Skip to main content

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

We have previously (Denny et al., 1983) outlined the considerable importance of acridines in clinical medicine, dating from the early years of the twentieth century, primarily as antibacterial and antimalarial agents. We also noted the changing of this emphasis, with the more recent development of acridine-based compounds as anticancer drugs, e.g. amsacrine (m-AMSA, NSC 249992) (1) and nitracrine (2). This trend has continued since 1983, as can be seen in this chapter. The primary mechanism of action of amsacrine, inhibition of the religation reaction of DNA topoisomerase II, has been elucidated and shown to be common to many DNA-intercalating agents, as described elsewhere in this volume. In addition to its clinical antitumour properties, amsacrine has considerable importance as a biochemical reagent for studying topoisomerase II. Further work on the acridines has uncovered a number of derivatives with varied and promising activities. An analogue of amsacrine (CI-921; NSC 343499) (3) has reached clinical trial, while another acridine derivative (acridinecarboxamide; DACA, NSC 601136) (4) is about to begin trials. The nitroacridines (e.g. nitracrine) have been shown to have an important new type of biological activity (hypoxia-selective cytotoxicity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, A., Jarrot, B., Elmer, B. C., Denny, W. A. and Wakelin, L. P. G. (1985). Interaction of DNA-binding antitumour agents with adrenoreceptors. Mol. Pharmacol., 27, 480–491

    Google Scholar 

  • Anderson, R. F., Packer, J. E. and Denny, W. A. (1988). One-electron redox chemistry of amsacrine [9-(2-methoxy-4-methylsulfonyl-aminoanilino)acridinium], its quinonediimine and an analogue. A radiolytic study. J. Chem. Soc. Perkin Trans. II, 489–496

    Article  Google Scholar 

  • Assa-Munt, N., Denny, W. A., Leupin, W. and Kearns, D. R. (1985a). A 1H NMR study of the binding of bis(acridines) to d(AT)5.d(AT)5. I. Mode of binding. Biochemistry, 24, 1441–1449

    Article  Google Scholar 

  • Assa-Munt, N., Leupin, W., Denny, W. A. and Kearns, D. R. (1985b). A 1H NMR study of the binding of bis(acridines) to d(AT)5.d(AT)5. II. Dynamic aspects. Biochemistry, 24, 1449–1460

    Article  Google Scholar 

  • Atwell, G. J., Baguley, B. C. and Denny, W. A. (1989a). Potential antitumor agents. 57. 2-Phenylquinoline-8-carboxamides as ‘minimal’ DNA-intercalating antitumour agents with solid tumor activity. J. Med. Chem., 32, 396–401

    Article  Google Scholar 

  • Atwell, G. J., Baguley, B. C., Finlay, G. J., Rewcastle, G. W. and Denny, W. A. (1986a). Potential antitumor agents. 47. 3′-Methylamino analogues of amsacrine with in vivo solid tumor activity. J. Med. Chem., 29, 1769–1776

    Article  Google Scholar 

  • Atwell, G. J., Baguley, B. C., Wilmanska, D. and Denny, W. A. (1986b). Potential antitumour agents. 46. Synthesis, DNA binding and biological activity of triacridine derivatives. J. Med. Chem., 29, 68–74

    Google Scholar 

  • Atwell, G. J., Bos, C. D., Baguley, B. C. and Denny, W. A. (1988). Potential antitumor agents. 56. ‘Minimal’ DNA-intercalating ligands as antitumor drugs: phenylquinoline-8-carboxamides. J. Med. Chem., 31, 1048–1052

    Article  Google Scholar 

  • Atwell, G. J., Cain, B. F., Baguley, B. C., Finlay, G. J. and Denny, W. A. (1984a). Potential antitumor agents. 43. Synthesis and biological activity of dibasic 9-aminoacridine-4-carboxamides, a new class of antitumor agent. J. Med. Chem., 27, 1481–1485

    Article  Google Scholar 

  • Atwell, G. J., Cain, B. F. and Seelye, R. N. (1972). Potential antitumor agents. 12. 9-Anilinoacridines. J. Med. Chem., 15, 611–615

    Article  Google Scholar 

  • Atwell, G. J., Leupin, W., Twigden, S. J. and Denny, W. A. (1983). A triacridine derivative is the first DNA trisintercalating agent. J. Am. Chem. Soc., 105, 2913–2914

    Article  Google Scholar 

  • Atwell, G. J., Rewcastle, G. W., Baguley, B. C. and Denny, W. A. (1987a). Potential antitumor agents. 48. 3′-Dimethylamino derivatives of amsacrine. Redox chemistry and in vivo solid tumor activity. J. Med. Chem., 30, 652–658

    Article  Google Scholar 

  • Atwell, G. J., Rewcastle, G. W., Baguley, B. C. and Denny, W. A. (1987b). Potential antitumor agents. 50. In vivo solid tumor activity of derivatives of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide. J. Med. Chem., 30, 664–669

    Article  Google Scholar 

  • Atwell, G. J., Rewcastle, G. W., Baguley, B. C. and Denny, W. A. (1989b). Synthesis and antitumour activity of topologically-related analogues of flavone acetic acid. Anti-cancer Drug Des., 4, 161–169

    Google Scholar 

  • Atwell, G. J., Rewcastle, G. W., Denny, W. A., Cain, B. F. and Baguley, B. C. (1984b). Potential antitumor agents. 41. Analogues of amsacrine with electron-donor substituents in the anilino ring. J. Med. Chem., 27, 367–372

    Article  Google Scholar 

  • Atwell, G. J., Stewart, G. M., Leupin, W. and Denny, W. A. (1985). A diacridine derivative which binds by bisintercalation at two contiguous sites on DNA. J. Am. Chem. Soc., 107, 4335–4336

    Article  Google Scholar 

  • Baguley, B. C. (1990). The possible role of electron transfer complexes in the action of amsacrine analogues. Biophys. Chem., 23, 937–943

    Google Scholar 

  • Baguley, B. C. (1991). DNA intercalating anti-tumour agents. Anti-cancer Drug Des., 6, 1–35

    Google Scholar 

  • Baguley, B. C., Denny, W. A., Atwell, G. J. and Cain, B. F. (1981). Potential antitumor agents. 34. Quantitative relationships between DNA binding and molecular structure for 9-anilinoacridines substituted in the anilino ring. J. Med. Chem., 24, 170–177

    Article  Google Scholar 

  • Baguley, B. C., Denny, W. A., Atwell, G. J., Finlay, G. J., Rewcastle, G. W., Twigden, S. J. and Wilson, W. R. (1984). Synthesis, antitumor activity, and DNA binding properties of a new derivative of amsacrine, N-5-dimethyl-9-[(2-methoxy-4-methylsulfonylamino)phenylamino]-4-acridinecarboxamide. Cancer Res., 44, 3245–3251

    Google Scholar 

  • Baguley, B. C. and Finlay, G. J. (1988a). Relationship between the structure of analogues of amsacrine and their degree of cross-resistance to adriamycin-resistant P388 leukemia cells. Eur. J. Cancer Clin. Oncol., 24, 205–210

    Article  Google Scholar 

  • Baguley, B. C. and Finlay, G. J. (1988b). Derivatives of amsacrine: determinants required for high activity against the Lewis lung carcinoma. J. Natl Cancer Inst., 80, 195–199

    Article  Google Scholar 

  • Baguley, B. C., Finlay, G. J. and Wilson, W. R. (1986). Cytokinetic resistance of Lewis lung carcinoma to cyclophosphamide and the amsacrine derivative CI-921. In Hall, T. C. (Ed.), Cancer Drug Resistance, Progress in Clinical and Biological Research, Vol. 23, Allan R. Liss Inc., New York, pp. 47–61

