Skip to main content

Transfer RNA: Its Role in Decoding the Message

  • Chapter
  • 25 Accesses

Abstract

In replication and transcription, genetic information is transferred from one nucleic acid molecule to another, to an identical molecule or to a molecular species at least very similar in its chemical structure. Information transfer in these steps is basically a copying process. At the stage of translation a more complex form of information transfer is taking place: not only is the chemical structure of the mRNA which is carrying the message basically different from that of the protein molecule in which the genetic information is eventually expressed, but also in the former, the message is encoded in a triplet code which has to be translated into the sequence of single amino acids. Instead of a copying mechanism, a decoding mechanism is at work, and this requires specific adaptor molecules which can recognise and interact with both the trinucleotide codons and the corresponding amino acids. Early studies on the mechanism of protein synthesis had already recognised that the adaptor molecules fulfilling this function were the transfer RNAs (tRNAs). These small RNA molecules have specific sites for interaction with nucleotide triplets and also sites for binding amino acids. They specifically select amino acids which they can carry to the site of protein synthesis where, in the presence of the appropriate codon, they can bind to the ribosome and thus direct the amino acid into the right position in the polypeptide chain. This function is carried out in a series of consecutive steps, involving interactions with a number of specific proteins and also with other RNAs. These specific interactions ensure that translation of the genetic message occurs with very high accuracy: the frequency of errors in translation is less than 1 to 3000 per codon1.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Loftfield, R. B. and Vanderjagt, D. Biochem. J., 128, 1353 (1972).

    Article  Google Scholar 

  2. Crick, F. H. C. J. Mol. Biol., 19, 548 (1966).

    Article  Google Scholar 

  3. Gauss, D. H., Gruter, F. and Sprinzl, M. Nucl. Acids Res., 6, rl (1979).

    Google Scholar 

  4. Rich, A. and RajBhandary, U. L. Ann. Rev. Biochem., 45, 805 (1976).

    Article  Google Scholar 

  5. Riddle, D. L. and Carbon, J. Nature NB, 242, 230 (1973).

    Google Scholar 

  6. Kim, S. H., Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A. H. J., Seeman, N. C. and Rich, A. Science, 185, 435 (1974).

    Article  Google Scholar 

  7. Ladner, J. E., Jack, A., Robertus, J. D., Brown, R. S., Rhodes, D., Clark, B. F. C. and Klug, A. PNAS, 72, 4414 (1975).

    Article  Google Scholar 

  8. Jack, A., Ladner, J. E. and Klug, A. J. Mol. Biol., 108, 619 (1976).

    Article  Google Scholar 

  9. Robertus, J. D., Ladner, J. E., Finch, J. T., Rhodes, D., Brown, R. S., Clark, B. F. C. and Klug, A. Nature, 250, 546 (1974).

    Article  Google Scholar 

  10. Schevitz, R. W., Podgarny, A. D., Krishnamachary, N., Hughes, J. J. and Sigler, P. B. Nature, 278, 188 (1979).

    Article  Google Scholar 

  11. Sprinzl, M. and Cramer, F. PNAS, 72, 3049 (1975).

    Article  Google Scholar 

  12. Van der Haar, F. and Cramer, F. Biochemistry, 15, 4131 (1976).

    Article  Google Scholar 

  13. Fersht, A. R. and Kaethner, M. M. Biochemistry, 15, 3342 (1976).

    Article  Google Scholar 

  14. Baldwin, A. N. and Berg, P. J. Biol. Chem., 241, 839 (1966).

    Google Scholar 

  15. Hopfield, J. J. PNAS, 71, 4135 (1974).

    Article  Google Scholar 

  16. Yamane, T. and Hopfield, J. J. PNAS, 74, 2246 (1977).

    Article  Google Scholar 

  17. Chapeville, F., Lipmann, F., von Ehrenstein, G., Weisblum, R., Ray, W. J. Jr and Benzer, S. PNAS, 48, 1086 (1962).

    Article  Google Scholar 

  18. Schwarz, U., Menzel, H. M. and Gassen, H. G. Biochemistry, 15, 2484 (1976).

    Article  Google Scholar 

  19. Ofengand, J. and Henes, C. J. Biol. Chem., 244, 6241 (1969).

    Google Scholar 

  20. Kurland, C. G., Rigler, R., Ehrenberg, M. and Blomberg, C. PNAS, 72, 4248 (1975).

    Article  Google Scholar 

  21. Kurland, C. G. in Molecular Mechanisms of Protein Biosynthesis (eds Weissbach, H. and Pestka, S.) Academic Press, New York, 81 (1977).

