neuromuscular transmission, Physiol Rev., 53, 674–723

    PubMed  CAS  Google Scholar 

  • Huxley, H. E. (I960)* Muscle cells, in The Cell-Biochemistry, physiology, morphology, eds J. Brachet and A. E. Mirsky, Academic Press, New York, pp. 365–481

    Google Scholar 

  • Huxley, H. E. (1969). The mechanism of muscular contraction, Science, 164, 1356–1366

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. and Hanson, J. (1960). The molecular basis of contraction in cross-striated muscles, in The Structure and Function of Muscle, ed. G. H. Bourne, Academic Press, New York, pp. 183–227

    Google Scholar 

  • Iversen, L. L. (ed.) (1973). Catecholamines, Br. Med. Bull, 29, 91–178

    Google Scholar 

  • Kandel, E. R. (1968). Dale’s principle and the functional specificity of neurons, in Electro- physiological Studies in Neuropharmacology, ed. W. Koella, C. C. Thomas, Springfield

    Google Scholar 

  • Karlin, A. (1975). The acetylcholine receptor: isolation and characterization, in The Nervous System, vol. 1, ed. D. B. Tower, Raven Press, New York, pp. 323–331

    Google Scholar 

  • Katz, B. (1939). Electric Excitation of Nerve, Oxford University Press

    Google Scholar 

  • Katz, B. (1966). Nerve, Muscle and Synapse, McGraw-Hill, New York

    Google Scholar 

  • Katz, B. (1969). The Release of Neural Transmitter Substances, Liverpool University Press

    Google Scholar 

  • Keynes, R. D. (1975). Organisation of the ionic channels in nerve membranes, in The Nervous System, vol. 1, ed. D. B. Tower, Raven Press, New York, pp. 165–175

    Google Scholar 

  • Kristensson, K. and Olsson, Y. (1973). Diffusion pathways and retrograde axonal transport of protein tracers in peripheral nerves, Prog. Neurobiol, 1, 87–109

    Article  PubMed  CAS  Google Scholar 

  • Lazarides, E. and Revel, J. P. (1979). The molecular basis of cell movement, Scient. Am, 240 (5), 88–100

    Article  Google Scholar 

  • Levi-Montalcini, R. and Angeletti, P. U. (1968). Nerve growth factor, Physiol Rev., 48, 534–569

    PubMed  CAS  Google Scholar 

  • Llinas, R. (1979). The role of calcium in neuronal function, in The Neurosciences. Fourth Study Program, eds F. O. Schmitt and F. G. Worden, MIT Press, Cambridge, MA, pp. 555–571

    Google Scholar 

  • Mueller, P. and Rudin, D. O. (1968). Action potentials induced in biomolecular lipid membranes, Nature, 217, 713–719

    Article  PubMed  CAS  Google Scholar 

  • Ochs, S. (1975). Axoplasmic transport, in The Nervous System, vol. 1, ed. D. B. Tower, Raven Press, New York, pp. 137–146

    Google Scholar 

  • Orci, L. and Perrelet, A. (1975). Freeze-Etch Histology, Springer-Verlag, Heidelberg

    Book  Google Scholar 

  • Ormea, F. (1961). La Cute Organo di Senso, Minerva Medica, Turin

    Google Scholar 

  • Porter, K. R., Byers, H. R. and Ellisman, M. H. (1979). The cytoskeleton, in The Neurosciences. Fourth Study Program, eds F. O. Schmitt and F. G. Worden, MIT Press, Cambridge, MA, pp. 703–722

    Google Scholar 

  • Robertson, J. D. (1970). The ultrastructure of synapses, in The Neurosciences. Second Study Program, ed. F. O. Schmitt, Rockefeller University Press, New York, pp. 715–728

    Google Scholar 

  • Robertson, J. D. (1975). Membrane models: theoretical and real, in The Nervous System, vol. 1, ed. D. B. Tower, Raven Press, New York, pp. 43–58

    Google Scholar 

  • Sandri, C., van Buren, J. M. and Akert, K. (1977). Membrane morphology of the vertebrate nervous system. A study with freeze-etch technique, Prog. Brain Res., 46, 1–381

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, F. O. and Samson, F. E. (1969). Neuronal fibrous proteins, Neurosci Res. Symp. Summ, 1969, 301–403

    Google Scholar 

  • Singer, S. J. and Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes, Science, 175, 720–731

    Article  PubMed  CAS  Google Scholar 

  • Synapse, The; Cold Spring Harbour Symp. Quant. Biol, 40(1976)

    Google Scholar 

  • Tasaki, I. (1975). Evolution of theories of nerve excitation, in The Nervous System, vol. 1, ed. D. B. Tower, Raven Press, New York, pp. 177–195