    Google Scholar 

  • Baguley, B. C., Holdaway, K. M. and Fray, L. M. (1990). Design of DNA intercalators to overcome topoisomerase II-mediated multidrug resistance. J. Natl Cancer Inst., 82, 398–402

    Article  Google Scholar 

  • Baguley, B. C., Kernohan, A. R. and Wilson, W. R. (1983). Divergent activity of derivatives of amsacrine (m-AMSA) towards Lewis lung carcinoma and P388 leukaemia in mice. Eur. J. Cancer Clin. Oncol., 19, 1607–1613

    Article  Google Scholar 

  • Baguley, B. C. and Nash, R. (1981). Antitumour activity of substituted 9-anilinoacridines — comparison of in vivo and in vitro testing systems. Eur. J. Cancer, 17, 671–679

    Article  Google Scholar 

  • Baguley, B. C. and Wilson, W. R. (1987). Comparison of in vivo and in vitro drug sensitivities of Lewis lung carcinoma and P388 leukemia to analogues of amsacrine. Eur. J. Cancer Clin. Oncol., 23, 607–613

    Article  Google Scholar 

  • Bailly, C., Collyn-d’Hooghe, M., Lantoine, D., Fournier, C., Hecquet, B., Fosse, P., Saucier, J. M., Colson, P., Houssier, C. and Hénichart, J. P (1992a). Biological activity and molecular interaction of a netropsin-acridine hybrid ligand with chromatin and topoisomerase II. Biochem. Pharmacol., 43, 457–466

    Article  Google Scholar 

  • Bailly, C. and Hénichart, J. P. (1991). DNA recognition by intercalator-minor-groove binder hybrid molecules. Bioconjugate Chem., 2, 379–393

    Article  Google Scholar 

  • Bailly, C., Sun, J.-S., Colson, P., Houssier, C., Hélène, C., Waring, M. J. and Hénichart, J. P. (1992b). Design of a sequence-specific DNA-cleaving molecule which conjugates a copper-chelating peptide, a netropsin residue, and an acridine chromophore. Bioconjugate Chem., 3, 100–103

    Article  Google Scholar 

  • Bailly, F., Bailly, C., Helbecque, N., Pommery, N., Colson, P., Houssier, C. and Hénichart, J. P. (1992c). Relationship between DNA-binding and biological activity of anilinoacridine derivatives containing the nucleic acid binding unit SPPK. Anti-cancer Drug Des., 7, 83–100

    Google Scholar 

  • Bernier, J. L., Hénichart, J. P. and Catteau, J. P. (1981). Design, synthesis and DNA-binding capacity of a new peptide difunctional intercalating agent. Biochem. J., 199, 479–484

    Article  Google Scholar 

  • Boyd, M. and Denny, W. A. (1990). NMR studies of configuration and tautomeric equilibria in nitroacridine antitumor agents. J. Med. Chem., 33, 2656–2659

    Article  Google Scholar 

  • Braithwaite, A. W. and Baguley, B. C. (1980). Existence of an extended series of antitumor compounds which bind to deoxyribonucleic acid by nonintercalative means. Biochemistry, 19, 1101–1106

    Article  Google Scholar 

  • Brendel, M. and Ruhland, A. (1984). Relationship between functionality and genetic toxicology of selected DNA-damaging agents. Mutation Res., 133, 51–85

    Article  Google Scholar 

  • Brennan, S. T., Colbry, N. L., Leeds, R. L., Leja, B., Priebe, S. T., Reily, M. D., Showalter, H. D. H., Uhlendorf, S. E., Atwell, G. J. and Denny, W. A. (1989). Anticancer anilinoacridines. A process synthesis of the disubstituted amsacrine analogue CI-921. J. Het. Chem., 26, 1469–1476

    Article  Google Scholar 

  • Buchardt, O., Egholm, M., Karup, G. and Nielsen, P. E. (1987). 9-(4-Nitrobenzamidopolymethylene)aminoacridines and their photochemical cleavage of DNA. J. Chem. Soc. Chem. Commun., 1696–1697

    Google Scholar 

  • Cain, B. F. and Atwell, G. J. (1974). The experimental antitumour properties of three congeners of the acridylmethanesulphonanilide (AMSA) series. Eur. J. Cancer, 10, 539–549

    Article  Google Scholar 

  • Cain, B. F., Atwell, G. J. and Denny, W. A. (1975). Potential antitumor agents. 16. 4′-(Acridin-9-ylamino)methane-sulfonanilides. J. Med. Chem., 18, 1110–1117

    Article  Google Scholar 

  • Cain, B. F., Atwell, G. J. and Denny, W. A. (1977). Potential antitumor agents. 23. 4′-(9-Acridinylamino)alkanesulfonanilide congeners bearing hydrophilic functionality. J. Med. Chem., 20, 987–996

    Article  Google Scholar 

  • Cain, B. F., Atwell, G. J. and Seelye, R. N. (1969). Potential antitumor agents. 10. Bisquaternary salts. J. Med. Chem., 12, 199–206

    Article  Google Scholar 

  • Cain, B. F., Atwell, G. J. and Seelye, R. N. (1971). Potential antitumor agents. 11. 9-Anilinoacridines. J. Med. Chem., 14, 311–315

    Article  Google Scholar 

  • Cain, B. F., Atwell, G. J. and Seelye, R. N. (1972). Potential antitumor agents. 12. 9-Anilinoacridines. J. Med. Chem., 15, 611–615

    Article  Google Scholar 

  • Cain, B. F., Seelye, R. N. and Atwell, G. J. (1974). Potential antitumor agents. 14. Acridylmethanesulfonanilides. J. Med. Chem., 17, 922–930

    Article  Google Scholar 

  • Cain, B. F., Wilson, W. R. and Baguley, B. C. (1976). Structure-activity relationships for thiolytic cleavage rates of antitumor drugs in the 4′-(9-acridinylamino)methanesulfonanilide series. Mol. Pharmacol., 12, 1027–1035

    Google Scholar 

  • Capelle, N., Barber, J., Dessen, P., Blanquet, S., Roques, B. P. and Le Pecq, J.-B. (1979). Deoxyribonucleic acid bifunctional intercalators: kinetic investigation of the binding of several acridine dimers to deoxyribonucleic acid. Biochemistry, 18, 3354–3362

    Article  Google Scholar 

  • Carroll, A. R. and Scheuer, P. J. (1990). Kuanoniamines A, B, C and D; pentacyclic alkaloids from a tunicate and its prosobranch mollusk predator Chelynotus semperi. J. Org. Chem., 55, 4426–4431

    Article  Google Scholar 

  • Charyulu, G. A., McKee, T. C. and Ireland, C. M. (1989). Diplamine, a cytotoxic polyaromatic alkaloid from the tunicate Diplosoma sp. Tetrahedron Lett., 30, 4201–4202

    Article  Google Scholar 

  • Chen, K. X., Gresh, N. and Pullman, B. (1988a). Energetics and stereochemistry of DNA complexation with the antitumor AT specific intercalators tilorone and m-AMSA. Nucleic Acids Res., 16, 3061–3073

    Article  Google Scholar 

  • Chen, K. X., Gresh, N. and Pullman, B. (1988b). Groove selectivity in the interaction of 9-aminoacridine-4-carboxamide antitumor agents with DNA. Nucleic Acids Res., 16, 3061–3074

