Skip to main content
  • 214 Accesses

Abstract

It has been known since the early nineteenth century that injuries to the cerebellum cause disturbances in equilibrium and in coordination of movements. These symptoms appeared to be accounted for when it was discovered in neuroanatomical studies that the cerebellum has extensive connections with both motor and sensory systems. The complexity of the input—output relations of the cerebellum as revealed by these studies is perhaps most easily understood if the phylogenetic history of the cerebellum is considered (see Fig. 17.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Suggested Reading and Reviews

  • Asanuma, H. (1975). Recent developments in the study of the columnar arrangement of neurons within the motor cortex, Physiol Rev., 55, 143–156

    PubMed  CAS  Google Scholar 

  • Chan-Palay, V. (1977). Cerebellar Dentate Nucleus. Organization, Cytology and Transmitters, Springer-Verlag, Heidelberg

    Google Scholar 

  • DeLong, M. R. (1974). Motor functions of the basal ganglia: single-unit activity during movement, in The Neurosciences. Third Study Program, eds F. O. Schmitt and F. G. Worden, MIT Press, Cambridge MA, pp. 319–325

    Google Scholar 

  • Eccles, J. C. (1969). The inhibitory pathways of the central nervous system, The Sherrington Lectures IX, C. C. Thomas, Springfield

    Google Scholar 

  • Eccles, J. C., Ito, M. and Szentagothai, J. (1967). The Cerebellum as a Neuronal Machine, Springer-Verlag, Berlin

    Book  Google Scholar 

  • Evarts, E. V. (1967). Representation of movements and muscles by pyramidal tract neurons of the precentral motor cortex, in Neurophysiological Basis of Normal and Abnormal Motor Activities, eds M. D. Yahr and D. P. Purpura, Raven Press, New York, pp. 215–251

    Google Scholar 

  • Evarts, E. V. (1975). Activity of cerebral neurons in relation to movement, in The Nervous System, vol. 1, ed. D. B. Tower, Raven Press, New York, pp. 221–233

    Google Scholar 

  • Evarts, E. V. (1979). Brain mechanisms of movement, Scient. Am., 241,146–156

    Google Scholar 

  • Granit, R. (ed.) (1966). Muscle Afferents and Motor Control, John Wiley & Sons, New York

    Google Scholar 

  • Granit, R. (1970). The Basis of Motor Control, Academic Press, New York

    Google Scholar 

  • Grillner, S. (1975). Locomotion in vertebrates — central mechanisms and reflex interaction, Physiol Rev., 55, 247–304

    PubMed  CAS  Google Scholar 

  • Iggo, A. (ed.) (1973). Somatosensory System, Handbook of Sensory Physiology, vol. 2, Springer-Verlag, Berlin

    Google Scholar 

  • Ito, M. (1974). The control mechanisms of cerebellar motor systems, in The Neurosciences. Third Study Program, eds F. O. Schmitt and F. G. Worden, MIT Press, Cambridge, MA, pp. 293–303

    Google Scholar 

  • Ito, M. (1978). Recent advances in cerebellar physiology and pathology, in Advances in Neurology, vol. 21, eds R. A. P. Kark, R. N. Rosenberg and L. J. Schut, Raven Press, New York, pp. 59–84

    Google Scholar 

  • Kornhuber, H. H. (1974). Cerebral cortex, cerebellum, and basal ganglia: an introduction to their motor functions, in The Neurosciences. Third Study Program, eds F. O. Schmitt and F. G. Worden, MIT Press, Cambridge, MA, pp. 267–280

    Google Scholar 

  • Llinas, R. (1969). Neuronal operations in cerebellar transactions, in The Neurosciences. Second Study Program, ed. F. O. Schmitt, Rockefeller University Press, New York, pp. 409–426

    Google Scholar 

  • Llinas, R. (1975). The cerebellar cortex, in The Nervous System, vol. 1, ed. D. B. Tower, Raven Press, New York, pp. 235–244

    Google Scholar 

  • Magoun, H. W. (1950). Caudal and cephalic influences of the brain stem reticular formation, Physiol Rev., 30, 459–474

    PubMed  CAS  Google Scholar 

  • McGeer, P. L., Eccles, J. C. and McGeer, E. G. (1978). Molecular Neurobiology of the Mammalian Brain, Plenum Press, New York