    Google Scholar 

  • Thoenen, H. and Barde, Y. A. (1980). Physiology of nerve growth factor, Physiol Rev., 60(4), 1284–1335

    PubMed  CAS  Google Scholar 

  • Thomas, R. C. (1972). Electrogenic sodium pump in nerve and muscle cells, Physiol Rev., 52, 563–594

    PubMed  CAS  Google Scholar 

  • Trautwein, W. (1973). Membrane currents in cardiac fibers, Physiol Rev., 53, 793–835

    Google Scholar 

  • Weidmann, S. (1974). Heart: Electrophysiology, Ann Rev. Physiol, 36, 155–169

    Article  CAS  Google Scholar 

  • Weiss, P. A. (1969). Neuronal dynamics and neuro- plasmic (‘axonal’) flow, Symp. Int. Soc. Cell Biol, 8, 3–34

    Google Scholar 

  • Whittaker, V. P. (1970). The vesicle hypothesis, in Excitatory Synaptic Mechanisms, eds P. Andersen and J. K. S. Jansen, Universitetsförlaget, Oslo, pp. 67–76

    Google Scholar 

  • Whittaker, V. P. and Gray, E. G. (1962). The synapse: biology and morphology, Br. Med Bull, 18, 223–228

    PubMed  CAS  Google Scholar 

  • Woodbury, J. W., Gordon, A. M. and Conrad, J. T. (1965). Muscle, in Physiology and Biophysics, eds T. C. Ruch and H. D. Patton, W. B. Saunders, Philadelphia

    Google Scholar 

  • Young, J. Z. (1951). Doubt and Certainty in Science, Clarendon Press, Oxford

    Google Scholar 

Original Papers

  • Amstrong, C. M. and Bezanilla, F. (1974). Charge movement associated with the opening and closing of the activation gates of Na channels, J. Gen Physiol, 63, 533–552

    Article  Google Scholar 

  • Baker, P. F., Hodgkin, A. L. and Shaw, T. I. (1962). Replacement of the axoplasm of giant nerve fibres with artificial solution., Physiol (Lond.), 164, 330–354

    Article  CAS  Google Scholar 

  • Baker, P. F., Hodgkin, A. L. and Shaw, T. I. (1962). The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons, J. Physiol (Lond), 164, 355–374

    Article  CAS  Google Scholar 

  • Björklund, A., Stenevi, U. and Svendgaard, N. A. (1976). Growth of transplanted monoaminergic neurones into the adult hippocampus along the perforant path, Nature, 262, 787–790

    Article  PubMed  Google Scholar 

  • Brightman, M. W. and Reese, T. S. (1969). Junctions between intimately apposed cell membranes in the vertebrate brain, J. Cell Biol, 40, 648–677

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bulbring, E., Burnstock, G. and Homan, M. E. (1958). Excitation and conduction in the smooth muscle of the isolated taenia coli of the guinea pig, J. Physiol (Lond.), 142, 420–437

    Article  CAS  Google Scholar 

  • Buller, A. J., Eccles, J. C. and Eccles, R. M. (1960). Differentiation of fast and slow muscles in the cat hind limb, J. Physiol (Lond), 150, 399–416

    Article  CAS  Google Scholar 

  • Buller, A. J. and Lewis, D. M. (1965). The rate of tension development in isometric tetanic contraction of mammalian fast and slow skeletal muscle, J. Physiol (Lond), 176, 337–354

    Article  CAS  Google Scholar 

  • Burden, S., Hartzell, H. C. and Yoshikami, D. (1975). Acetylcholine receptors at neuromuscular synapses: phylogenetic differences detected by snake α-neurotoxins, Proc. Natl Acad. Sci USA, 72, 3245–3249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burnstock, G. and Holman, M. E. (1961). The transmission of excitation from autonomic nerve to smooth muscle, J Physiol (Lond), 155, 115–133

    Article  CAS  Google Scholar 

  • Cohen, L. B., Keynes, R. D. and Hille, B. (1968). Light scattering and birefringence changes during nerve activity, Nature, 218, 438–441

    Article  PubMed  CAS  Google Scholar 

  • Cullheim, S. and Kellerth, J. O. (1976). Combined light and electron microscopic tracing of neurons, including axons and synaptic terminals, after intracellular injection of horseradish peroxidase, Neurosci. Lett., 2, 307–313

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom, A. (1971). Axoplasmic transport (with particular respect to adrenergic neurons), Phil Trans. R. Soc. Lond. B, 261, 325–358

    Article  CAS  Google Scholar 

  • Del Castillo, J. and Katz, B. (1954). Quantal components of the end-plate potential, J. Physiol. (Lond), 124, 560–573

    Article  Google Scholar 

  • Droz, B., Rambourg, A. and Keoning, H. L. (1975). The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport, Brain Res., 93, 1–13