    Article  Google Scholar 

  • Chen, T.-K., Fico, R. M. and Canellakis, E. S. (1978). Diacridines, bifunctional intercalators. Chemistry and antitumor activity. J. Med. Chem., 21, 868–874

    Article  Google Scholar 

  • Ching, L. M., Finlay, G. J., Joseph, W. R. and Baguley, B. C. (1990). Comparison of the cytotoxicity of amsacrine and its analogue CI-921 against cultured human and mouse bone marrow tumour cells. Eur. J. Cancer, 26, 49–54

    Article  Google Scholar 

  • Cholody, W. M. and Konopa, J. (1991). Synthesis and proton NMR characterization of substituted 1-amino-9-imino-4-nitro-9,10-dihydroacridines as potential antitumor agents. J. Ret. Chem., 28, 209–214

    Google Scholar 

  • Cholody, W. M., Martelli, S. and Konopa, J. (1990a). 8-Substituted 5-[(aminoalkyl)amino]-6-H-v-triazolo[4,5,1-de]acridin-6-ones as potential antineoplastic agents. Synthesis and biological activity. J. Med. Chem., 33, 2852–2856

    Article  Google Scholar 

  • Cholody, W. M., Martelli, S. and Konopa, J. (1992). Chromophore-modified antineoplastic imidazoacridinones. Synthesis and activity against murine leukemias. J. Med. Chem., 35, 378–382

    Article  Google Scholar 

  • Cholody, W. M., Martelli, S., Paradziej-Lukowicz, J. and Konopa, J. (1990b). 5-[(Aminoalkyl)amino]imidazo[4,5,1-de]acridin-6-ones as a novel class of antineoplastic agents. Synthesis and biological activity. J. Med. Chem., 33, 49–52

    Article  Google Scholar 

  • Chung, T. D. Y., Drake, F. H., Tan, K. B., Per, M., Crooke, S. T. and Mirabelli, C. K. (1989). Characterization and immunological identification of cDNA clones encoding two human DNA topoisomerase isozymes. Proc. Natl Acad. Sci. USA, 86, 9431–9435

    Article  Google Scholar 

  • Cornford, E. M., Young, D. and Paxton, J. W. (1992). Comparison of the blood-brain barrier and liver penetration of acridine antitumor drugs. Cancer Chemother. Pharmacol., 29, 439–444

    Article  Google Scholar 

  • Covey, J. M., Kohn, K. W., Kerrigan, D., Tilchen, E. J. and Pommier, Y. (1988). Topoisomerase II-mediated DNA damage produced by 4′-(9-acridinyl-amino)methanesulfon-m-anisidide and related acridines in L1210 cells and isolated nuclei: relation to cytotoxicity. Cancer Res., 48, 860–865

    Google Scholar 

  • Creech, H. J., Preston, R. K., Peck, R. M., O’Connell, A. S. and Ames, B. N. (1972). Antitumor and mutagenesis properties of a variety of heterocyclic nitrogen and sulfur mustards. J. Med. Chem., 15, 739–746

    Article  Google Scholar 

  • Denny, W. A. (1989). DNA-intercalating agents as antitumour drugs: prospects for future design. Anti-cancer Drug Des., 4, 241–263

    Google Scholar 

  • Denny, W. A., Atwell, G. J. and Baguley, B. C. (1984). Potential antitumour agents. 40. Orally active 4,5-disubstituted derivatives of amsacrine. J. Med. Chem., 27, 363–367

    Article  Google Scholar 

  • Denny, W. A., Atwell, G. J. and Baguley, B. C. (1987a). ‘Minimal’ DNA-intercalating agents as antitumour drugs: 2-styrylquinoline analogues of amsacrine. Anti-cancer Drug Des., 2, 263–270

    Google Scholar 

  • Denny, W. A., Atwell, G. J., Baguley, B. C. and Cain, B. F. (1979a). Potential antitumor agents. 29. QSAR for the antileukemic bisquaternary ammonium heterocycles. J. Med. Chem., 22, 134–151

    Article  Google Scholar 

  • Denny, W. A., Atwell, G. J., Baguley, B. C. and Wakelin, L. P. G. (1985a). Potential antitumour agents. 44. Synthesis and antitumour activity of new classes of diacridines. The importance of linker chain rigidity for DNA binding kinetics and biological activity. J. Med. Chem., 28, 1568–1574

    Article  Google Scholar 

  • Denny, W. A., Atwell, G. J. and Cain, B. F. (1979b). Potential antitumor agents. 32. The role of agent base strength in the QSAR for 4′-(9-acridinyl-amino)methanesulfonanilide(m-AMSA) analogues. J. Med. Chem., 22, 1453–1460

    Article  Google Scholar 

  • Denny, W. A., Atwell, G. J., Cain, B. F., Hansch, C., Leo, A. and Panthananickal, A. (1982). Potential antitumor agents. 36. Quantitative relationships between antitumor potency, toxicity and structure for the general class of 9-anilino-acridine antitumour agents. J. Med. Chem., 25, 276–315

    Article  Google Scholar 

  • Denny, W. A., Atwell, G. J., Rewcastle, G. W. and Baguley, B. C. (1987b). Potential antitumor agents. 49. 5-Substituted derivatives of N-[2-(dimethylamino)ethyl]-9-aminoacridine-4-carboxamide with in vivo solid tumor activity. J. Med. Chem., 30, 658–663

    Article  Google Scholar 

  • Denny, W. A., Atwell, G. J., Wilmott, G. A. and Wakelin, L. P. G. (1985b). Interaction of paired homologous series of diacridines and triacridines with deoxyribonucleic acid. Biophys. Chem., 22, 17–26

    Article  Google Scholar 

  • Denny, W. A. and Baguley, B. C. (1987). Amsacrine analogues with extended chromophores. DNA binding and antitumour activity. Anti-cancer Drug Des., 2, 61–70

    Google Scholar 

  • Denny, W. A., Baguley, B. C., Cain, B. F. and Waring, M. J. (1983). Antitumour acridines. In Neidle, S. and Waring, M. J. (Eds), Molecular Aspects of Anticancer Drug Action, Macmillan, London, pp. 1–34

    Google Scholar 

  • Denny, W. A., Roberts, P. B., Anderson, R. F., Brown, J. M. and Wilson, W. R. (1992). NLA-1: A 2-nitroimidazole radiosensitizer targeted to DNA by intercalation. Int. J. Radiat. Oncol. Biol. Phys., 22, 553–556

    Article  Google Scholar 

  • Denny, W. A., Roos, I. A. G. and Wakelin, L. P. G. (1986). Interrelationship between antitumour activity, DNA breakage and DNA binding kinetics for 9-aminoacridinecarboxamide antitumour agents. Anti-cancer Drug Des., 1, 141–147

    Google Scholar 

  • Denny, W. A., Wilson, W. R., Atwell, G. J. and Anderson, R. F. (1990a). Hypoxia-selective antitumor agents. 4. Relationships between hypoxia-selective cytotoxicity and structure for sidechain derivatives of nitracrine: the ‘imidoacridan hypothesis’. J. Med. Chem., 33, 1288–1295

    Article  Google Scholar 

  • Denny, W. A., Wilson, W. R., Atwell, G. J., Boyd, M., Pullen, S. M. and Anderson, R. F. (1990b). Nitroacridines and nitroquinolines as DNA-affinic hypoxia-selective cyotoxins. In Adams, G. E., Breccia, A., Wardman, P. and Fielden, E. M. (Eds), Selective Activation of Drugs by Redox Processes, NATO ASI Series A (Life Sciences), Vol. 198, pp. 149–158