    Google Scholar 

  22. Lake, J. A. PNAS, 74, 1903 (1977); in Gene Expression, Proc. 11th FEBS Meeting, 43, 121 (1978).

    Article  Google Scholar 

  23. Clark, B. F. C. and Marcker, K. A. Nature, 211, 378 (1966); J. Mol. Biol., 17, 394 (1966).

    Google Scholar 

  24. Adams, J. M. and Capecchi, M. R. PNAS, 55, 147 (1966).

    Article  Google Scholar 

  25. Webster, R. E., Engelhardt, D. L. and Zinder, N. D. PNAS, 55, 155 (1966).

    Article  Google Scholar 

  26. Waller, J. P. J. Mol. Biol., 7, 483 (1963).

    Article  Google Scholar 

  27. Ono, Y., Skoultchi, A., Klein, A. and Lengyel, P. Nature, 220, 1304 (1968). Schulman, L. H., Pelka, H. and Sundari, R. M. J. Biol. Chem., 249, 7102 (1974).

    Google Scholar 

  28. Rudland, P. S., Whybrow, W. A., Marcker, K. A. and Clark, B. F. C. Nature, 222, 750 (1969).

    Article  Google Scholar 

  29. Dube, S. K., Marcker, K. A., Clark, B. F. C. and Cory, S. Nature, 218, 232 (1968).

    Article  Google Scholar 

  30. Gillum, A. M., Urquhart, N., Smith, M. and RajBhandary, U. L. Cell, 6, 395 (1975).

    Article  Google Scholar 

  31. Piper, P. W. and Clark, B. F. C. Nature, 247, 516 (1974).

    Article  Google Scholar 

  32. Simsek, M. RajBhandary, U. L., Boisnard, M. and Petrissant, G. Nature, 247, 518 (1974).

    Article  Google Scholar 

  33. Erdmann, V. A. Progr. Nucl. Acid Res. Mol. Biol., 18, 45 (1976).

    Article  Google Scholar 

  34. Garel, J. P. J. Theor. Biol., 43, 225 (1974).

    Article  Google Scholar 

  35. Garel, J. P., Hentzen, D. and Daillie, J. FEBS Lett., 39, 359 (1974).

    Article  Google Scholar 

  36. Sprague, K. U., Hagenbuchle, O. and Zuniga, M. C. Cell, 11, 561 (1977).

    Article  Google Scholar 

  37. Scherberg, N. H. and Weiss, S. B. PNAS, 67, 1164; 69, 1114 (1970).

    Article  Google Scholar 

  38. Hill, C. W., Squires, C. and Carbon, J. J. Molec. Biol., 52, 557 (1970).

    Article  Google Scholar 

  39. Goodman, H. M., Abelson, J., Landy, A., Brenner, S. and Smith, J. D. Nature, 217, 1019 (1968).

    Article  Google Scholar 

  40. Klug, A., Ladner, J. and Robertus, J. D. J. Mol. Biol., 89, 511 (1974).

    Article  Google Scholar 

  41. Lee, F. and Yanofsky, C. PNAS, 74, 4365 (1977).

    Article  Google Scholar 

  42. Zurawski, G., Brown, K., Killingly, D. and Yanofsky, C. PNAS, 75, 4271 (1978).

    Article  Google Scholar 

  43. Di Nocera, P. P., Blasi, F., Di Lauro, R., Frunzio, R. and Bruni, C. B. PNAS, 75, 4276 (1978).

    Article  Google Scholar 

  44. Barnes, W. M. PNAS, 75, 4281 (1978).

    Article  Google Scholar 

  45. Brenchley, J. E. and Williams, L. S. Ann. Rev. Microbiol., 29, 251 (1975).

    Article  Google Scholar 

  46. Taniguchi, T. and Weissmann, C. J. Mol. Biol., 118, 533 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1980 Maria Szekely

About this chapter

Cite this chapter

Szekely, M. (1980). Transfer RNA: Its Role in Decoding the Message. In: From DNA to Protein. Palgrave, London. https://doi.org/10.1007/978-1-349-16264-2_8

Download citation

Publish with us

Policies and ethics