    Article  PubMed  CAS  Google Scholar 

  • Einthoven, W. Fahr, G. and de Waart, A. (1913). Uber die Richtung und die manifeste Grösse der Potentialschwangkungen im menschlichen Herzen und Uber den Einfluss der Herzlage auf die Form des Elektrokardiogramms, Pflügers Arch., 150, 275–315

    Article  Google Scholar 

  • Falck, B. (1962). Observations on the possibilities of the cellular localization of monoamines by a fluorescence method, Acta Physiol Scand, 56 (Suppl. 197), 1–25

    Google Scholar 

  • Falck, B., Hillarp, N. Å., Thieme, G. and Torp, A. (1962). Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem 10, 348–354

    Article  CAS  Google Scholar 

  • Fatt, P. and Katz, B. (1951). An analysis of the end-plate potential recorded with an intracellular electrode, J. Physiol (Lond), 115, 320–370

    Article  CAS  Google Scholar 

  • Fatt, P. and Katz, B. (1952). Spontaneous subthreshold activity of motor nerve endings, J Physiol. (Lond), 117, 109–128

    CAS  Google Scholar 

  • Franzini-Armstrong, C. (1976). Freeze-fracture of excitatory and inhibitory synapses in crayfish neuromuscular junctions, J. Microsc. Biol Cell., 25, 217–222

    Google Scholar 

  • Gasser, H. S. and Grundfest, H. (1939). Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibres, Am J. Physiol, 127, 393–414

    Google Scholar 

  • Gordon, A. M., Huxley, A. F. and Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres, J. Physiol. (Lond), 184, 170–192

    Article  CAS  Google Scholar 

  • Gray, E. G. (1975). Presynaptic microtubules and their association with synaptic vesicles, Proc. R. Soc. Lond. B, 190, 369–372

    Article  Google Scholar 

  • Hellam, D. C. and Podolsky, R. J. (1969). Force measurements in skinned muscle fibres, J. Physiol. (Lond), 200, 807–819

    Article  CAS  Google Scholar 

  • Heuser, J. E. and Reese, T. S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction, J. Cell Biol, 57, 315–344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y., Jan, L. and Evans, L. (1979). Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol, 81, 275–300

    Article  PubMed  CAS  Google Scholar 

  • Heuser, J. E., Reese, T. S. and Landis, D. M. D. (1974). Functional changes in frog neuromuscular junctions studied with freeze–fracture, J. Neurocytol., 3, 109–131

    Article  PubMed  CAS  Google Scholar 

  • Heuser, J. E., Reese, T. S. and Landis, D. M. D. (1976). Preservation of synaptic structure by rapid freezing, Cold, Spring Harbour Symp. Quant. Biol, 40, 17–24

    Article  CAS  Google Scholar 

  • Hille, B. (1970). Ionic channels in nerve membranes, Prog. Biophys. Mol Biol, 21, 1–32

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F. (1952). The components of membrane conductance in the giant axon of Loligo, J. Physiol (Lond), 116, 473–496

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve, J Physiol (Lond), 117, 500–544

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F. and Katz, B. (1952). Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol (Lond), 116, 424–448

    Article  CAS  Google Scholar 

  • Hodgkin, A. L. and Keynes, R. D. (1955). Active transport of cations in giant axons from Sepia and Loligo, J. Physiol (Lond ), 128, 28–60

    Google Scholar 

  • Hodgkin, A. L. and Keynes, R. D. (1955). The potassium permeability of a giant nerve fibre, J. Physiol (Lond.), 128, 61–88

    Article  CAS  Google Scholar 

  • Huxley, A. F. and Simmons, R. (1971). Proposed mechanism of force generation in striated muscle, Nature, 233, 533–538

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F. and Taylor, R. E. (1958). Local activation of striated muscle fibres, J. Physiol (Lond.), 144, 426–441

    Google Scholar 

  • Huxley, H. E. (1957). The double array of filaments in cross-striated muscle, J. Biophys. Biochem Cytol, 3, 631–648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huxley, H. E. (1973). Structural changes in the actin and myosin containing filaments during contraction, Cold Spring Harbour Symp. Quant. Biol, 37, 361–376

    Article  CAS  Google Scholar 

  • Ito, Y. and Miledi, R. (1977). The effect of calcium-ionophores on acetylcholine release from Schwann cells, Proc. R. Soc. Lond B, 196, 51–58

    Article  PubMed  CAS  Google Scholar 

  • Katz, B. (1971). Quantal mechanism of neural transmitter release, Science, 173, 123–126

    Article  PubMed  CAS  Google Scholar 

  • Katz, B. and Miledi, R. (1967). The release of acetylcholine from nerve endings by graded electric pulses, Proc. R. Soc. Lond. B, 167, 23–38