    Chapter  Google Scholar 

  • Dorr, R. T., Liddil, J. D., von Hoff, D. D., Soble, M. and Osborne, C. K. (1989). Antitumor activity and murine pharmacokinetics of parenteral acronycine. Cancer Res., 49, 340–344

    Google Scholar 

  • Durand, R. E. (1989). Distribution of and activity of antineoplastic drugs in a tumor model. J. Natl Cancer Inst., 81, 146–152

    Article  Google Scholar 

  • Ebeid, M. Y., El-Moghazy Aly, S. M., Eissa, A. A. H. and Osman, A. M. M. (1990). Regioselective synthesis and antitumour activity of 8-chloro-5-(p-N-substituted sulfamoylphenyl)-aminobenzo-[b][1,8]-naphthyridines. Egypt. J. Pharm. Sci., 31, 515–525

    Google Scholar 

  • Eliadis, A., Phillips, D. R., Reiss, J. A. and Skorobogaty, A. (1988). The synthesis and DNA footprinting of acridine-linked netropsin and distamycin bifunctional mixed ligands. J. Chem. Soc. Chem. Commun., 1049–1052

    Google Scholar 

  • El-Moghazy Aly, S. M., and Safwat, H. M. (1990). Synthesis and antitumour activity of some acridonanil derivatives. Egypt. J. Pharm. Sci., 31, 505–513

    Google Scholar 

  • Ferguson, L. R., Hill, C. M. and Baguley, B. C. (1990). Genetic toxicology of tricyclic carboxamides, a new class of DNA binding antitumour agent. Eur. J. Cancer Clin. Oncol., 26, 709–714

    Article  Google Scholar 

  • Ferguson, L. R., Turner, P. M., Gourdie, T. A., Valu, K. K. and Denny, W. A. (1989). ‘Petite’ mutagenesis and mitotic crossing-over in yeast by DNA-targeted alkylating agents. Mutation Res., 215, 213–222

    Article  Google Scholar 

  • Ferguson, L. R., van Zijl, P. and Baguley, B. C. (1988). Comparison of the mutagenicity of amsacrine with that of a new clinical analogue, CI-921. Mutation Res., 204, 207–217

    Article  Google Scholar 

  • Finlay, G. J. and Baguley, B. C. (1984). The use of human cancer cell lines as a primary screening system for antineoplastic compounds. Eur. J. Cancer Clin. Oncol., 20, 947–954

    Article  Google Scholar 

  • Finlay, G. J. and Baguley, B. C. (1989). Selectivity of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide towards Lewis lung carcinoma and human tumour cell lines in vitro. Eur. J. Cancer Clin. Oncol., 25, 271–277

    Article  Google Scholar 

  • Finlay, G. J., Baguley, B. C., Snow, K. and Judd, W. (1990). Multiple patterns of resistance of human leukemia cell sublines to amsacrine analogues. J. Natl Cancer Inst., 82, 662–667

    Article  Google Scholar 

  • Finlay, G. J., Marshall, E. S., Matthews, J. H. L., Pauli, K. D. and Baguley, B. C. (1993). In vitro assessment of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA), a DNA intercalating antitumour drug with reduced sensitivity to multidrug resistance. Cancer Chemother. Pharmacol., 31, 401–406

    Article  Google Scholar 

  • Finlay, G. J., Wilson, W. R. and Baguley, B. C. (1986). Comparison of the in vitro activity of cytotoxic drugs towards human carcinoma and leukemia cell lines. Eur. J. Cancer Clin. Oncol., 22, 655–662

    Article  Google Scholar 

  • Finlay, G. J., Wilson, W. R. and Baguley, B. C. (1987). Cytokinetic factors in drug resistance of Lewis lung carcinoma: comparison of cells freshly isolated from tumours with cells from exponential and plateau-phase cultures. Br. J. Cancer, 56, 755–762

    Article  Google Scholar 

  • Futami, H., Eader, L., Back, T. T., Gruys, E., Young, H. A., Wiltrout, R. H. and Baguley, B. C. (1992). Cytokine induction and therapeutic synergy with IL-2 against murine renal cancer by xanthenone-4-acetic acid derivatives. J. Immunother., 12, 247–255

    Article  Google Scholar 

  • Gamage, S. A., Rewcastle, G. W., Atwell, G. J., Baguley, B. C. and Denny, W. A. (1992). Structure-activity relationships for substituted 9-oxo-9,10-dihydroacridine-4-acetic acids: analogues of the colon tumour active agent xanthenone-4-acetic acid. Anti-cancer Drug Des., 7, 403–414

    Google Scholar 

  • Gaudich, K. and Przybylski, M. (1983). Field desorption mass spectrometric characterisation of thiol conjugates related to the oxidative metabolism of the anticancer drug 4′-(9-acridinylamino)methanesulfon-m-anisidide. Biomed. Mass Spect., 10, 292–299

    Article  Google Scholar 

  • Gaugain, B., Markovits, J., Le Pecq, J.-B. and Roques, B. P. (1984). DNA polyintercalation: comparison of DNA binding properties of an acridine dimer and trimer. FEBS Lett., 169, 123–126

    Article  Google Scholar 

  • Gieldanowski, J., Patkowski, J., Szaga, B. and Teodorczyk, J. (1972a). Preclinical pharmacologic investigation on 1-nitro-9-(dimethylaminoproplyamino)-acridine and its N-oxide. 1. Acute and subchronic activity. Arch. Immunol. Ther. Exp., 20, 399–418

    Google Scholar 

  • Gieldanowski, J., Patkowski, J., Szaga, B. and Teodorzyk, J. (1972b). Preclinical pharmacologic investigations on 1-nitro-9-(dimethylaminoproplyamino)-acridine and its N-oxide. 2. Chronic action. Arch. Immunol. Ther. Exp., 20, 419–444

    Google Scholar 

  • Goldin, A., Venditti, J. M., Macdonald, J. S., Muggia, F. M., Henney, J. E. and DeVita, V. T., Jr. (1981). Current results of the screening program at the Division of Cancer Treatment, National Cancer Institute. Eur. J. Cancer, 17, 129–142

    Article  Google Scholar 

  • Gourdie, T. A., Valu, K. K., Gravatt, G. L., Boritzki, T. J., Baguley, B. C., Wilson, W. R., Woodgate, P. D. and Denny, W. A. (1990). DNA-directed alkylating agents. 1. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the reactivity of the mustard. J. Med. Chem., 33, 1177–1186

    Article  Google Scholar 

  • Grove, W. R., Fortner, C. L. and Wiernik, P. H. (1982). Review of amsacrine, an investigational antineoplastic agent. Clin. Pharm., 1, 320–326

    Google Scholar 

  • Gunawardana, G. P., Koehn, F. E., Lee, A. Y., Clardy, J., He, H. Y. and Faulkner, D. J. (1992). Pyridoacridine alkaloids from deep-water marine sponges of the family Pachastrellidae—structure revision of dercitin and related compounds and correlation with the kuanoniamines. J. Org. Chem., 57, 1523–1526

    Article  Google Scholar 

  • Haldane, A., Finlay, G. J., Gavin, J. B. and Baguley, B. C. (1992). Unusual dynamics of killing of cultured Lewis lung cells by the DNA-intercalating anti-tumour agent N-[2-(dimethylamino)ethyl]acridine-4-carboxamide. Cancer Chemother. Pharmacol., 29, 475–479

    Article  Google Scholar 

  • Hansen, J. B. and Buchardt, O. (1983). A novel synthesis of tri-, di- and mono-9-acridinyl derivatives of tetra-, tri- and diamines. J. Chem. Soc. Chem. Commun., 162–164