    Book  Google Scholar 

  • Mountcastle, V. B. (1961). Some functional properties of the somatic afferent system, in Sensory Communication, ed. W. A. Rosenblith, MIT Press, Cambridge, MA, pp. 403–436

    Google Scholar 

  • Oscarsson, O. (1973). Functional organization of spinocerebellar paths, in Somatosensory System, Handbook of Sensory Physiology, vol. 2 ed. A. Iggo, Springer-Verlag, Berlin, pp. 339–380

    Chapter  Google Scholar 

  • Oscarsson, O. (1976). Spatial distribution of climbing and mossy fibre inputs into the cerebellar cortex, in Afferent and Intrinsic Organization of Laminated Structures in the Brain, ed. O. Creutzfeldt, Springer-Verlag, Heidelberg

    Google Scholar 

  • Penfield, W. and Rasmussen, T. (1950). The Cerebral Cortex in Man, Macmillan, New York

    Google Scholar 

  • Porter, R. (1973). Functions of the mammalian cerebral cortex in movement, in Progress in Neurobiology, vol. 1/1, eds G. A. Kerkut and J. W. Phillips, Pergamon Press, New York

    Google Scholar 

  • Sherrington, C. S. (1906). The Integrative Action of the Nervous System, Yale University Press, New Haven

    Google Scholar 

  • Stein, R. B. (1974). Peripheral control of movement, Physiol Rev., 54, 215–243

    PubMed  CAS  Google Scholar 

  • Welt, C., Aschoff, J. C., Kameda, K. and Brooks, V. B. (1967). Intracortical organization of cat’s motorsensory neurons, in Neurophysiological Basis of Normal and Abnormal Motor Activities, eds M. D. Yahr and D. P. Purpura, Raven Press, New York, pp. 255–289

    Google Scholar 

  • Wiesendanger, M. (1969). The pyramidal tract. Recent investigations on its morphology and function,Ergebn. Physiol, 61, 73–136

    Google Scholar 

Original Papers

  • Asanuma, H. and Rosen, I. (1972). Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey, Exp. Brain Res., 14, 243–256

    Article  PubMed  CAS  Google Scholar 

  • Asanuma, H. and Sakata, H. (1967). Functional organization of a cortical efferent system examined with focal depth stimulation in cats, J. Neurophysiol., 30, 35–54

    Google Scholar 

  • Asanuma, H. and Ward, J. E. (1971). Patterns of contraction of distal forelimb muscles produced by intracortical stimulation in cats, Brain Res., 27, 97–109

    Article  PubMed  CAS  Google Scholar 

  • Axelrad, H. (1976). Identification of pyramidal tract cells and determination of spontaneous unitary activity in immature rat somatomotor neocortex, Exp. Brain Res., 227, 277–281

    Google Scholar 

  • Bernhard, C. G. and Bohm, E. (1954). Mono synaptic corticospinal activation of forelimb motoneurones in monkeys (Macaca mulatto), Acta Physiol. Scand, 31, 104–112

    Article  PubMed  CAS  Google Scholar 

  • Desmedt, J. E. (1980). Patterns of motor commands during various types of voluntary movement in man, Trends in Neurosci., 3(11), 265–268

    Article  Google Scholar 

  • Eccles, J. C. (1973). The cerebellum as a computer: Patterns in space and time, J. Physiol. (Lond.), 229, 1–32

    Article  CAS  Google Scholar 

  • Eccles, J. C., Fatt, P. and Landgren, S. (1956). Central pathway for direct inhibitory action of impulses in largest afferent nerve fibres to muscle, J. Neurophysiol,19, 75–98

    PubMed  CAS  Google Scholar 

  • Eccles, J. C., Llinas, R. and Sasaki, K. (1966). The inhibitory interneurones within the cerebellar cortex, Exp. Brain Res., 1, 1–16

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J. C., Llinas, R. and Sasaki, K. (1966). Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum, Exp. Brain Res., 1, 17–39

    PubMed  CAS  Google Scholar 

  • Eccles, J. C., Llinas, R. and Sasaki, K. (1966). The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum, J. Physiol. (Lond), 182, 268–296

    Article  CAS  Google Scholar 

  • Eccles, J. C., Sasaki, K. and Strata, P. (1967). The potential fields generated in the cerebellar cortex by a mossy fibre volley, Exp. Brain Res., 3, 58–80