    Article  PubMed  CAS  Google Scholar 

  • Katz, B. and Miledi, R. (1967). The timing of calcium action during neuromuscular transmission, J. Physiol (Lond), 189, 535–544

    Article  CAS  Google Scholar 

  • Katz, B. and Miledi, R. (1972). The statistical nature of the acetylcholine potential and its molecular components, J. Physiol (Lond), 244, 665–699

    Article  Google Scholar 

  • Katz, B. and Miledi, R. (1973). The binding of acetylcholine to receptors and its removal from the synaptic cleft, J. Physiol (Lond.), 231, 549–574

    Article  CAS  PubMed Central  Google Scholar 

  • Kristensson, K. (1970). Morphological studies of the neural spread of Herpes simplex virus to the central nervous system, Acta Neuropath (Berl), 16, 54–63

    Article  CAS  Google Scholar 

  • Kuffler, S. W. (1943). Specific excitability of the endplate region in normal and denervated muscle, J. Neurophysiol, 6, 99–110

    CAS  Google Scholar 

  • Levi-Montalcini, R. (1964). Growth-control of nerve cells by a protein factor and its antiserum, Science, 143, 105–110

    Article  PubMed  CAS  Google Scholar 

  • Ling, G. and Gerard, R. W. (1949). The normal membrane potential of frog sartorius fibres, J. Cell Comp. Physiol, 34, 383–396

    Article  CAS  Google Scholar 

  • Loewi, O. (1921). Über humorale Übertragbarkeit der Herznervenwirkung, Pflügers Arch Physiol., 189, 239–242

    Article  Google Scholar 

  • McMahan, U. J., Spitzer, N. C. and Peper, K. (1972). Visual identification of nerve terminals in living isolated skeletal muscle, Proc. R. Soc. Lond B, 181, 421–430

    Article  Google Scholar 

  • Miledi, R. (1960). The acetylcholine sensitivity of frog muscle fibres after complete or partial denervation, J. Physiol, 151, 1–23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miledi, R. (1960). Junctional and extra-junctional acetylcholine receptors in skeletal muscle fibres, J. Physiol, 151, 24–30

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miledi, R. (1973). Transmitter release induced by injection of calcium ions into nerve terminals, Proc. R. Soc. Lond B, 183, 421–425

    Article  PubMed  CAS  Google Scholar 

  • Miledi, R., Parker, I. and Schalow, G. (1980). Transmitter induced calcium entry across the post- synaptic membrane at frog end-plates measured using arsenazo III, J. Physiol, 300, 197–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nicolson, G. L. (1976). Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components, Biochim Biophys. Acta, 457, 57–108

    Article  PubMed  CAS  Google Scholar 

  • Ochs, S. (1972). Fast transport of materials in mammalian nerve fibres, Science, 176, 252–260

    Article  PubMed  CAS  Google Scholar 

  • Olson, L. and Malmfors, T. (1970). Growth characteristics of adrenergic nerves in the adult nerve, Acta Physiol Scand, Suppl, 348, 1–142

    CAS  Google Scholar 

  • Porter, K. R. and Palade, G. E. (1957). Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells, J Biophys. Biochem Cytol, 3, 269–300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Potter, L. T. (1970). Synthesis, storage and release of 14C acetylcholine in isolated rat diaphragm muscle, J. Physiol (Lond), 206, 145–166

    Article  CAS  Google Scholar 

  • Reese, T. S. and Shepherd, G. M. (1972). Dendro- dendritic synapses in the central nervous system, in Structure and Function of Synapses, eds G. D. Pappas and D. P. Purpura, Raven Press, New York, pp. 121–136

    Google Scholar 

  • Saltzberg, B. M., Davila, H. V. and Cohen, L. B. (1973). Optical recordings of impulses in individual neurones of an invertebrate central nervous system, Nature, 246, 508–509

    Article  Google Scholar 

  • Schmitt, F. O. and Davison, P. F. (1961). Biologie moléculaire des neurofilaments, in Actualités Neurophysiologiques, ed. A. M. Monnier, Masson, Paris, third series, pp. 355–369

    Google Scholar 

  • Singer, S. J. and Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes, Science, 175, 720–731

    Article  PubMed  CAS  Google Scholar 

  • Skou, J. C. (1964). Enzymatic aspects of active linked transport of Na+ and K+ through the cell membrane, Prog. Biophys. Mol Biol, 14, 133–166

    Article  Google Scholar 

  • Whittaker, V. P. (1971). Origin and function of synaptic vesicles, Ann. N. Y. Acad. Sci, 183, 21

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1983 D. Ottoson

About this chapter

Cite this chapter

Ottoson, D. (1983). Muscle. In: Physiology of the Nervous System. Palgrave, London. https://doi.org/10.1007/978-1-349-16995-5_3

Download citation

Publish with us

Policies and ethics