    Google Scholar 

  • Hansen, J. B., Koch, T., Buchardt, O., Neilsen, P. E., Norden, B. and Wirth, M. (1984). Trisintercalation in DNA by N-[3-(9-acridinylamino)propyl]-N,N-bis[6-(9-acridinylamino)hexyl]amine. J. Chem. Soc. Chem. Commun., 509–511

    Google Scholar 

  • Hansen, J. B., Thomsen, T. and Buchardt, O. (1983). 9-Acridinylguanidines. Mono-, bis-, tris- and tetrakis-9-acridinyl derivatives of guanidine connected via polymethylene linkers. J. Chem. Soc. Chem. Commun., 1015–1016

    Google Scholar 

  • Hardy, J. R., Harvey, V. J., Paxton, J. W., Evans, P., Smith, S., Grove, W., Grillo-Lopez, A. J. and Baguley, B. C. (1988). A Phase I trial of the amsacrine analog 9-[[2-methoxy-4-[(methylsulfonyl)amino]phenyl]amino]-N,5-dimethyl-4-acridine-carboxamide (CI-921). Cancer Res., 48, 6593–6596

    Google Scholar 

  • Harvey, V. J., Hardy, J. R., Smith, S., Grove, W. and Baguley, B. C. (1991). Phase II study of the amsacrine analogue CI-921 (NSC 343499) in non-small-cell lung cancer. Eur. J. Cancer, 27, 1617–1620

    Article  Google Scholar 

  • Heck, M. M. S., Hittelman, W. N. and Earnshaw, W. C. (1988). Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle. Proc. Natl Acad. Sci. USA, 85, 1086–1090

    Article  Google Scholar 

  • Holdaway, K. M., Finlay, G. J. and Baguley, B. C. (1992). Relationship of cell cycle parameters to in vitro and in vivo chemosensitivity for a series of Lewis lung carcinoma lines. Eur. J. Cancer, 28A, 1427–1431

    Article  Google Scholar 

  • Hudson, B. D., Kuroda, R., Denny, W. A. and Neidle, S. (1987). Crystallographic and molecular mechanics calculations on the antitumor drugs N-[(2-dimethylamino)ethyl]- and N-[(2-dimethylamino)butyl]-9-aminoacridine-4-carboxamides and their dications: implications for models of DNA binding. J. Biomol. Struct. Dyn., 5, 145–158

    Article  Google Scholar 

  • Jain, R. K. (1989). Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl Cancer Inst., 81, 570–576

    Article  Google Scholar 

  • Jehn, U. and Heinemann, V. (1991). New drugs in the treatment of acute leukemia, with some emphasis on m-AMSA. Anticancer Res., 11, 705–712

    Google Scholar 

  • Johnson, R. K. and Howard, W. S. (1982). Development and cross-resistance characteristics of a subline of P388 leukemia resistant to 4′-(9-acridinylamino)-methanesulfon-m-anisidide. Eur. J. Cancer Clin. Oncol., 18, 479–487

    Article  Google Scholar 

  • Jurlina, J. L., Lindsay, A., Baguley, B. C. and Denny, W. A. (1987). Redox chemistry of the 9-anilinoacridine class of antitumor agent. J. Med. Chem., 30, 473–480

    Article  Google Scholar 

  • Jurlina, J. L. and Paxton, J. W. (1985). Determination of N,5-dimethyl-9-[(2-methoxy-4-methylsulfonylamino)phenylamino]-acridine-4-carboxamide in plasma by high performance liquid chromatography. J. Chromatog., 343, 431–435

    Article  Google Scholar 

  • Kerr, D. J. and Kaye, S. B. (1989). Flavone acetic acid — preclinical and clinical activity. Eur. J. Cancer Clin. Oncol., 25, 1271–1272

    Article  Google Scholar 

  • Kestell, P., Paxton, J. W., Evans, P. C., Young, D., Jurlina, J. L., Robertson, I. G. C. and Baguley, B. C. (1990). Disposition of amsacrine and its analogue 9-[(2-methoxy-4-methyl-sulfonylamino)-phenylamino]-N,5-dimethyl-4-acridine-carboxamide (CI-921) in plasma, liver and Lewis lung tumors in mice. Cancer Res., 50, 503–508

    Google Scholar 

  • Kestell, P., Paxton, J. W., Robertson, I. G. C., Evans, P. C., Dormer, R. A. and Baguley, B. C. (1989). Thiolytic cleavage and binding of the antitumour agent CI-921 in blood. Drug Metab. Drug Interact., 6, 327–335

    Google Scholar 

  • Khan, M. N. and Malspeis, L. (1982). Kinetics and mechanism of thiolytic cleavage of the antitumor compound 4′-[(9-acridinylamino]methanesulfon-m-anisidide. J. Org. Chem., 47, 2731–2740

    Article  Google Scholar 

  • King, H. D., Wilson, W. D. and Gabbay, E. J. (1982). Interactions of some novel amide-linked bis(acridines) with deoxyribonucleic acid. Biochemistry, 21, 4982–4989

    Article  Google Scholar 

  • Kobayashi, J., Cheng, J.-F., Walchi, M. R., Nakamura, H., Hirata, Y., Sasaki, T. and Ohuzumi, Y. (1988). Cystodytins A B and C., novel tetracyclic alkaloids with potent antineoplastic activity from the Okinawan tunicate Cystodytea dellechiajei. J. Org. Chem., 53, 1800–1804

    Article  Google Scholar 

  • Kohn, K. W., Hartley, J. A. and Mattes, W. B. (1987). Mechanisms of DNA sequence selective alkylation of guanine-N7 positions by nitrogen mustards. Nucleic Acids Res., 15, 10531–10549

    Article  Google Scholar 

  • Kuroda, R. and Shinomiya, M. (1991). Photocleavage of DNA by the para-nitrobenzoyl group covalently linked to proflavine. Biochem. Biophys. Res. Commun., 181, 1266–1272

    Article  Google Scholar 

  • Kwasniewska-Rokicinska, C., Swiecki, J. and Wieczorkiewicz, A. (1973). Therapeutic efficacy of compound C-283 in patients with mammary carcinoma. Arch. Immunol. Ther. Exp., 21, 863–869

    Google Scholar 

  • Ledochowski, A. and Stefanska, B. (1966). Research of tumour-inhibiting compounds. XXIX. Some N9-derivatives of 1-, 2-, 3- and 4-nitro-9-aminoacridine. Roczn. Chem., 40, 301–305

    Google Scholar 

  • Lee, H. H., Palmer, B. D., Baguley, B. C., Chin, M., McFadyen, W. D., Wickham, G., Thorsbourne-Palmer, D., Wakelin, L. P. G. and Denny, W. A. (1992). DNA-directed alkylating agents. 5. Acridinecarboxamide derivatives of 1,2-diaminoethanedichloroplatinum (II). J. Med. Chem., 35, 2983–2987

    Article  Google Scholar 

  • Lee, H. H., Palmer, B. D. and Denny, W. A. (1988). Reactivity of quininoneimine and quinonediimine oxidation products of the antitumor drug amsacrine and related compounds to nucleophiles. J. Org. Chem., 53, 6042–6047

    Article  Google Scholar 

  • Leopold, W. R., Corbett, T. H., Griswold, D. P., Plowman, J. and Baguley, B. C. (1987). A multicenter assessment of the experimental antitumor activity of the amsacrine analogue CI-921. J. Natl Cancer Inst., 79, 343–349