    PubMed  CAS  Google Scholar 

  • Eccles, J. C., Sasaki, K. and Strata, P. (1967). A comparison of the inhibitory actions of Golgi cells and of basket cells, Exp. Brain Res., 3, 81–94

    PubMed  CAS  Google Scholar 

  • Evarts, E. V. (1966). Pyramidal tract activity associated with a conditioned hand movement in the monkey, J. Neurophysiol., 29, 1011–1027

    PubMed  CAS  Google Scholar 

  • Evarts, E. V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement, J. Neurophysiol., 31, 14–27

    PubMed  CAS  Google Scholar 

  • Evarts, E. V. (1974). Precentral and postcentral cortical activity in association with visually triggered movement, J. Neurophysiol., 37, 373–381

    PubMed  CAS  Google Scholar 

  • Hamori, J. and Szentagothai, J. (1965). The Purkinje cell baskets: ultrastructure of an inhibitory synapse, Acta Biol Acad. Sci. Hung., 15, 465–479

    PubMed  CAS  Google Scholar 

  • Hamori, J. and Szentagothai, J. (1966). Identification under the electron microscope of climbing fibres and their synaptic contacts, Exp. Brain Res., 1, 65–81

    Article  PubMed  CAS  Google Scholar 

  • Hyvärinen, J., Poranen, A., Jokinen, Y., Näätähen, R. and Linnankoski, I. (1973). Observations on unit activity in the primary somesthetic cortex of behaving monkeys, in The Somatosensory System, ed. H. H. Kornhuber, Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Ito, M. (1970), Neurophysiological aspects of the cerebellar motor control system, Int. J. Neurol., 7, 162–176

    PubMed  CAS  Google Scholar 

  • Ito, M. (1972). Neural design of the cerebellar motor control system, Brain Res., 40, 81–84

    Article  PubMed  CAS  Google Scholar 

  • Ito, M. and Yoshida, M. (1966). The origin of cerebellar-induced inhibition of Deiters neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potentials, Exp. Brain Res., 2, 330–349

    PubMed  CAS  Google Scholar 

  • Lindsley, D. B., Schreiner, L. H. and Magoun, H. W. (1949). An electromyographic study of spasticity, J. Neurophysiol., 12, 197–216

    PubMed  CAS  Google Scholar 

  • Llinas, R. and Precht, W. (1969). The inhibitory vestibular efferent system and its relation to the cerebellum in the frog, Exp. Brain Res., 9, 16–29

    Google Scholar 

  • Marr, D. (1969). Theory of cerebellar cortex, J. Physiol. (Lond.), 202, 437–470

    Article  CAS  Google Scholar 

  • Mountcastle, V. B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J Neurophysiol., 20, 408–434

    PubMed  CAS  Google Scholar 

  • Oscarsson, O. (1969). Termination and functional organization of the dorsal spino-olivocerebellar path, J Physiol (Lond.), 200, 129–149

    Article  CAS  Google Scholar 

  • Oscarsson, O. and Sjölund, B. (1977). The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe, Exp. Brain Res., 28, 469–486

    PubMed  CAS  Google Scholar 

  • Oscarsson, O. and Sjölund, B. (1977). The ventral spino-olivocerebellar system in the cat. II. Termination zones in the cerebellar posterior lobe, Exp. Brain Res., 28, 487–503

    PubMed  CAS  Google Scholar 

  • Penfield, W. and Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation, Brain, 60, 389–443

    Article  Google Scholar 

  • Powell, T. P. S. and Mountcastle, V. B. (1959). Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture, Bull. Johns Hopkins Hosp., 105, 133–162

    PubMed  CAS  Google Scholar 

  • Rosen, I. and Asanuma, H. (1971). Peripheral afferent inputs to the forelimb area of the monkey motor cortex: Input–output relations, Exp. Brain Res., 14, 257–273

    Article  Google Scholar 

  • Snider, R. S. and Stowell, A. (1944). Receiving areas of the tactile, auditory and visual systems in the cerebellum, J. Neurophysiol., 7, 331–357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1983 D. Ottoson

About this chapter

Cite this chapter

Ottoson, D. (1983). The Cerebellum. In: Physiology of the Nervous System. Palgrave, London. https://doi.org/10.1007/978-1-349-16995-5_17

Download citation

Publish with us

Policies and ethics