    Google Scholar 

  • Leupin, W., Chazin, W. J., Hyberts, S., Denny, W. A., Stewart, G. M. and Wuthrich, K. (1986). 1D and 2D NMR study of the complex between the decadeoxyribonucleotide d(GCATTAATGC)2 and a minor groove binding drug. Biochemistry, 25, 5902–5910

    Article  Google Scholar 

  • Liu, L. F. (1989). DNA topoisomerase poisons as antitumor drugs. Ann. Rev. Biochem., 58, 351–375

    Article  Google Scholar 

  • LoRusso, P., Wozniak, A. J., Polin, L., Capps, D., Leopold, W. R., Werbel, L. M., Biernat, L., Dan, M. A. and Corbett, T. H. (1990). Antitumor efficacy of PD115934 (NSC 366140) against solid tumors of mice. Cancer Res., 50, 4900–4905

    Google Scholar 

  • Loughhead, D. G. (1990). Synthesis of des-N-methylacronycine and acronycine. J. Org. Chem., 55, 2245–22476

    Article  Google Scholar 

  • McGhee, J. D. and von Hippel, P. H. (1974). Theoretical aspects of DNA-protein interactions: co-operative and non co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol., 86, 469–489

    Article  Google Scholar 

  • McKenna, R., Beveridge, A. J., Jenkins, T. C., Neidle, S. and Denny, W. A. (1989). Molecular modelling of DNA-antitumour drug intercalation interactions: correlation of structural and energetic features with biological properties for a series of phenylquinoline-8-carboxamide derivatives. Mol. Pharmacol., 35, 720–728

    Google Scholar 

  • Marshall, E. S., Finlay, G. J., Matthews, J. H. L., Shaw, J. H. F., Nixon, J. and Baguley, B. C. (1992). Microculture-based chemosensitivity testing: a feasibility study comparing freshly explanted human melanoma cells with human melanoma cell lines. J. Natl Cancer Inst., 84, 340–345

    Article  Google Scholar 

  • Michael, J. P. (1991). Quinoline, quinazoline and acridone alkaloids. Natl Prod. Rev., 8, 53–68

    Article  Google Scholar 

  • Miller, L. P., Pyesmany, A. F., Wolff, L. J., Rogers, P. C. J., Siegel, S. E., Wells, R. J., Buckley, J. D. and Hammond, G. D. (1991). Successful reinduction therapy with amsacrine and cyclocytidine in acute nonlymphoblastic leukemia in children — a report from the children’s cancer study group. Cancer, 67, 2235–2240

    Article  Google Scholar 

  • Morier-Teissier, E., Bailly, C., Bernier, J. L., Houssain, R., Helbecque, N., Catteau, J. P., Colson, P., Houssier, C. and Hénichart, J. P. (1989). Synthesis, biological activity and DNA interaction of anilinoacridine and bithiazole peptide derivatives related to the antitumor drugs m-AMSA and bleomycin. Anti-cancer Drug Des., 4, 37–52

    Google Scholar 

  • Mullins, S. T., Annan, N. K., Cook, P. R. and Lowe, G. (1992). Bisintercalators of DNA with a rigid linker in an extended configuration. Biochemistry, 31, 842–849

    Article  Google Scholar 

  • Neidle, S. and Abraham, Z. (1984). Structural and sequence-dependent aspects of drug intercalation into nucleic acids. CRC Crit. Rev. Biochem., 17, 73–121

    Article  Google Scholar 

  • Nelson, E. M., Tewey, K. M. and Liu, L. F. (1984). Mechanism of antitumor drug action. Poisoning of mammalian DNA topoisomerase II on DNA by 4′-(9-acridinylamino)methanesulfon-m-aniside. Proc. Natl Acad. Sci. USA, 81, 1361–1364

    Article  Google Scholar 

  • Nielsen, P. E., Egholm, M., Berg, R. H. and Buchardt, O. (1992). Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Nature, 254, 1497–1500

    Google Scholar 

  • O’Connor, C. J., Denny, W. A., Gamage, R. S. K. and Fan, J.-Y. (1992). DNA-directed aniline mustards based on 9-aminoacridine: interaction with DNA. Chem.-biol. Interact., 85, 1–14

    Article  Google Scholar 

  • O’Connor, C. J., Denny, W. A., McLennan, D. J. and Sutton, B. M. (1990). Substituent effects on the hydrolysis of analogues of nitracrine [9-(3-dimethylaminopropylamino)-1-nitroacridine]. J. Chem. Soc. Perkin II, 1637–1641

    Article  Google Scholar 

  • Palmer, B. D., Lee, H. H., Johnson, P., Baguley, B. C., Wickham, G., Wakelin, L. P. G., McFadyen, W. D. and Denny, W. A. (1990). DNA-directed alkylating agents. 2. Synthesis and biological activity of platinum complexes linked to 9-anilinoacridine. J. Med. Chem., 33, 3008–3014

    Article  Google Scholar 

  • Papadopoulou, M. V., Epperley, M. W., Shields, D. S. and Bloomer, W. D. (1992). Radiosensitisation and hypoxic cell cytotoxicity of NLA-1 and NLA-2, two new bioreductive compounds. Jap. J. Cancer Res., 83, 410–414

    Article  Google Scholar 

  • Paxton, J. W., Hardy, J. R., Evans, P. C., Harvey, V. J. and Baguley, B. C. (1988). The clinical pharmacokinetics of N-5-dimethyl-9-[(2-methoxy-4-methylsulphonylamino)phenylamino]-4-acridine carboxamide (CI-921) in a Phase I trial. Cancer Chemother. Pharmacol., 22, 235–240

    Article  Google Scholar 

  • Paxton, J. W., Jurlina, J. L. and Foote, S. E. (1986). The binding of amsacrine to human plasma proteins. J. Pharm. Pharmacol., 38, 432–438

    Article  Google Scholar 

  • Paxton, J. W., Young, D., Evans, S. M. H., Kestell, P., Robertson, I. G. C. and Cornford, E. M. (1992). Pharmacokinetics and toxicity of the antitumour agent N-<2-(dimethylamino)ethyl>acridine-4-carboxamide after iv administration in the mouse. Cancer Chemother. Pharmacol., 29, 379–384

    Article  Google Scholar 

  • Prakash, A. S., Denny, W.A., Gourdie, T. A., Valu, K. K., Woodgate, P. D. and Wakelin, L. P. G. (1990). DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by DNA-intercalating acridine-linked aniline mustards. Biochemistry, 29, 9799–9807

    Article  Google Scholar 

  • Qian, X. and Beck, W. T. (1990). Binding of an optically pure photoaffinity analogue of verapamil, LU-49888, to P-glycoprotein from multidrug-resistant human leukemic cell lines. Cancer Res., 50, 1132–1137

    Google Scholar 

  • Reisch, J., Herath, H. M. T. B. and Kumar, N. S. (1991). Convenient synthesis of isoacronycine and some other new acridone derivatives. Liebigs Ann. Chim., 685–689

    Google Scholar 

  • Rewcastle, G. W., Atwell, G. J., Baguley, B. C., Calveley, S. B. and Denny, W. A. (1989). Potential antitumor agents. 58. Synthesis and structure-activity relationships of substituted xanthenone-4-acetic acids active against the colon 38 tumor in vivo. J. Med. Chem., 32, 793–799

    Article  Google Scholar 

  • Rewcastle, G. W., Atwell, G. J., Boyd, P. D. W., Palmer, B. D., Baguley, B. C. and Denny, W. A. (1991a). Potential antitumor agents. 62. Structure-activity relationships for tricyclic compounds related to the colon tumor active drug 9-oxo-9H-xanthene-4-acetic acid. J. Med. Chem., 34, 491–496

    Article  Google Scholar 

  • Rewcastle, G. W., Atwell, G. J., Chambers, D., Baguley, B. C. and Denny, W. A. (1986). Potential antitumor agents. 46. Structure-activity relationships for acridine monosubstituted derivatives of the antitumour agent N-[2-(dimethylamino)ethyl]-9-aminoacridine-4-carboxamide. J. Med. Chem., 29, 472–477

    Article  Google Scholar 

  • Rewcastle, G. W., Atwell, G. J., Zhuang, L., Baguley, B. C. and Denny, W. A. (1991b). Potential antitumor agents. 61. Structure-activity relationships for in vivo colon-38 activity among disubstituted 9-oxo-9H-xanthene-4-acetic acids. J. Med. Chem., 34, 217–222

    Article  Google Scholar 

  • Rewcastle, G. W., Baguley, B. C., Atwell, G. J. and Denny, W. A. (1987). Potential antitumour agents. 52. Carbamate analogues of amsacrine with in vivo activity against multidrug-resistant P388 leukemia. J. Med. Chem., 30, 1576–1581

    Article  Google Scholar 

  • Robbie, M. A., Baguley, B. C., Denny, W. A., Gavin, J. B. and Wilson, W. R. (1988). Mechanism of resistance of non-cycling mammalian cells to 4′-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA): comparison of uptake, metabolism and DNA breakage in log- and plateau-phase Chinese hamster fibroblast cell cultures. Cancer Res., 48, 310–319

    Google Scholar 

  • Robbie, M. A., Palmer, B. D., Denny, W. A. and Wilson, W. R. (1990). Metabolism of m-ADQI [N1′-methanesulphonyl-N4′-(9-acridinyl)-3′-methoxy-2′,5′-cyclohexadiene-1′,4′-diimine], the primary oxidative metabolite of amsacrine, in transformed Chinese hamster fibroblasts. Biochem. Pharmacol., 39, 1411–1421

    Article  Google Scholar 

  • Roberts, P. B., Denny, W. A., Wakelin, L. P. G., Anderson, R. F. and Wilson, W. R. (1990). Radiosensitization of mammalian cells in vitro by nitroacridines. Radiation Res., 123, 153–164

    Article  Google Scholar 

  • Robertson, I. G. C., Kestell, P., Dormer, R. A. and Paxton, J. W. (1988). Involvement of glutathione in the metabolism of the antitumor agents CI-921 and amsacrine. Drug Metab. Drug Interact., 6, 371–381

    Article  Google Scholar 

  • Robertson, I. G. C., Palmer, B. D., Officer, M., Siegers, D. J., Paxton, J. W. and Shaw, G. J. (1991). Cytosol mediated metabolism of the experimental anti-tumour agent acridine carboxamide to the 9-acridone derivative. Biochem. Pharmacol., 42, 1879–1884

    Article  Google Scholar 

  • Robertson, I. G. C., Palmer, B. D., Paxton, J. W. and Shaw, G. J. (1992). Differences in the metabolism of the antitumour agents CI-921 and amsacrine in the rat and mouse. Xenobiotica, 22, 657–669

    Article  Google Scholar 

  • Roninson, I. B. (1992). The role of the MDR1 (P-glycoprotein) gene in multidrug resistance in vitro and in vivo. Biochem. Pharmacol, 43, 95–102

    Article  Google Scholar 

  • Rowe, T. C., Chen, G. L., Hsiang, Y. H. and Liu, L. F. (1986). DNA damage by antitumour acridines mediated by mammalian DNA topoisomerase II. Cancer Res., 46, 2021–2026

    Google Scholar 

  • Sakore, T. D., Reddy, B. S. and Sobell, H. M. (1979). Visualisation of drug-nucleic acid interactions at atomic resolution. IV. Structure of an aminoacridine-dinucleoside monophosphate crystalline complex, 9-aminoacridine-5-iodocytidylyl (3′-5′) guanosine. J. Mol. Biol., 135, 763–785

    Article  Google Scholar 

  • Scarffe, J. H., Beaumont, A. R. and Crowther, D. (1983). Phase I-II evaluation of acronine in patients with multiple myeloma. Cancer Treat. Rep., 67, 93–94

    Google Scholar 

  • Schmitz, F. J., DeGuzman, F. C., Hossain, M. B. and van der Helm, B. (1991). Cytotoxic aromatic alkaloids from the ascidian Amphicarpa meridiana and Leptoclinides sp.: meridine and 11-hydroxyascididemin. J. Org. Chem., 56, 804–808

    Article  Google Scholar 

  • Schneider, E., Darkin, S. J., Lawson, P. A., Ching, L.-M., Ralph, R. K. and Baguley, B.C. (1988). Cell line selectivity and DNA breakage properties of the antitumour agent N-[2-(dimethylamino)ethyl]-acridine-4-carboxamide: role of DNA topoisomerase II. Eur. J. Cancer Clin. Oncol., 24, 1783–1790

    Article  Google Scholar 

  • Sebolt, J. S., Scavone, S. V., Pinter, C. D., Hamelehle, K. L., Von Hoff, D. D. and Jackson, R. C. (1987). Pyrazoloacridines, a new class of anticancer agents with selectivity against solid tumors in vitro. Cancer Res., 47, 4299–4304

    Google Scholar 

  • Shafer, R. H. and Waring, M. J. (1982). DNA bis-intercalation: theoretical analysis, including cooperativity of the interaction of echinomycin analogues with DNA. Biopolymers, 21, 2279–2290

    Article  Google Scholar 

  • Shinomiya, M. and Kuroda, R. (1992). Synthesis of novel DNA photocleaving agents with potent DNA cleaving activity. Tetrahedron Lett., 33, 2697–2700

    Article  Google Scholar 

  • Shoemaker, D. D., Cysyk, R. L., Gormley, P. E., DeSouza, J. J. and Malspeis, L. (1984). Metabolism of 4′-(9-acridinylamino)methanesulfon-m-anisidide by rat liver microsomes. Cancer Res., 44, 1939–1945

    Google Scholar 

  • Shoemaker, D. D., Cysyk, R. L., Padmanhaban, S., Bhat, H. B. and Malspeis, L. (1982). Identification of the principal biliary metabolite of 4′-(-acridinyl-amino)methanesulfon-m-anisidide in rats. Drug Metab. Disp., 10, 35–39

    Google Scholar 

  • Sklarin, N., Wiernik, P., Mittelman, A., Maroun, J., Stewart, J., Robert, F., Doroshow, J., Akman, S., Rosen, P., Gota, C., Jolivet, J., Belanger, K., DeConti, R., Robert, N., Velez-Garcia, E., Bergsagel, D., Panasci, L., van der Merwe, A., Leiby, J., Grove, W., Hawkins, E. and Kowal, C. (1990). A phase II evaluation of CI-921 in patients with solid tumors. Proc. Am. Soc. Clin. Oncol., 9, 285

    Google Scholar 

  • Stezowski, J. J., Kollat, P., Bogucka-Ledochowska, M. and Glusker, J. P. (1985). Tautomerism and steric effects in 1-nitro-9-(alkylamino)acridines (Ledakrin or nitracrine analogues): probing structure-activity relationships at the molecular level. J. Am. Chem. Soc., 107, 2067–2077

    Article  Google Scholar 

  • Sundquist, W. I., Bancroft, D. P. and Lippard, S. J. (1990). Synthesis, characterization and biological activity of cis-diammineplatinum (II) complexes of the DNA intercalators 9-aminoacridine and chloroquine. J. Am. Chem. Soc., 112, 1590–1596

    Article  Google Scholar 

  • Suzukake, K., Vistica, B. P. and Vistica, D. T. (1983). Dechlorination of L-phenylalanine mustard by sensitive and resistant tumor cells and its relationship to intracellular glutathione content. Biochem. Pharmacol., 32, 165–167

    Article  Google Scholar 

  • Suzuke, M. (1989). SPKK, a new nucleic acid binding unit of protein found in histones. EMBO Jl, 8, 797–801

    Google Scholar 

  • Traganos, F., Bueti, C., Darzynkiewicz, Z. and Melamed, M. R. (1987). Effects of a new amsacrine derivative, N-5-dimethyl-9-(2-methoxy-4-methylsulfonylamino)phenylamino-4-acridinecarboxamide, on cultured mammalian cells. Cancer Res., 47, 424–432

    Google Scholar 

  • Valu, K. K., Gourdie, T. A., Gravatt, G. L., Boritzki, T. J., Woodgate, P. D., Baguley, B. C. and Denny, W. A. (1990). DNA-directed alkylating agents. 3. Structure-activity relationships for acridine-linked aniline mustards: consequences of varying the length of the linker chain. J. Med. Chem., 33, 3014–3019

    Article  Google Scholar 

  • Wadkins, R. M. and Graves, D.E. (1989). Thermodynamics of the interaction of m-AMSA and o-AMSA with nucleic acids: influence of ionic strength and DNA base composition. Nucleic Acids Res., 17, 9933–9946

    Article  Google Scholar 

  • Wadkins, R. M. and Graves, D. E. (1991). Interactions of anilinoacridines with nucleic acids — effects of substituent modifications on DNA-binding properties. Biochemistry, 30, 4277–4283

    Article  Google Scholar 

  • Wakelin, L. P. G. (1986). Polyfunctional DNA intercalating compounds. Med. Res. Rev., 6, 275–340

    Article  Google Scholar 

  • Wakelin, L. P. G., Atwell, G. J., Rewcastle, G. W. and Denny, W. A. (1987). Relationships between DNA binding kinetics and biological activity for the 9-aminoacridine-4-carboxamide class of antitumor agents. J. Med. Chem., 30, 855–862

    Article  Google Scholar 

  • Wakelin, L. P. G., Romanos, M., Chen, T. K., Glaubiger, D., Canellakis, E. S. and Waring, M. J. (1978). Structural limitations on the bifunctional intercalation of diacridines into DNA. Biochemistry, 17, 5057–5063

    Article  Google Scholar 

  • Wilson, W. R., Anderson, R. F. and Denny, W. A. (1989a). Hypoxia-selective antitumor agents. 1. Relationships between structure, redox properties and hypoxia-selective cytotoxicity for 4-substituted derivatives of nitracrine. J. Med. Chem., 32, 23–30

    Article  Google Scholar 

  • Wilson, W. R., Baguley, B. C., Wakelin, L. P. G. and Waring, M. J. (1981). Interaction of the antitumour drug m-AMSA (4′-(9-acridinylamino)methane-sulphon-m-anisidide) and related acridines with nucleic acids. Mol. Pharmacol., 20, 404–414

    Google Scholar 

  • Wilson, W. R., Denny, W. A., Stewart, G. M., Fenn, A. and Probert, J. C. (1986). Reductive metabolism and hypoxia-selective cytotoxicity of nitracrine. Int. I. Radiat. Oncol. Biol. Phys., 12, 1235–1238

    Article  Google Scholar 

  • Wilson, W. R., Denny, W. A., Twigden, S. J., Baguley, B. C. and Probert, J. C. (1984). Selective toxicity of nitracrine to hypoxic mammalian cells. Br. I. Cancer, 49, 215–223

    Article  Google Scholar 

  • Wilson, W. R., Thompson, L. H., Anderson, R. F. and Denny, W. A. (1989b). Hypoxia-selective antitumor agents. 2. Electronic effects of 4-substituents on the mechanisms of cytotoxicity and metabolic stability of nitracrine derivatives. J. Med. Chem., 32, 31–38

    Article  Google Scholar 

  • Wilson, W. R., Van Zijl, P. and Denny, W. A. (1992). Bis-bioreductive agents as hypoxia-selective cytotoxins: nitracrine N-oxide. Int. J. Radiat. Oncol. Biol. Phys., 22, 693–696

    Article  Google Scholar 

  • Wilson, W. R., and Whitmore, G. F. (1981). Cell-cycle-stage specificity of 4′-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) and interaction with ionizing radiation in mammalian cell cultures. Radiation Res., 87, 121–136

    Article  Google Scholar 

  • Wong, A., Huang, C.-H. H. and Crooke, S. T. (1984a). Deoxyribonucleic acid breaks produced by 4′-(9-acridinyl)methanesulfon-m-anisidide and copper; role for cuprous ion and free radicals. Biochemistry, 23, 2939–2945

    Article  Google Scholar 

  • Wong, A., Huang, C.-H. H. and Crooke, S. T. (1984b). Mechanism of deoxyribonucleic acid breakage induced by 4′-(9-acridinyl)methanesulfon-m-anisidide and copper. Biochemistry, 23, 2946–2952

    Article  Google Scholar 

  • Wright, R. G. McR., Wakelin, L. P. G., Fieldes, A., Acheson, R. M. and Waring, M. J. (1980). Effects of ring substituents and linker chains on the bifunctional intercalation of diacridines into deoxyribonucleic acid. Biochemistry, 17, 5825–5836

    Article  Google Scholar 

  • Yamato, M., Takeuchi, Y., Hashigaki, K., Ikeda, Y., Ming-rong, C., Takeuchi, K., Matsushima, M., Tsuruo, T., Tashiro, T., Tsukagoshi, S., Yamashita, Y. and Nakano, H. (1989). Synthesis and antitumor activity of fused tetracyclic quinoline derivatives. J. Med. Chem., 32, 1295–1300

    Article  Google Scholar 

  • Young, D., Evans, P. C. and Paxton, J. W. (1990). Quantitation of the antitumour agent N-<2-(dimethylamino)ethyl>acridine-4-carboxamide in plasma by high-performance liquid chromatography. J. Chromatogr., 528, 385–394

    Article  Google Scholar 

  • Zittoun, R. (1985). m-AMSA: a review of clinical data. Eur. J. Cancer Clin. Oncol., 21, 649–653

    Article  Google Scholar 

  • Zwelling, L. A., Michaels, S., Erickson, L. C., Ungerleider, R. S., Nichols, M. and Kohn, K. W. (1981). Protein-associated DNA strand breaks in L1210 cells treated with the DNA intercalating agents 4′-(9-acridinylamino)methanesulfon-m-anisidide and Adriamycin. Biochemistry, 20, 6553–6563

    Article  Google Scholar 

  • Zwi, L. J., Baguley, B. C., Gavin, J. B. and Wilson, W. R. (1989). Blood flow failure as a major determinant in the antitumor action of flavone acetic acid (NSC 347512). J. Natl Cancer Inst., 81, 1005–1013

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1994 The contributors

About this chapter

Cite this chapter

Denny, W.A., Baguley, B.C. (1994). Acridine-based Anticancer Drugs. In: Neidle, S., Waring, M. (eds) Molecular Aspects of Anticancer Drug-DNA Interactions. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-13330-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-13330-7_7

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-13332-1

  • Online ISBN: 978-1-349-13330-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics