DNA Topoisomerases

  • Raymond K. Ralph
  • Warren Judd
  • Yves Pommier
  • Kurt W. Kohn
Part of the Topics in Molecular and Structural Biology book series (TMSB)


The simple elegance of the antiparallel, plectonemic DNA double helix revealed by Watson, Crick and Wilkins gave substance to the concept of DNA as a repository of genetic information and a rationale for its replication (Watson and Crick, 1953). Subsequently the complexity of chromosomes has been slowly revealed (Gasser et al., 1989; Filipski et al., 1990), bringing with it the realization that simple models for DNA replication must be modified to explain the replication and resolution of knotted DNA, concatemeric DNA, radial looped DNA, nucleosome-coiled DNA or other phenomena such as DNA replication from multiple origins in eukaryotic cells (Hamlin et al., 1991). In addition, the progression of RNA or DNA polymerase produces topological effects on DNA templates which, if left unresolved, inhibit RNA and DNA synthesis (Brill et al., 1987; Uemura et al., 1987; Yamagishi and Nomura, 1988). The discovery of topoisomerases, enzymes that can resolve topological constraints in DNA, gave a clue to the mechanism(s) used by cells to overcome some of the problems resulting from DNA twisting (Vosberg, 1985; Wang, 1985). As their functions are revealed, these apparently magical enzymes can be seen as central to most of the events involving DNA, gene expression and growth of cells. Consequently, they are good potential targets for anticancer drugs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, P., Glover, C. V. C. and Osheroff, N. (1985). Phosphorylation of DNA topoisomerase II by casein kinase II: modulation of eukaryotic topoisomerase II activity in vitro. Proc. Natl Acad. Sci. USA, 82, 3164–3168PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ackerman, P., Glover, C. V. C. and Osheroff, N. (1988). Phosphorylation of DNA topoisomerase II in vivo and in total homogenates of Drosophila Kc cells. J. Biol. Chem., 263, 12653–12660PubMedGoogle Scholar
  3. Ackerman, P. and Osheroff, N. (1989). Regulation of casein kinase II activity by epidermal growth factor in human A-431 carcinoma cells. J. Biol. Chem., 264, 11958–11965PubMedGoogle Scholar
  4. Adachi, Y., Luke, M. and Laemmli, U. (1991). Chromosome assembly in vitro: topoisomerase II is required for condensation. Cell, 64, 137–148PubMedCrossRefGoogle Scholar
  5. Ahmed, N. K. (1985). Daunorubicin reductase activity in human normal lymphocytes, myeloblasts and leukemic cell lines. Eur. J. Cancer Clin. Oncol., 21, 1209–1214PubMedCrossRefGoogle Scholar
  6. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D. (1989) Molecular Biology of the Cell, Garland Publishing Inc., New YorkGoogle Scholar
  7. Alexander, R. B., Isaacs, J. T. and Coffey, D. S. (1987a). Tumour necrosis factor enhances the in vitro and in vivo efficacy of chemotherapeutic drugs targeted at DNA topoisomerase II in the treatment of murine bladder cancer. J. Urol., 138, 427–429PubMedGoogle Scholar
  8. Alexander, R. B., Nelson, W. G. and Coffey, D. S. (1987b). Synergistic enhancement by tumour necrosis factor of in vitro cytotoxicity from chemotherapeutic drugs targeted at DNA topoisomerase II. Cancer Res., 47, 2403–2406PubMedGoogle Scholar
  9. Almouzni, G. and Mechali, M. (1988). Assembly of spaced chromatin involvement of ATP and DNA topoisomerase activity. EMBO Jl, 7, 4355–4365Google Scholar
  10. Amati, B. B. and Gasser, S. M. (1988). Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffold. Cell, 54, 967–978PubMedCrossRefGoogle Scholar
  11. Andersen, A. H., Christiansen, K., Zechiedrich, E. L., Jensen, P. S., Osheroff, N. and Westergaard, O. (1989). Strand specificity of the topoisomerase II mediated double-stranded DNA cleavage reaction. Biochemistry, 28, 6237–6244PubMedCrossRefGoogle Scholar
  12. Andersen, A. H., Sørensen, B. S., Christiansen, K., Svejstrup, J. Q., Lund, K. and Westergaard, O. (1991). Studies of the topoisomerase II-mediated cleavage and religation reactions by use of a suicidal double-stranded DNA substitute. J. Biol. Chem., 266, 9203–9210Google Scholar
  13. Andoh, T., Ishi, K., Suzuki, Y., Ikegami, Y., Kusunoki, Y., Takemoto, Y. and Okada, K. (1987). Characterisation of a mammalian mutant with a camptothecin resistant DNA topoisomerase I. Proc. Natl Acad. Sci. USA, 84, 5565–5569PubMedPubMedCentralCrossRefGoogle Scholar
  14. Annunziato, A. T. (1989). Inhibitors of topoisomerase I and II arrest DNA replication, but do not prevent nucleosome assembly in vivo. J. Cell Sci., 93, 593–603PubMedGoogle Scholar
  15. Austin, C. A. and Fisher, L. M. (1990). Isolation and characterisation of a human cDNA clone encoding a novel DNA topoisomerase II homologue from HeLa cells. FEBS Lett., 266, 115–117PubMedCrossRefGoogle Scholar
  16. Avemann, K., Knippers, R., Koller, T. and Sogo, J. M. (1988). Camptothecin, a specific inhibitor of type I DNA topoisomerase, induces DNA breakage at replication forks. Mol. Cell. Biol., 8, 3026–3034PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bae, Y. S., Chiba, M., Ohira, M. and Ikeda, H. (1991). A shuttle vector for analysis of illegitimate recombination in mammalian cells: effects of DNA topoisomerase inhibitors on deletion frequency. Gene, 101, 285–289PubMedCrossRefGoogle Scholar
  18. Bae, Y. S., Kawasaki, I., Ikeda, H. and Liu, L. F. (1988). Illegitimate recombination mediated by calf thymus DNA topoisomerase II in vitro. Proc. Natl Acad. Sci. USA, 85, 2076–2080PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bailly, C., OhUigin, C., Rivalle, C., Bisagni, E., Hénichart, J. P. and Waring, M. J. (1990). Sequence-selective binding of an ellipticine derivative to DNA. Nucleic Acids Res., 18, 6283–6291PubMedPubMedCentralCrossRefGoogle Scholar
  20. Baguley, B. C., Holdaway, K. M. and Fray, L. M. (1990). Design of DNA intercalators to overcome topoisomerase II-mediated multidrug resistance. J. Natl Cancer Inst., 82, 398–402PubMedCrossRefGoogle Scholar
  21. Bahnson, R. R. and Ratliff, T. L. (1990). In vitro and in vivo anti-tumour activity of recombinant mouse tumour necrosis factor (TNF) in a mouse bladder tumour (MBT-2). J. Urol., 144, 172–175PubMedGoogle Scholar
  22. Baloch, Z., Cohen, S. and Coffman, F. D. (1990). Synergistic interactions between tumour necrosis factor and inhibitors of DNA topoisomerase I and II. J. Immunol., 145, 2908–2913PubMedGoogle Scholar
  23. Baraæao, J. L., Bley, M. A., Batista, F. D. and Gliken, G. C. (1991). A DNA topoisomerase I inhibitor blocks the differentiation of rat granulosa cells induced by follicle stimulating hormone. Biochem. J., 277, 557–560CrossRefGoogle Scholar
  24. Batist, G., Tulpule, A., Sinha, B. K., Katki, A. G., Myers, C. E. and Cowan, K. H. (1986). Overexpression of a novel anionic glutathione transferase in multidrug resistant human breast cancer cells. J. Biol. Chem., 261, 15544–15549PubMedGoogle Scholar
  25. Battistoni, A., Leoni, L., Sampaolese, B. and Savino, M. (1988). Kinetic persistence of cruciform structures in reconstituted minichromosomes. Biochim. Biophys. Acta, 950, 161–171PubMedCrossRefGoogle Scholar
  26. Beck, W. T., Cirtain, M. C., Danks, M. K., Felsted, R. L., Safa, A. R., Wolverton, J. S. and Suttle, D. P. (1987). Pharmacological, molecular and cytogenetic analysis of ‘atypical’ multidrug resistant human leukemic cells. Cancer Res., 47, 5455–5460PubMedGoogle Scholar
  27. Been, M. D., Burgess, R. R. and Champoux, J. J. (1984). Nucleotide sequence preference at rat liver and wheat germ type 1 DNA topoisomerase breakage sites in duplex SV40 DNA. Nucleic Acids Res., 12, 3097–3114PubMedPubMedCentralCrossRefGoogle Scholar
  28. Been, M. D. and Champoux, J. J. (1984). Breakage of single-stranded DNA by eukaryotic type 1 topoisomerase occurs only at regions with the potential for base-pairing. J. Mol. Biol., 180, 515–531PubMedCrossRefGoogle Scholar
  29. Belenguer, P., Baldin, V., Matheu, C., Prats, H., Bensaid, M., Bouche, G. and Amalric, F. (1989). Protein kinase NII and the regulation of rDNA transcription in mammalian cells. Nucleic Acids Res., 17, 6625–6636PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bendixen, C., Thomsen, B., Alsner, J. and Westergaard, O. (1990). Camptothecin-stabilized topoisomerase I-DNA adducts cause premature termination of transcription. Biochemistry, 29, 5613–5619PubMedCrossRefGoogle Scholar
  31. Benson, J. D. and Huang, E. (1990). Human cytomegalovirus induces expression of cellular topoisomerase II. J. Virol., 64, 9–15PubMedPubMedCentralGoogle Scholar
  32. Berger, N. A., Chatterjee, S., Schmotzer, J. A. and Helms, S. R. (1991). Etoposide (VP-16-213)-induced gene alterations: potential contribution to cell death. Proc. Natl Acad. Sci. USA, 88, 8740–8743PubMedPubMedCentralCrossRefGoogle Scholar
  33. Berrios, M. and Fisher, P. A. (1988). Thermal stabilization of putative karyoskeletal protein enriched fractions from Saccharomyces cerevisiae. Mol. Cell. Biol., 8 4573–4575PubMedPubMedCentralCrossRefGoogle Scholar
  34. Berrios, M., Osheroff, N. and Fisher, P. A. (1985). In situ localization of DNA topoisomerase II, a major polypeptide component of the Drosophila nuclear matrix fraction. Proc. Natl Acad. Sci. USA, 82, 4142–4146PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bertrand, R., Kerrigan, D., Sarang, M. and Pommier, Y. (1991). Cell death induced by topoisomerase inhibitors: role of calcium in mammalian cells. Biochem. Pharmacol., 42, 77–85PubMedCrossRefGoogle Scholar
  36. Bettler, B., Ness, P. J., Schmidlin, S. and Parish, R. W. (1988). The upstream limit of nuclease-sensitive chromatin in Dictyostelium rRNA genes neighbours a topoisomerase I-like cluster. J. Mol. Biol., 204, 549–558PubMedCrossRefGoogle Scholar
  37. Bhalla, K., Hindenburg, A., Taub, R. N. and Grant, S. (1985). Isolation and characterisation of an anthracycline-resistant human leukemic cell line. Cancer Res., 45, 3657–3662PubMedGoogle Scholar
  38. Bhuyan, B. K., Fraser, T. J., Gray, L. G., Kuentzel, S. L. and Neil, G. L. (1973). Cell-kill kinetics of several S-phase specific drugs. Cancer Res., 33, 888–894PubMedGoogle Scholar
  39. Bjornsti, M.-A., Benedetti, P., Viglianti, G. A. and Wang, J. C. (1989). Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: restoration of sensitivity of the cells to the antitumour drug camptothecin. Cancer Res., 49, 6318–6323PubMedGoogle Scholar
  40. Blasquez, V. C., Sperry, A. O., Cockerill, P. N. and Garrard, W. T. (1989). Protein:DNA interactions at chromosomal loop attachment sites. Genome, 31, 503–509PubMedCrossRefGoogle Scholar
  41. Bodley, A. L., Wu, H. Y. and Liu, L. F. (1987). Regulation of DNA topoisomerases during cellular differentiation. N.C.I. Monograph, 4, 31–35Google Scholar
  42. Bonven, B. J., Gocke, E. and Westergaard, O. (1985). A high affinity topoisomerase I binding sequence is clustered at DNAase I hypersensitive sites in Tetrahymena R-chromatin. Cell, 41, 541–551PubMedCrossRefGoogle Scholar
  43. Boothman, D. A., Trask, D. K. and Pardee, A. B. (1989). Inhibition of potentially lethal DNA damage repair in human tumour cells by beta-lapachone, an activator of topoisomerase I. Cancer Res., 49, 605–612PubMedGoogle Scholar
  44. Boritzki, T. J., Wolfard, T. S., Besserer, J. A., Jackson, R. C. and Fry, D. W. (1988). Inhibition of type II topoisomerase by fostriecin. Biochem. Pharmacol., 37, 4063–4068PubMedCrossRefGoogle Scholar
  45. Borowiec, J. A. and Gralla, J. D. (1985). Supercoiling response of the lac ps promoter in vitro. J. Mol. Biol., 184, 587–598PubMedCrossRefGoogle Scholar
  46. Boulikas, T., Bastin, B., Boulikas, P. and Dupuis, G. (1990). Increase in poly(ADP-ribosylation) in mitogen activated lymphoid cells. Exp. Cell Res., 187, 77–84PubMedCrossRefGoogle Scholar
  47. Branellec, D., Markovits, J. and Chouaib, S. (1990). Potentiation of TNF-mediated cell killing by VP-16: relationship to DNA single-strand break formation. Int. J. Cancer, 46, 1048–1053PubMedCrossRefGoogle Scholar
  48. Brill, S. J., DiNardo, S., Voelkel-Meiman, K. and Sternglanz, R. (1987). Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature, 326, 414–416PubMedCrossRefGoogle Scholar
  49. Brill, S. J. and Sternglanz, R. (1988). Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutants. Cell, 54, 403–411PubMedCrossRefGoogle Scholar
  50. Bronshtein, I. B., Gromova, I. I., Bukhman, V. L. and Kafiani, K. A. (1989). Effect of camptothecin on the DNA-relaxing and DNA-cleavage activity of calf thymus topoisomerase I. Mol. Biol. (Mosk.), 23, 491–501Google Scholar
  51. Bugg, B. Y., Danks, M. K., Beck, W. T. and Suttle, D. P. (1991). Expression of a mutant topoisomerase II in CCRF-CEM human leukemic cells selected for resistance to teniposide. Proc. Natl Acad. Sci. USA, 88, 7654–7658PubMedPubMedCentralCrossRefGoogle Scholar
  52. Bullock, P., Champoux, J. T. and Botchan, M. (1985). Association of crossover points with topoisomerase I cleavage sites: a model for non-homologous recombination. Science, 230, 954–958PubMedCrossRefGoogle Scholar
  53. Busk, H., Thomsen, B., Bonven, B. J., Kjeldsen, E., Nielsen, O. F. and Westergaard, O. (1987). Preferential relaxation of supercoiled DNA containing a hexa-decameric recognition sequence for topoisomerase I. Nature, 327, 638–640PubMedCrossRefGoogle Scholar
  54. Caizergues-Ferrer, M., Belenguer, P., Lapeyre, B., Amalric, F., Wallace, M. O. and Olson, M. O. J. (1987). Phosphorylation of nucleolin by a nucleolar type NII protein kinase. Biochemistry, 26, 7876–7883PubMedCrossRefGoogle Scholar
  55. Camilloni, G., Martino, E. D., Caserta, M. and Di Mauro, E. (1988). Eukaryotic DNA topoisomerase I reaction is topology dependent. Nucleic Acids Res., 16, 7071–7085PubMedPubMedCentralCrossRefGoogle Scholar
  56. Camilloni, G., Martino, E. D., Di Mauro, E. and Caserta, M. (1989). Regulation of the function of eukaryotic DNA topoisomerase I: topological conditions for inactivity. Proc. Natl Acad. Sci. USA, 86, 3080–3084PubMedPubMedCentralCrossRefGoogle Scholar
  57. Capranico, G., Jaxel, C., Roberge, M., Kohn, K. and Pommier, Y. (1990a). Nucleosome positioning as a critical determinant for the DNA cleavage sites of mammalian DNA topoisomerase II in reconstituted simian virus 40 chromatin. Nucleic Acids Res., 18, 4553–4559PubMedPubMedCentralCrossRefGoogle Scholar
  58. Capranico, G., Kohn, K. W. and Pommier, Y. (1990b). Local sequence requirements for DNA cleavage by mammalian topoisomerase II in the presence of doxorubicin. Nucleic Acids Res., 18, 6611–6619PubMedPubMedCentralCrossRefGoogle Scholar
  59. Capranico, G., Zunino, F., Kohn, K. W. and Pommier, Y. (1990c). Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: relationship with DNA binding affinity and cytotoxicity. Biochemistry, 29, 562–569PubMedCrossRefGoogle Scholar
  60. Carty, M. and Menzel, R. (1990). Inhibition of DNA gyrase activity in an in vitro transcription-translation system stimulates gyrA expression in a DNA concentration dependent manner. Evidence for the involvement of factors which may be titrated. J. Mol. Biol., 214, 397–406PubMedCrossRefGoogle Scholar
  61. Caserta, M., Amadei, A., Camilloni, G. and Di Mauro, E. (1990). Regulation of the function of eukaryotic DNA topoisomerase I: analysis of the binding step and of the catalytic constants of topoisomerisation as a function of DNA topology. Biochemistry, 29, 8152–8157PubMedCrossRefGoogle Scholar
  62. Caserta, M., Amadei, A., Di Mauro, E. and Camilloni, G. (1989). In vitro preferential topoisomerization of bent DNA. Nucleic Acids Res., 17, 8463–8474PubMedPubMedCentralCrossRefGoogle Scholar
  63. Castora, F. J. and Lazarus, G. M. (1984). Isolation of mitochondrial DNA topoisomerase from human leukemia cells. Biochem. Biophys. Res. Commun., 121, 77–86PubMedCrossRefGoogle Scholar
  64. Castora, F. J., Lazarus, G. M. and Kunes, D. (1985). The presence of two mitochondrial DNA topoisomerases in human acute leukemia cells. Biochem. Biophys. Res. Commun., 130, 854–866PubMedCrossRefGoogle Scholar
  65. Castora, F. J., Sternglanz, R. and Simpson, M. V. (1982). A new mitochondrial topoisomerase from rat liver that catenates DNA. In Slonimski, P., Borst, P. and Attardi, G. (Eds), Mitochondrial Genes, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 143–154Google Scholar
  66. Champoux, J. J. (1981). DNA is linked to the rat liver DNA nicking-closing enzyme by a phosphodiester bond to tyrosine. J. Biol. Chem., 256, 4805–4809PubMedGoogle Scholar
  67. Champoux, J. J. (1988). Topoisomerase I is preferentially associated with isolated replicating simian virus 40 molecules after treatment of infected cells with camp-tothecin. J. Virol., 62, 3675–3683PubMedPubMedCentralGoogle Scholar
  68. Champoux, J. J. (1990). Mechanistic aspects of type-I topoisomerases. In Cozzarelli, N. R. and Wang, J. C. (Eds), DNA Topology and Its Biological Effects, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 217–242Google Scholar
  69. Champoux, J. J. and Aronoff, R. (1989). The effects of camptothecin on the reaction and the specificity of the wheat germ type I topoisomerase. J. Biol. Chem., 264, 1010–1015PubMedGoogle Scholar
  70. Champoux, J. J., Young, L. S. and Been, B. M. (1978). Studies on the regulation and specificity of the DNA untwisting enzymes. Cold Spring Harbor Symp. Quant. Bio., 43, 53–58CrossRefGoogle Scholar
  71. Chang, B. K. and Gregory, J. A. (1985). Comparison of the cellular pharmacology of doxorubicin in resistant and sensitive models of pancreatic cancer. Cancer Chemother. Pharmacol., 14, 132–137PubMedCrossRefGoogle Scholar
  72. Charron, M. and Hancock, R. (1990a). Roles of DNA topoisomerases I and II in DNA replication, mitotic chromosome formation and recombination in mammalian cells. I. Harris, I. R. and Zbarsky, I. B. (Eds), Nuclear Structure and Function, Plenum Press, New York, pp. 405–411CrossRefGoogle Scholar
  73. Charron, M. and Hancock, R. (1990b). DNA topoisomerase II is required for formation of mitotic chromosomes in Chinese hamster ovary cells: studies using the inhibitor 4-demethylepipodophyllotoxin 9-(4,6-o-thenylidene-beta-D-gluco-pyranoside). Biochemistry, 29, 9531–9537PubMedCrossRefGoogle Scholar
  74. Charron, M. and Hancock, R. (1991). Chromosome recombination and defective genome segregation induced in Chinese hamster cells by the topoisomerase II inhibitor VM-26. Chromosoma, 100, 97–102PubMedCrossRefGoogle Scholar
  75. Chatterjee, S., Cheng, M. F. and Berger, N. A. (1990a). Hypersensitivity to clinically useful alkylating agents and radiation in poly(ADP-ribose) polymerase-deficient cell lines. Cancer Commun., 2, 401–407PubMedGoogle Scholar
  76. Chatterjee, S., Cheng, M. F., Berger, S. J. and Berger, N. A. (1991). Alkylating agent hypersensitivity in poly(adenosine diphosphate-ribose) polymerase deficient cell lines. Cancer Commun., 3, 71–75PubMedGoogle Scholar
  77. Chatterjee, S., Cheng, M. F., Trivedi, D., Petzold, S. J. and Berger, N. A. (1989). Camptothecin hypersensitivity in poly(adenosinediphosphate-ribose) polymerase-deficient cell lines. Cancer Commun., 1, 389–394PubMedGoogle Scholar
  78. Chatterjee, S., Trivedi, D., Petzold, S. J. and Berger, N. A. (1990b). Mechanism of epipodophyllotoxin-induced cell death in poly(adenosinediphosphate-ribose) synthesis-deficient V-79 Chinese hamster cell lines. Cancer Res., 50, 2713–2718PubMedGoogle Scholar
  79. Chen, Y. N., Mickley, L. A., Schwartz, A. M., Acton, E. M., Hwang, J. L. and Fojo, A. T. (1990). Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J. Biol. Chem., 265, 10073–10080PubMedGoogle Scholar
  80. Choo, K.-B., Lee, H.-H., Liew, L.-N., Chong, K.-Y. and Chou, H.-F. (1990). Analysis of the unoccupied site of an integrated human papillomavirus 16 sequences in a cervical carcinoma. Virology, 178, 621–625PubMedCrossRefGoogle Scholar
  81. Chou, S., Kaneko, M., Nakaya, K. and Nakamura, Y. (1990). Induction of differentiation of human and mouse myeloid leukemia cells by camptothecin. Biochem. Biophys. Res. Commun., 166, 160–167PubMedCrossRefGoogle Scholar
  82. Chow, K. C., King, C. K. and Ross, W. E. (1988). Abrogation of etoposide-mediated cytotoxicity by cycloheximide. Biochem. Pharmacol., 37, 1117–1122PubMedCrossRefGoogle Scholar
  83. Chow, K. C. and Ross, W. E. (1987). Topoisomerase-specific drug sensitivity in relation to cell cycle progression. Mol. Cell Biol., 7, 3119–3123PubMedPubMedCentralCrossRefGoogle Scholar
  84. Christiansen, K., Bonven, B. J. and Westergaard, O. (1987). Mapping of sequence-specific chromatin proteins by a novel method: topoisomerase I on tetrahymena ribosomal chromatin. J. Mol. Biol., 193, 517–525PubMedCrossRefGoogle Scholar
  85. Christman, M. F., Dietrich, F. S. and Fink, G. R. (1988). Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell, 55, 413–425PubMedCrossRefGoogle Scholar
  86. Chung, T. D. Y., Drake, F. H., Tan, K. B., Per, S. R., Crooke, S. T. and Mirabelli, C. K. (1989). Characterisation and immunological identification of cDNA clones encoding two human DNA topoisomerase II isozymes. Proc. Natl Acad. Sci. USA, 86, 9431–9435PubMedPubMedCentralCrossRefGoogle Scholar
  87. Cimoli, G., Venturini, M., Billi, G., Valentini, M., Rosso, R. and Russo, P. (1991). Human granulocyte-macrophage colony stimulating factor (GM-CSF) stimulates clonal growth of human ovarian cancer cell lines (IGROV-1) and potentiates the effect of topoisomerase II-targeted drugs. International Symposium on DNA Topoisomerases in Chemotherapy, Nagoya, Japan. Abstracts, p. 137Google Scholar
  88. Cockerill, P. N. and Garrard, W. T. (1986a). Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell, 44, 273–282PubMedCrossRefGoogle Scholar
  89. Cockerill, P. N. and Garrard, W. T. (1986b). Chromosomal loop anchorage sites appear to be evolutionarily conserved. FEBS Lett., 204, 5–7PubMedCrossRefGoogle Scholar
  90. Cockerill, P. N., Yuen, M.-H. and Garrard, W. T. (1987). The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J. Biol. Chem., 262, 5394–5397PubMedGoogle Scholar
  91. Coderoni, S., Paparelli, M. and Giafranceschi, G. L. (1990). Role of calf thymus DNA topoisomerase I phosphorylation on relaxation, activity, expression and on DNA-protein interaction. Role of DNA-topoisomerase I phosphorylation. Mol. Biol. Reports, 14, 35–39CrossRefGoogle Scholar
  92. Coffman, F. D., Green, L. M., Godwin, A. and Ware, C. F. (1989). Cytoxicity mediated by tumour necrosis factor in variant subclones of the ME-180 cervical carcinoma line: modulation by specific inhibitors of DNA topoisomerase II. J. Cell. Biochem., 39, 95–105PubMedCrossRefGoogle Scholar
  93. Cole, S. P., Chanda, E. R., Dicke, F. P., Gerlach, J. H. and Mirski, S. E. (1991). Non-P-glycoprotein-mediated multidrug resistance in a small cell lung cancer cell line: evidence for decreased susceptibility to drug-induced DNA damage and reduced levels of topoisomerase II. Cancer Res., 51, 3345–3352PubMedGoogle Scholar
  94. Condemine, G. and Smith, C. (1990). Transcription regulates oxolinic acid-induced DNA gyrase cleavage at specific sites on the E. coli chromosome. Nucleic Acids Res., 18, 7389–7396PubMedPubMedCentralCrossRefGoogle Scholar
  95. Constantinou, A., Henning-Chub, C. and Huberman, E. (1989). Novobiocin and phorbol-12-myristate-13-acetate-induced differentiation of human leukemia cells associated with a reduction in topoisomerase II activity. Cancer Res., 49, 1110–1117PubMedGoogle Scholar
  96. Constantinou, A., Kiguchi, K. and Huberman, E. (1990). Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Res., 50, 2618–2624PubMedGoogle Scholar
  97. Corbett, A. H., Zechiedrich, E. L. and Osheroff, N. (1992). A role for the passage helix in the DNA cleavage reaction of eukaryotic topoisomerase II. A two-site model for enzyme-mediated DNA cleavage. J. Biol Chem., 267, 683–686PubMedGoogle Scholar
  98. Covey, J. M., Jaxel, C., Kohn, K. W. and Pommier, Y. (1989). Protein-linked DNA strand breaks induced in mammalian cells by camptothecin, an inhibitor of topoisomerase I. Cancer Res., 49, 5016–5022PubMedGoogle Scholar
  99. Crespi, M. D., Mladovan, A. G. and Baldi, A. (1988). Increment of DNA topoisomerases in chemically and virally transformed cells. Exp. Cell Res., 175, 206–215PubMedCrossRefGoogle Scholar
  100. Crossen, P. G. (1979). The effect of acridine compounds on sister-chromatid exchange formation in cultured human lymphocytes. Mutation Res., 68, 295–299PubMedCrossRefGoogle Scholar
  101. Culotta, V. and Sollner-Webb, B. (1988). Sites of topoisomerase I action on X. laevis ribosomal chromatin: transcriptionally active rDNA has an approximately 200 bp repeating structure. Cell, 52, 585–597PubMedCrossRefGoogle Scholar
  102. Danks, M. K., Schmidt, C. A., Cirtain, M. C., Suttle, D. P. and Beck, W. T. (1988). Altered catalytic activity of and DNA cleavage by DNA topoisomerase II from human leukemic cells selected for resistance to VM-26. Biochemistry, 27, 8861–8869PubMedCrossRefGoogle Scholar
  103. Danks, M. K., Schmidt, C. A., Deneka, D. A. and Beck, W. T. (1989). Increased ATP requirement for activity of and complex formation by DNA topoisomerase II from human leukemic CCRF-CEM cells selected for resistance to teniposide. Cancer Commun., 1, 101–109PubMedGoogle Scholar
  104. Danks, M. K., Yalowich, J. C. and Beck, W. T. (1987). Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26). Cancer Res., 47, 1297–1301PubMedGoogle Scholar
  105. Darby, M. K., Herrera, R. E., Vosberg, H.-P. and Nordheim, A. (1986). DNA topoisomerase II cleaves at specific sites in the 5’ flanking region of c-fos protooncogenes in vitro. EMBO Jl, 5, 2257–2265Google Scholar
  106. Darby, M. K., Schmitt, J., Jongstra-Bilen, J. and Vosberg, H. P. (1985). Inhibition of calf thymus type II DNA topoisomerase by poly(ADP-ribosylation). EMBO Jl, 4, 2129–2134Google Scholar
  107. Darkin, S. J. and Ralph, R. K. (1989). A protein factor that enhances amsacrine-mediated formation of topoisomerase II-DNA complexes in murine mastocytoma cell nuclei. Biochim. Biophys. Acta, 1007, 295–300PubMedCrossRefGoogle Scholar
  108. Darkin-Rattray, S. J. and Ralph, R. K. (1991). Evidence that a protein kinase enhances amsacrine mediated formation of topoisomerase II-DNA complexes in murine mastocytoma cell nuclei. Biochim. Biophys. Acta, 1088, 285–291PubMedCrossRefGoogle Scholar
  109. D’Arpa, P., Beardmore, C. and Liu, L. F. (1990). Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res., 50, 6919–6924PubMedGoogle Scholar
  110. D’Arpa, P. and Liu, L. F. (1989). Topoisomerase-targeting antitumour drugs. Biochim. Biophys. Acta, 989, 163–177PubMedGoogle Scholar
  111. D’Arpa, P., Machlin, P. S., Ratrie, H., Rothfield, N. F., Cleveland, D. W. and Earnshaw, W. C. (1988). cDNA cloning of human DNA topoisomerase I: catalytic activity of a 67.7 kDa carboxylterminal fragment. Proc. Natl Acad. Sci. USA, 85, 2543–2547PubMedPubMedCentralCrossRefGoogle Scholar
  112. Deffie, A. M., Alam, T., Seneviratae, C., Beenken, S. W., Batra, J. K., Shea, T. C., Henner, W. D. and Goldenberg, G. J. (1988). Multifactorial resistance to adriamycin: relationships of DNA repair, glutathione transferase activity, drug efflux and P glycoprotein in cloned cell lines of adriamycin sensitive and resistant P388 leukemia. Cancer Res., 48, 3595–3602PubMedGoogle Scholar
  113. Deffie, A. M., Bosman, D. J. and Goldenberg, G. J. (1989). Evidence for a mutant allele of the gene for DNA topoisomerase II in adriamycin-resistant P388 murine leukemia cells. Cancer Res., 49, 6879–6882PubMedGoogle Scholar
  114. Degrassi, F., De Salvia, R., Tanzarella, C. and Palitti, F. (1989). Induction of chromosomal aberrations and SCE by camptothecin, an inhibitor of mammalian topoisomerase I. Mutation Res., 211, 125–130PubMedCrossRefGoogle Scholar
  115. De Isabella, P., Capranico, G., Binaschi, M., Tinelli, S. and Zunino, F. (1990). Evidence of DNA topoisomerase II-dependent mechanisms of multidrug resistance in P388 leukemia cells. Mol. Pharmacol., 37, 11–16PubMedGoogle Scholar
  116. de Jong, S., Zijlstra J. G., de Vries, E. and Mulder, N. H. (1990). Reduced DNA topoisomerase II activity and drug-induced DNA cleavage activity in an adriamycin-resistant human small cell lung carcinoma cell line. Cancer Res., 50, 304–309PubMedGoogle Scholar
  117. Del Bino, G. and Darzynkiewicz, Z. (1991). Camptothecin, teniposide or 4’-(9-acridinylamino)-3-methanesulfon-m-anisidide but not mitoxantrone or doxorubicin induces degradation of nuclear DNA in the S phase of HL60 cells. Cancer Res., 51, 1165–1169PubMedGoogle Scholar
  118. Del Bino, G., Lassota, P. and Darzynkiewicz, Z. (1991). The S phase cytotoxicity of camptothecin. Exp. Cell Res., 193, 27–35PubMedCrossRefGoogle Scholar
  119. Del Bino, G., Skierski, J. S. and Darzynkiewicz, S. (1990). Diverse effects of camptothecin, an inhibitor of topoisomerase I, on the cell cycle of lymphocytic (L1210, MOLT-4) and myelogeneous (HL60, KG1) leukemic cells. Cancer Res., 50, 5746–5750PubMedGoogle Scholar
  120. Dillehay, L. E., Denstman, S. C. and Williams, J. R. (1987). Cell cycle dependence of sister chromatid exchange induction by DNA topoisomerase II inhibitors. Cancer Res., 47, 206–210PubMedGoogle Scholar
  121. Dillehay, L. E., Jacobson-Kram, D. and Williams, J. R. (1989). DNA topo-isomerases and models of sister chromatid exchange. Mutation Res., 215, 15–23PubMedCrossRefGoogle Scholar
  122. Di Nardo, S., Voelkel, K. and Sternglanz, R. (1984). DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl Acad. Sei. USA, 81, 2616–2620CrossRefGoogle Scholar
  123. Douc-Rasy, S., Kayser, A., Riou, J. F. and Riou, G. (1986). ATP independent type II topoisomerase from trypanosomes. Proc. Natl Acad. Sei. USA, 83, 7152–7156CrossRefGoogle Scholar
  124. Downes, C. S., Mullinger, A. M. and Johnson, R. T. (1987). Action of etoposide (VP-16–123) on human cells: no evidence for topoisomerase II involvement in excision repair of u.v. induced DNA damage, nor for mitochondrial hypersensitivity in ataxia telangiectasia. Carcinogenesis, 8, 1613–1618PubMedCrossRefGoogle Scholar
  125. Drake, F. H., Hofmann, G. A., Bartus, H. F., Mattern, M. R., Crooke, S. T. and Mirabelli, C. K. (1989a). Biochemical and pharmacological properties of pl70 and pl80 forms of topoisomerase II. Biochemistry, 28, 8154–8160PubMedCrossRefGoogle Scholar
  126. Drake, F. H., Hofmann, G. A., Mong, S. M., Bartus, J. O., Hertzberg, R. P., Johnson, R. K., Mattern, M. R. and Mirabelli, C. K. (1989b). In vitro and intracellular inhibition of topoisomerase II by the antitumor agent merbarone. Cancer Res., 49, 2578–2583PubMedGoogle Scholar
  127. Drake, F. H., Zimmerman, J. P., McCabe, F. L., Bartus, H. F., Per, S. R., Sullivan, D. M., Ross, W. E., Mattern, M. R., Johnson, R. K., Crooke, S. T. and Mirabelli, C. K. (1987). Purification of topoisomerase II from amsacrine-resistant P388 leukemia cells. Evidence for two forms of the enzyme. J. Biol. Chem., 262, 16739–16747PubMedGoogle Scholar
  128. Duguet, M., Lavenot, C., Harper, F., Mirambeau, G. and De Recondo, A.-M. (1983). DNA topoisomerases from rat liver: physiological variations. Nucleic Acids Res., 11, 1059–1075PubMedPubMedCentralCrossRefGoogle Scholar
  129. Dunaway, M. (1990). Inhibition of topoisomerase II does not inhibit transcription of RNA polymerase I and II genes. Mol. Cell. Biol, 10, 2893–2900PubMedPubMedCentralCrossRefGoogle Scholar
  130. Durban, E., Goodenough, M., Mills, J. and Busch, H. (1985). Topoisomerase I phosphorylation in vitro and in rapidly growing Novikoff hepatoma cells. EM BO Jl, 4, 2921–2926Google Scholar
  131. Ebert, S. N., Shtrom, S. S. and Müller, M. T. (1990). Topoisomerase II cleavage of Herpes simplex virus type I DNA in vivo is replication dependent. J. Virol., 64, 4059–4066PubMedPubMedCentralGoogle Scholar
  132. Edwards, C. M., Glisson, B. S., King, C. K., Smallwood, K. S. and Ross, W. E. (1987). Etoposide-induced DNA cleavage in human leukemia cells. Cancer Chemother. Pharmacol., 20, 162–168PubMedGoogle Scholar
  133. Egyhazi, E. and Durban, E. (1987). Microinjection of anti topoisomerase I immunoglobulin G into nuclei of Chironomus tentans salivary gland cells leads to blockage of transcription elongation. Mol. Cell. Biol, 7, 4308–4316PubMedPubMedCentralCrossRefGoogle Scholar
  134. Endicott, J. A. and Ling, E. (1989). The biochemistry of P glycoprotein-mediated multidrug resistance. Ann. Rev. Biochem., 58, 137–171PubMedCrossRefGoogle Scholar
  135. Eng, W. K., Faucette, L., Johnson, R. K. and Sternglanz, R. (1988). Evidence that DNA topoisomerase I is necessary for the cytotoxic effects of camptothecin. Mol. Pharmacol., 34, 755–760PubMedGoogle Scholar
  136. Eng, W. K., McCabe, F. L., Tan, K. B., Mattern, M. R., Hofmann, G. A., Woessner, R. D., Hertzberg, R. P. and Johnson, R. (1990). Development of a stable camptothecin-resistant subline of P388 leukemia with reduced topoisomerase I content. Mol. Pharmacol., 38, 471–480PubMedGoogle Scholar
  137. Epstein, R. J. and Smith, P. J. (1989). Mitogen-induced topoisomerase II synthesis precedes DNA synthesis in human breast cancer cells. Biochem. Biophys. Res. Commun., 160, 12–17PubMedCrossRefGoogle Scholar
  138. Epstein, R. J., Smith, P. J., Watson, J. V., Waters, C. and Bleehen, N. M. (1989). Oestrogen potentiates topoisomerase II-mediated cytotoxicity in an activated subpopulation of human breast cancer cells: implications for cytotoxic drug resistance in solid tumours. Int. J. Cancer, 44, 501–505PubMedCrossRefGoogle Scholar
  139. Estey, E., Adlakha, R. C., Hittelman, W. N. and Zwelling, L. A. (1987). Cell cycle stage dependent variation in drug-induced topoisomerase II mediated DNA cleavage and cytotoxicity. Biochemistry, 26, 4338–4344PubMedCrossRefGoogle Scholar
  140. Fairchild, C. R., Moscow, J. A., O’Brien, E. E. and Cowan, K. H. (1990). Multidrug resistance in cells transfected with human genes encoding a variant P glycoprotein and glutathione S-transferase-p. Mol. Pharmacol., 37, 801–809PubMedGoogle Scholar
  141. Farache, G., Razin, S. V., Targa, F. R. and Scherrer, K. (1990). Organisation of the 3’-boundary of the chicken a globin gene domain and characterisation of a CRl-specific protein binding site. Nucleic Acids Res., 18, 401–409PubMedPubMedCentralCrossRefGoogle Scholar
  142. Ferguson, P. J., Fisher, M. H., Stephenson, J., Li, D. H., Zhou, B. S. and Cheng, Y. C. (1988). Combined modalities of resistance in etoposide-resistant human KB cell lines. Cancer Res., 48, 5956–5964PubMedGoogle Scholar
  143. Fernandes, D. J., Danks, M. K. and Beck, W. T. (1990). Decreased nuclear matrix DNA topoisomerase II in human leukemia cells resistant to VM-26 and mAMSA. Biochemistry, 29, 4235–4241PubMedCrossRefGoogle Scholar
  144. Fernandes, D. J., Smith-Nanni, C., Paff, M. T. and Neff, T.-A. M. (1988). Effects of antileukemia agents on nuclear matrix bound DNA replication in CCRF-CEM leukemia cells. Cancer Res., 48, 1850–1855PubMedGoogle Scholar
  145. Ferro, A. M. and Olivera, B. M. (1984). Poly(ADP) ribosylation of DNA topoisomerase I from calf thymus. J. Biol. Chem., 259, 547–554PubMedGoogle Scholar
  146. Fesen, M. and Pommier, Y. (1989). Mammalian topoisomerase II activity is modulated by the DNA minor groove binder distamycin in simian virus 40 DNA. J. Biol. Chem., 264, 11354–11359PubMedGoogle Scholar
  147. Fields-Berry, S. C. and De Pamphlis, M. L. (1989). Sequences that promote formation of catenated intertwines during formation of DNA replication. Nucleic Acids Res., 17, 3261–3273PubMedPubMedCentralCrossRefGoogle Scholar
  148. Filipski, J. (1983). Competitive inhibition of nicking-closing enzymes may explain some biological effects of DNA intercalators. FEBS Lett., 159, 6–12PubMedCrossRefGoogle Scholar
  149. Filipski, J., Leblanc, J., Youdale, T., Sikorska, M. and Walker, P. R. (1990). Periodicity of DNA folding in higher order chromatin structures. EMBO Jl, 9, 1319–1327Google Scholar
  150. Fink, G. R. (1989). A new twist to the topoisomerase I problem. Cell, 58, 225–226PubMedCrossRefGoogle Scholar
  151. Finlay, G. J. and Baguley, B. C. (1990). Potentiation by phenylbis-benzimidazoles of cytotoxicity of anticancer drugs directed against topoisomerase II. Eur. J. Cancer Clin. Oncol., 26, 586–589CrossRefGoogle Scholar
  152. Finlay, G. J., Baguley, B. C., Snow, K. and Judd, W. (1990). Multiple patterns of resistance of human leukemia cell sublines to amsacrine analogues. J. Natl Cancer Inst., 82, 662–667PubMedCrossRefGoogle Scholar
  153. Finlay, G. J., Wilson, W. R. and Baguley, B. C. (1989). Chemoprotection by 9-aminoacridine derivatives against the cytotoxicity of topoisomerase II-directed drugs. Eur. J. Cancer Clin. Oncol., 25, 1695–1701PubMedCrossRefGoogle Scholar
  154. Fleischmann, G., Pflugfelder, G., Steiner, E. K., Javahurian, K., Howard, G. C., Wang, J. C. and Elgin, S. C. R. (1984). Drosophila DNA topoisomerase I is associated with transcriptionally active regions of the genome. Proc. Natl Acad. Sci. USA, 81, 6958–6962PubMedPubMedCentralCrossRefGoogle Scholar
  155. Fojo, A. T., Ueda, K., Salmon, D. J., Poplack, D. G., Gottesman, M. M. and Pastan, I. (1987). Expression of a multidrug resistance gene in human tumours and tissues. Proc. Natl Acad. Sci. USA, 84, 265–269PubMedPubMedCentralCrossRefGoogle Scholar
  156. Fossé, P., Rene, B., Le, B. M., Paoletti, C. and Saucier, J. M. (1991). Sequence requirements for mammalian topoisomerase II mediated DNA cleavage stimulated by an ellipticine derivative. Nucleic Acids Res., 19, 2861–2868PubMedPubMedCentralCrossRefGoogle Scholar
  157. Fox, M. E. and Smith, P. J. (1990). Long term inhibition of DNA synthesis and the persistence of trapped topoisomerase II complexes in determining the toxicity of the antitumour DNA intercalators mAMSA and mitoxantrone. Cancer Res., 50, 5813–5818PubMedGoogle Scholar
  158. Francis, G. E., Berney, J. J., North, P. S., Khan, Z., Wilson, E. L., Jacobs, P. and Ali, M. (1987). Evidence for the involvement of DNA topoisomerase II in neutrophil-granulocyte differentiation. Leukemia, 1, 653–659PubMedGoogle Scholar
  159. Franco, R. J. and Drlica, K. (1989). Gyrase inhibitors can increase gyrA expression and DNA supereoiling. J. Bacteriol., 171, 6573–6579PubMedPubMedCentralGoogle Scholar
  160. Fukada, M. (1985). Action of camptothecin and its derivatives on deoxyribonucleic acid. Biochem. Pharmacol., 34, 1225–1230PubMedCrossRefGoogle Scholar
  161. Gallo, R. C., Whang-Peng, J. and Adamson, R. H. (1971). Studies on the anti-tumour activity, mechanism of action, and cell cycle effects of camptothecin. J. Natl Cancer Inst., 46, 789–795PubMedGoogle Scholar
  162. Ganapathi, R., Grabowski, D., Ford, J., Heiss, C., Kerrigan, D. and Pommier, Y. (1989). Progressive resistance to doxorubicin in mouse leukemia L1210 cells with multidrug resistance phenotype: reductions in drug-induced topoisomerase II-mediated DNA cleavage. Cancer Commun., 1, 217–224PubMedGoogle Scholar
  163. Garg, L. C., Di Angelo, S. and Jacob, S. T. (1987). Role of DNA topoisomerase I in the transcription of supercoiled rRNA gene. Proc. Natl Acad. Sci. USA, 84, 3185–3188PubMedPubMedCentralCrossRefGoogle Scholar
  164. Gasser, S. M., Amati, B. B., Cardenas, M. E. and Hofmann, J. F.-X. (1989). Studies on scaffold attachment sites and their relation to genome function. Int. Rev. Cytol., 119, 57–96PubMedCrossRefGoogle Scholar
  165. Gasser, S. M. and Laemmli, U. K. (1986a). Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell, 46, 521–530PubMedCrossRefGoogle Scholar
  166. Gasser, S. M. and Laemmli, U. K. (1986b). The organisation of chromatin loops: characterization of a scaffold attachment site. EMBO Jl, 5, 511–518Google Scholar
  167. Gasser, S. M., Laroche, T., Falquet, J., Boy de la Tour, E. and Laemmli, U.K. (1986). Metaphase chromosome structure. Involvement of topoisomerase II. J. Mol. Biol., 188, 613–629PubMedCrossRefGoogle Scholar
  168. Gedik, C. M. and Collins, A. R. (1990). Comparison of effects of fostriecin, novobiocin and camptothecin inhibitors of DNA topoisomerases on DNA replication and repair in human cells. Nucleic Acids Res., 18, 1007–1014PubMedPubMedCentralCrossRefGoogle Scholar
  169. Geliert, M. (1981). DNA topoisomerases. Ann. Rev. Biochem., 50, 879–910CrossRefGoogle Scholar
  170. Giaccone, G., Kadoyama, C., Maneckjee, R., Venzon, D., Alexander, R. B. and Gazdar, A. (1990). Effects of tumour necrosis factor, alone or in combination with topoisomerase II-targeted drugs, on human lung cancer cell lines. Int. J. Cancer, 46, 326–329PubMedCrossRefGoogle Scholar
  171. Giaever, G. N. and Wang, J. C. (1988). Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell, 55, 849–856PubMedCrossRefGoogle Scholar
  172. Gieseler, F., Boege, F. and Clark, M. (1990). Alteration of topoisomerase II action is a possible molecular mechanism of HL60 cell differentiation. Environ. Hlth Perspect., 88, 183–186CrossRefGoogle Scholar
  173. Gilmour, D. S. and Elgin, S. C. R. (1987). Localisation of specific topoisomerase I interactions within the transcribed regions of active heat shock genes by using the inhibitor camptothecin. Mol. Cell. Biol., 7, 141–148PubMedPubMedCentralCrossRefGoogle Scholar
  174. Gilmour, D. S., Pflugfelder, G., Wang, J. C. and Lis, J. I. (1986). Topoisomerase I interacts with transcribed regions in Drosophila cells. Cell, 44, 401–407PubMedCrossRefGoogle Scholar
  175. Giovanella, B. C., Stehlin, J. S., Wall, M. E., Wani, M. C., Nicholas, A. W., Liu, L. F., Silber, R. and Potmesil, M. (1989). DNA topoisomerase I-targeted chemotherapy of human colon cancer in xenografts. Science, 246, 1046–1048PubMedCrossRefGoogle Scholar
  176. Glikin, G. C. and Blangy, D. (1986). In vitro transcription by Xenopus oocytes. RNA polymerase III requires a DNA topoisomerase II activity. EMBO Jl, 5, 151–155Google Scholar
  177. Glisson, B., Gupta, R., Smallwood-Kento, S. and Ross, W. E. (1986). Characterisation of acquired epipodophyllotoxin resistance in a Chinese hamster ovary cell line: loss of drug stimulated cleavage activity. Cancer Res., 46, 1934–1938PubMedGoogle Scholar
  178. Gorsky, L. D., Cross, S. M. and Morin, M. J. (1989). Rapid increase in the activity of DNA topoisomerase I but not topoisomerase II, in HL60 promyelocytic leukemia cells treated with a phorbol ester. Cancer Commun., 1, 83–92PubMedGoogle Scholar
  179. Goto, T. and Wang, J. C. (1985). Cloning of yeast topo I, the gene encoding DNA topoisomerase I, and construction of mutants defective in both DNA topoisomerase I and DNA topoisomerase II. Proc. Natl Acad. Sci. USA, 82, 7178–7182PubMedPubMedCentralCrossRefGoogle Scholar
  180. Gottesfield, J. M. (1986). Novobiocin inhibits RNA polymerase HI transcription in vitro by a mechanism distinct from DNA topoisomerase II. Nucleic Acids Res., 14, 2075–2087CrossRefGoogle Scholar
  181. Gottlieb, J. A. and Luce, J. K. (1972). Treatment of malignant melanoma with camptothecin (NSC-100880). Cancer Chemother. Rep., 56, 103–105PubMedGoogle Scholar
  182. Glieder, A., Maurer, R. and Stahlin, H. (1974). Effect of an epipodophyllotoxin derivative (VP-16-213) on macromolecular synthesis and mitosis in mastocytoma cells in vitro. Cancer Res., 34, 1788–1793Google Scholar
  183. Gupta, R. S., Gupta, R., Eng, B., Lock, R. B., Ross, W. E., Hertzberg, M. J. and Johnson, R. K. (1988). Camptothecin-resistant mutants of Chinese hamster ovary cells containing a resistant form of topoisomerase I. Cancer Res., 48, 6404–6410PubMedGoogle Scholar
  184. Hall, F. L. and Vulliet, P. R. (1991). Proline-directed protein phosphorylation and cell cycle regulation. Curr. Opinion Cell Biol., 3, 176–184CrossRefGoogle Scholar
  185. Halligan, B. D., Davis, J. L., Edwards, K. A. and Liu, L. F. (1982). Intra- and intermolecular strand transfer by HeLa DNA topoisomerase I. J. Biol. Chem., 257, 3995–4000PubMedGoogle Scholar
  186. Halligan, B. D., Edwards, K. A. and Liu, L. F. (1985). Purification and characterization of a type II DNA topoisomerase from bovine calf thymus. J. Biol. Chem., 260, 2475–2482PubMedGoogle Scholar
  187. Hamada, H., Okochi, E., Watanabe, M., Oh-hara, T., Sugimoto, Y., Kawabata, H. and Tsurno, T. (1988). Mr 85,000 membrane protein specifically expressed in adriamycin-resistant human tumour cells. Cancer Res., 48, 7082–7087PubMedGoogle Scholar
  188. Hamlin, J. L., Vaughn, J. P., Dijkwel, P. A., Leu, T.-H. and Ma, C. (1991). Origins of replication timing and chromosomal position. Curr. Opinion Cell Biol., 3, 414–421PubMedCrossRefGoogle Scholar
  189. Hancock, R., Charron, M., Lambert, H., Lemieux, M., Pankov, R. and Pépin, N. (1989). Topoisomerase II as a target of antitumour agents. In Borowski, E. and Shugar, D. (Eds), Molecular Aspects of Chemotherapy, Pergamon Press, Oxford, pp. 119–137Google Scholar
  190. Harker, W. G., Slade, D. L., Dalton, W. S., Meltzer, P. S. and Trent, J. M. (1989). Multidrug resistance in mitoxantrone-selected HL-60 leukemia cells in the absence of P glycoprotein overexpression. Cancer Res., 49, 4542–4549PubMedGoogle Scholar
  191. Heartlein, M. W., Tsuji, H. and Latt, S. A. (1987). 5-Bromodeoxyuridine-dependent increase in sister chromatid exchange formation in Bloom’s syndrome is associated with reduction in topoisomerase II activity. Exp. Cell Res., 169, 245–254PubMedCrossRefGoogle Scholar
  192. Heck, M. M. S. and Earnshaw, W. C. (1986). Topoisomerase II: a specific marker for cell proliferation. J. Cell. Biol., 103, 2569–2581PubMedCrossRefGoogle Scholar
  193. Heck, M. M. S., Hittelman, W. N. and Earnshaw, W. C. (1988). Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle. Proc. Natl Acad. Sei. USA, 85, 1086–1090CrossRefGoogle Scholar
  194. Heck, M. M. S., Hittelman, W. N. and Earnshaw, W. C. (1989). In vivo phosphorylation of the 170 kDa form of eukaryotic DNA topoisomerase II cell cycle analysis. J. Biol. Chem., 264, 15161–15164PubMedGoogle Scholar
  195. Heller, R. A., Shelton, E. R., Dietrich, V., Elgin, S. C. and Brutlag, D. L. (1986). Multiple forms and cellular localisation of Drosophila DNA topoisomerase II. J. Biol. Chem., 261, 8063–8069PubMedGoogle Scholar
  196. Hertzberg, R. P., Busby, R. W., Caranfa, M. J., Holden, K. G., Johnson, R. K., Hecht, S. M. and Kingsbury, W. D. (1990). Irreversible trapping of the DNA-topoisomerase I covalent complex. J. Biol. Chem., 265, 19287–19295PubMedGoogle Scholar
  197. Hertzberg, R. P., Caranfa, M. J. and Hecht, W. N. (1989a). On the mechanism of topoisomerase I inhibition by camptothecin: evidence for binding to an enzyme-DNA complex. Biochemistry, 28, 4629–4638PubMedCrossRefGoogle Scholar
  198. Hertzberg, R. P., Caranfa, M. J., Holden, K. G., Jakas, D. R., Gallagher, G., Mattern, M. R., Mong, S. M., Bartus, J. O., Johnson, R. K. and Kingsbury, W. D. (1989b). Modification of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity. J. Med. Chem., 32, 715–720PubMedCrossRefGoogle Scholar
  199. Hill, B. T., Whelan, R. D., Hosking, L. K., Shellard, S. A., Hinds, M. D., Mayes, J. and Zwelling, L. A. (1991). A lack of detectable modification of topoisomerase II activity in a series of human tumour cell lines expressing only low levels of etoposide resistance. Int. J. Cancer, 47, 899–902PubMedCrossRefGoogle Scholar
  200. Hinds, M., Deisseroth, K., Mayes, J., Attschuler, E., Jansen, R., Ledley, F. D. and Zwelling, L. A. (1991) Identification of a point mutation in the topoisomerase II gene from a human leukemia cell line containing an amsacrine-resistant form of topoisomerase II. Cancer Res., 51, 4729–4731PubMedGoogle Scholar
  201. Hino, O., Ohtake, K. and Rogler, C. E. (1989). Features of two Hepatitis B virus (HBV) DNA integrations suggest mechanisms of HBV integration. J. Virol., 63, 2638–2643PubMedPubMedCentralGoogle Scholar
  202. Hirose, S. and Suzuki, Y. (1988). In vitro transcription of eukaryotic genes is affected differently by the degree of DNA supercoiling. Proc. Natl Acad. Sci. USA, 85, 718–722PubMedPubMedCentralCrossRefGoogle Scholar
  203. Hogan, A. and Faust, E. A. (1986). Non-homologous recombination in the Parvovirus chromosome. Mol. Cell. Biol., 6, 3005–3009PubMedPubMedCentralCrossRefGoogle Scholar
  204. Holden, J. A., Rolfson, D. H. and Wittwer, C. T. (1990). Human DNA topoisomerase II: evaluation of enzyme activity in normal and neoplastic tissues. Biochemistry, 29, 2127–2134PubMedCrossRefGoogle Scholar
  205. Holm, C., Covey, J. T., Kerrigan, D. and Pommier, Y. (1989a). Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase I and II inhibitors in Chinese hamster DC3F cells. Cancer Res., 49, 6365–6368PubMedGoogle Scholar
  206. Holm, C., Goto, T., Wang, J. C. and Botstein, D. (1985). DNA topoisomerase II is required at the time of mitosis in yeast. Cell, 41, 553–563PubMedCrossRefGoogle Scholar
  207. Holm, C., Stearns, T. and Botstein, D. (1989b). DNA topoisomerase II must act at mitosis to prevent non-disjunction and chromosome breakage. Mol. Cell Biol., 9, 159–168PubMedPubMedCentralCrossRefGoogle Scholar
  208. Hong, J. H. (1989). DNA topoisomerase: the mechanism of resistance to DNA topoisomerase II inhibitor VP-16. Hiroshima J. Med. Sci., 38, 197–207PubMedGoogle Scholar
  209. Howard, M. T., Lee, M. P., Hsieh, T. S. and Griffith, J. D. (1991). Drosophila topoisomerase II-DNA interactions are affected by DNA structure. J. Mol. Biol., 111, 53–62CrossRefGoogle Scholar
  210. Hsiang, Y.-H., Hertzberg, R., Hecht, S. and Liu, L. F. (1985). Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 260, 14873–14878PubMedGoogle Scholar
  211. Hsiang, Y.-H., Lihou, M. G. and Liu, L. F. (1989a). Mechanism of cell killing by camptothecin: arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes. Cancer Res., 49, 5077–5082PubMedGoogle Scholar
  212. Hsiang, Y.-H. and Liu, L. F. (1988). Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res., 48, 1722–1726PubMedGoogle Scholar
  213. Hsiang, Y.-H., Liu, L. F., Wall, M. E., Wani, M. C., Nicholas, A. W., Manikumar, G., Kirschenbaum, S., Silber, R. and Potmesil, M. (1989b). DNA topoisomerase I-mediated DNA cleavage and cytotoxicity of camptothecin analogues. Cancer Res., 49, 4385–4389PubMedGoogle Scholar
  214. Hsiang, Y.-H., Wu, H. Y. and Liu, L. F. (1988). Proliferation-dependent regulation of DNA topoisomerase II in cultured human cells. Cancer Res., 48, 3230–3235PubMedGoogle Scholar
  215. Hsieh, T. (1990). DNA topoisomerases. Curr. Opinion Cell Biol., 2, 461–463PubMedCrossRefGoogle Scholar
  216. Huang, H. W., Juang, J. K. and Liu, H. J. (1992). The recognition of DNA cleavage sites by porcine spleen topoisomerase II. Nucleic Acids Res., 20, 467–473PubMedPubMedCentralCrossRefGoogle Scholar
  217. Hwong, C.-L., Chen, M.-S. and Hwang, J. (1989). Phorbol ester transiently increases topoisomerase I mRNA levels in human skin fibroblasts. J. Biol. Chem., 264, 14923–14926PubMedGoogle Scholar
  218. Hwong, C.-L., Wang, C. H., Chen, Y. J., Whang, P. J. and Hwang, J. C. (1990). Induction of topoisomerase II gene expression in human lymphocytes upon Phytohemagglutinin Stimulation. Cancer Res. (Suppl.), 50, 5649–5652Google Scholar
  219. Ikeda, H. (1986). Illegitimate recombination: role of type II DNA topoisomerase. Adv. Biophys., 21, 149–162PubMedCrossRefGoogle Scholar
  220. Jarman, A. P. and Higgs, D. R. (1988). Nuclear scaffold attachment sites in the human globin gene complexes. EMBO Jl, 7, 3337–3344Google Scholar
  221. Jaxel, C., Capranico, G., Kerrigan, D., Kohn, K. W. and Pommier, Y. (1991a). Effect of local DNA sequence on topoisomerase I cleavage in the presence or absence of camptothecin. J. Biol. Chem., 266, 20418–20423PubMedGoogle Scholar
  222. Jaxel, C., Capranico, G., Wasserman, K., Kerrigan, D., Kohn, K. W. and Pommier, Y. (1991b). DNA sequence at sites of topoisomerase I cleavage induced by camptothecin in SV40 DNA. In Potmesil, M. and Kohn, K. W. (Eds), DNA Topoisomerases in Cancer. Oxford University Press, New York, pp. 182–195Google Scholar
  223. Jaxel, C., Kohn, K. W. and Pommier, Y. (1988a). Topoisomerase I interaction with SV40 DNA in the presence and absence of camptothecin. Nucleic Acids Res., 16, 11157–11170PubMedPubMedCentralCrossRefGoogle Scholar
  224. Jaxel, C., Kohn, K. W., Wani, M. C., Wall, M. E. and Pommier, Y. (1989). Structure-.activity study of the actions of camptothecin derivatives on mammalian topoisomerase I. Evidence for a specific receptor site and a relation to antitumor activity. Cancer Res., 49, 1465–1469PubMedGoogle Scholar
  225. Jaxel, C., Taudou, G., Portemer, C., Mirambeau, G., Panijel, J. and Duguet, M. (1988b). Topoisomerase inhibitors induce irreversible fragmentation of replicated DNA in concanavalin A stimulated splenocytes. Biochemistry, 27, 95–99PubMedCrossRefGoogle Scholar
  226. Jensen, P. B., Sorensen, B. S., Demant, E. J. F., Sehested, M., Jensen, P. S., Vindelov, L. and Hansen, H.H. (1990). Antagonistic effect of aclarubicin on the cytotoxicity of etoposide and 4’-(9-acridinylamino)-methansulfon-m-anisidide in human small cell lung cancer cell lines and on topoisomerase II mediated DNA cleavage. Cancer Res., 50, 3311–3316PubMedGoogle Scholar
  227. Jongstra-Bilen, J., Ittel, M. E., Niedergang, C., Vosberg, H. P. and Mandel, P. (1983). DNA topoisomerase I from calf thymus is inhibited in vitro by poly(ADP) ribosylation. Eur. J. Biochem., 136, 391–396PubMedCrossRefGoogle Scholar
  228. Juan, C.-C., Hwang, J., Liu, A. A., Whang-Peng, J., Knutsen, T., Huebner, K., Croce, C. M., Zhang, H., Wang, J. C. and Liu, L. F. (1988). Human DNA topoisomerase I is encoded by a single-copy gene that maps to chromosome 20q 12–13.2. Proc. Natl Acad. Sci. USA, 85, 8910–8913PubMedPubMedCentralCrossRefGoogle Scholar
  229. Kaiserman, H. B., Ingebritsen, T. S. and Benbow, R. M. (1988). Regulation of Xenopus laevis DNA topoisomerase I activity by phosphorylation in vitro. Biochemistry, 27, 3126–3222CrossRefGoogle Scholar
  230. Kamath, N., Grabowski, D., Ford, J., Drake, F., Kerrigan, D., Pommier, Y. and Ganapathi, R. (1991). Trifluoperazine modulation of resistance to the topoisomerase II inhibitor etoposide in doxorubicin resistant L1210 murine leukemia cells. Cancer Commun., 3, 37–44PubMedGoogle Scholar
  231. Kampinga, H. H., van den Kruk, G. and Konings, A. W. (1989). Reduced DNA break formation and cytotoxicity of the topoisomerase II drug 4’-(9’-acridinylamino)methanesulfon-m-anisidide when combined with hyperthermia in human and rodent cell lines. Cancer Res., 49, 1712–1717PubMedGoogle Scholar
  232. Kann, H. E. and Kohn, K. W. (1972). Effects of DNA-reactive drugs on RNA synthesis patterns in leukemia L1210 cells. Mol. Pharmacol., 8, 551–560PubMedGoogle Scholar
  233. Kanter, P. M. and Schwartz, H. S. (1982). A fluorescence enhancement assay for cellular DNA damage. Mol. Pharmacol., 22, 145–154PubMedGoogle Scholar
  234. Kanzawa, F., Sugimoto, Y., Minato, K., Kasahara, K., Bungo, M., Nakagawa, K., Fujiwara, Y., Liu, L. F. and Saijo, N. (1990). Establishment of a camptothecin analogue (CPT-ll)-resistant cell line of human non-small cell lung cancer: characterization and mechanism of resistance. Cancer Res., 50, 5919–5924PubMedGoogle Scholar
  235. Käs, E. and Chasin, L. A. (1987). Anchorage of the Chinese hamster dihydrofolate reductase gene to the nuclear scaffold occurs in an intra-genic region. J. Mol. Biol., 198, 677–692PubMedCrossRefGoogle Scholar
  236. Käs, E. and Laemmli, U. K. (1992). In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO Jl, 11, 705–716Google Scholar
  237. Kasid, U. N., Halligan, B., Liu, L. F., Dritschlo, A. and Smulson, M. (1989). Poly(ADP-ribose) mediated post-translational modification of chromatin-associated human topoisomerase I. Inhibitory effects on catalytic activity. J. Biol. Chem., 264, 18687–18692PubMedGoogle Scholar
  238. Kaufmann, S. H. (1989). Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin and other cytotoxic anticancer drugs: a cautionary note. Cancer Res., 49, 5870–5878PubMedGoogle Scholar
  239. Kaufmann, S. H. (1991). Antagonism between camptothecin and topoisomerase II-directed chemotherapeutic agents in a human leukemia cell line. Cancer Res., 51, 1129–1136PubMedGoogle Scholar
  240. Kaufmann, S., Brunet, G., Talbot, B., Lamarr, D., Dumas, C., Shaper, J. H. and Poirier, G. (1991a). Association of poiy(ADP-ribose) polymerase with the nuclear matrix: the role of intermolecular disulfide bond formation, RNA retention and cell type. Exp. Cell Res., 192, 511–523PubMedCrossRefGoogle Scholar
  241. Kaufmann, S. H. and Shaper, J. (1991). Association of topoisomerase II with the hepatoma cell nuclear matrix: the role of intermolecular disulphide bond formation. Exp. Cell Res., 192, 511–523PubMedCrossRefGoogle Scholar
  242. Kaufmann, W. K., Boyer, J. C., Estabrooks, L. L. and Wilson, S. J. (1991b). Inhibition of replicon initiation in human cells following stabilisation of topo-isomerase-DNA cleavable complexes. Mol. Cell Biol., 11, 3711–3718PubMedPubMedCentralCrossRefGoogle Scholar
  243. Kawada, S., Yamashita, Y., Fujii, N. and Nakano, H. (1991). Induction of a heat-stable topoisomerase II-DN A cleavable complex by non-intercalative terpenoids, terpentecin and clerocidin. Cancer Res., 51, 2922–2925PubMedGoogle Scholar
  244. Kessel, D., Bosmann, H. B. and Lohr, K. (1972). Camptothecin effects on DNA synthesis in murine leukemia cells. Biochim. Biophys. Acta, 269, 210–216PubMedCrossRefGoogle Scholar
  245. Kessel, D. and Wheeler, C. (1984). mAMSA as a probe for transport phenomena associated with anthracycline resistance. Biochem. Pharmacol., 33, 991–994PubMedCrossRefGoogle Scholar
  246. Kiguchi, K., Constantinou, A. I. and Huberman, E. (1990). Genistein induced cell differentiation and protein-linked DNA strand breakage in human melanoma cells. Cancer Commun., 2, 271–277PubMedGoogle Scholar
  247. Kim, R., Hirabayashi, N., Nishiyama, M., Saeki, S., Toge, T. and Okada, K. (1991). Expression of MDR1, GST-pi and topoisomerase II as an indicator of clinical response to adriamycin. Anticancer Res., 11, 429–431PubMedGoogle Scholar
  248. Kim, R. A. and Wang, J. C. (1989a). A subthreshold level of DNA topoisomerase leads to the excision of yeast rDNA as extrachromosomal rings. Cell, 57, 975–985PubMedCrossRefGoogle Scholar
  249. Kim, R. A. and Wang, J. C. (1989b). Function of DNA topoisomerases as replication swivels in Saccharomyces cerevisiae. J. Mol. Biol., 208, 257–267PubMedCrossRefGoogle Scholar
  250. Kingsbury, W. D., Boehm, J. C., Jakas, D. R., Holden, K. G., Hecht, S. M., Gallagher, G., Caranfa, M. J., McCabe, F., Faucette, L. F., Johnson, R. K. and Hertzberg, R. P. (1991). Synthesis of water-soluble (aminoalkyl)camptothecin analogues: inhibition of topoisomerase I and antitumor activity. J. Med. Chem., 34, 98–107PubMedCrossRefGoogle Scholar
  251. Kjeldsen, E., Bonven, B., Andoh, T., Ishii, K., Okada, K., Bolund, L. and Westergaard, O. (1988a). Characterization of a camptothecin-resistant human DNA topoisomerase I. J. Biol. Chem., 263, 3912–3916PubMedGoogle Scholar
  252. Kjeldsen, E., Mollerup, S., Thomsen, B., Bonven, B. J., Bolund, L. and Westergaard, O. (1988b). Sequence-dependent effect of camptothecin on human topoisomerase I DNA cleavage. J. Mol. Biol., 202, 333–342PubMedCrossRefGoogle Scholar
  253. Kohn, K. W., Ewig, R. A. G., Erickson, L. A. and Zwelling, L. A. (1981). Measurement of strand breaks and crosslinks by alkaline elution. In Friedberg, E. C. and Hanawalt, P. C. (Eds), DNA Repair: A Laboratory Manual of Research Techniques, Marcel Dekker, New York, pp. 379–401Google Scholar
  254. Kohn, K. W., Pommier, Y., Kerrigan, D., Markovits, J., and Covey, J. M. (1987). Topoisomerase II as a target of anticancer drug action in mammalian cells. N. C. I. Monograph, 4, 61–71Google Scholar
  255. Konopka, A. K. (1988). Compilation of DNA strand exchange sites for nonhomologous recombination in somatic cells. Nucleic Acids Res., 16, 1739–1758PubMedPubMedCentralCrossRefGoogle Scholar
  256. Kosovsky, M. J. and Soslau, G. (1991). Mitochondrial DNA topoisomerase I from human platelets. Biochim. Biophys. Acta, 1078, 56–62PubMedCrossRefGoogle Scholar
  257. Kroeger, P. E. and Rowe, T. C. (1989). Interaction of topoisomerase I with the transcribed region of Drosophila HSP70 heat shock gene. Nucleic Acids Res., 17, 8495–8509PubMedPubMedCentralCrossRefGoogle Scholar
  258. Krogh, S., Mortensen, U. H., Westergaard, O. and Bonven, B. J. (1991). Eukar-yotic topoisomerase I-DNA interaction is stabilized by helix curvature. Nucleic Acids Res., 19, 1235–1241PubMedPubMedCentralCrossRefGoogle Scholar
  259. Kroll, D. J. and Rowe, T. C. (1991). Phosphorylation of DNA topoisomerase II in a human tumour cell line. J. Biol. Chem., 266, 7957–7961PubMedGoogle Scholar
  260. Kubo, M., Kano, Y., Nakamura, H., Nagata, A. and Imamoto, F. (1979). In vivo enhancement of general and specific transcription in E. coli by DNA gyrase activity. Gene, 7, 153–171PubMedCrossRefGoogle Scholar
  261. Kunze, N., Yang, G., Dölberg, M., Sundarp, R., Knippers, R. and Richter, A. (1991). Structure of the human type I DNA topoisomerase gene. J. Biol. Chem., 266, 9610–9616PubMedGoogle Scholar
  262. Kunze, N., Yang, G. C., Jiang, Z. Y., Hameister, H., Adolph, S., Wiedorn, K.-H., Richter, A. and Knippers, R. (1989). Localization of the active type I DNA topoisomerase gene on human chromosome 20q 11.2–13.1 and two pseudogenes on chromosomes lq 23–24 and 22q 11–13.1. Human Genet., 84, 6–10CrossRefGoogle Scholar
  263. Kupfer, G., Bodley, A. L. and Liu, L. F. (1987). Involvement of intracellular ATP in cytotoxicity of topoisomerase II targetting antitumour drugs. N. C. I. Monograph, 4, 37–40Google Scholar
  264. Kuwahara, J., Suzuki, T., Funakoshi, K. and Sugiura, Y. (1986). Photosensitive DNA cleavage and phage inactivation by copper(II)-camptothecin. Biochemistry, 25, 1216–1221PubMedCrossRefGoogle Scholar
  265. Kyprianou, N., Alexander, R. B. and Isaacs, J. (1991). Activation of programmed cell death by recombinant human tumour necrosis factor plus topoisomerase II-targeted drugs in L929 tumour cells. J. Natl Cancer Inst., 83, 346–350PubMedCrossRefGoogle Scholar
  266. Lake, R. A., Wotton, D. and Owen, M. (1990). A 3’-transcriptional enhancer regulates tissue-specific expression of the human CD2 gene. EMBO Jl, 9, 3129–3136Google Scholar
  267. Lassota, P., Melamed, M. R. and Darzynkiewicz, Z. (1991). Release of specific proteins from nuclei of HL60 and MOLT-4 cells by antitumour drugs having affinity for nucleic acids. Biochem. Pharmacol., 41, 1055–1065PubMedCrossRefGoogle Scholar
  268. Lawrence, T. S., Canman, C. E., Maybaum, J. and Davis, M. A. (1989). Dependence of etoposide-induced cytotoxicity and topoisomerase II-mediated DNA strand breakage on the intracellular ionic environment. Cancer Res., 49, 4775–4779PubMedGoogle Scholar
  269. Lawrence, T. S. and Davis, M. A. (1990). The influence of Na+, K(+)-pump blockade on doxorubicin-mediated cytotoxicity and DNA strand breakage in human tumour cells. Cancer Chemother. Pharmacol., 26, 163–167PubMedCrossRefGoogle Scholar
  270. Lazarus, G. M., Henrich, J. P., Kelly, W. G., Schmitz, S. A. and Castora, F. J. (1987). Purification and characterization of a type I DNA topoisomerase from calf thymus mitochondria. Biochemistry, 26, 6195–6203PubMedCrossRefGoogle Scholar
  271. Lee, M. P., Sander, M. and Hsieh, T. (1989). Nuclease protection by Drosophila DNA topoisomerase II. Enzyme-DNA contacts at the strong topoisomerase II cleavage sites. J. Biol. Chem., 264, 21779–21787PubMedGoogle Scholar
  272. Lefevre, D., Riou, J. F., Ahomadegbe, J. C., Zhou, D. Y., Benard, J. and Riou, G. (1991). Study of molecular markers of resistance to m-AMSA in a human breast cancer cell line. Decrease of topoisomerase II and increase of both topoisomerase I and acidic glutathione S transferase. Biochem. Pharmacol., 41, 1967–1979PubMedCrossRefGoogle Scholar
  273. Legouy, E., Fossar, N., Lhomond, G. and Brison, O. (1989). Structure of four amplified DNA novel joints. Somatic Cell. Mol. Genet., 15, 309–320CrossRefGoogle Scholar
  274. Levy, W. B. and Fortier, C. (1989). The limits of the DNAse 1-sensitive domain of the human apolipoprotein B gene coincide with the locations of chromosomal anchorage loops and define the 5’ and 3’ boundaries of the gene. J. Biol. Chem., 264, 21196–21204Google Scholar
  275. Lewin, B. (1990). Driving the cell cycle: M phase kinase, its partners and substrates. Cell, 61, 743–752PubMedCrossRefGoogle Scholar
  276. Li, G. C. (1987). Heat shock proteins: role in thermotolerance, drug resistance, and relationship to DNA topoisomerases. N. C. I. Monograph, 4, 99–103Google Scholar
  277. Li, L. H., Fraser, T. J., Olin, E. J. and Bhuyan, B. K. (1972). Action of camptothecin on mammalian cells in culture. Cancer Res., 32, 2643–2650PubMedGoogle Scholar
  278. Lim, M., Liu, L. F., Jacobson-Kram, D. and Williams, J. R. (1986). Induction of sister chromatid exchanges by inhibitors of topoisomerases. Cell Biol. Toxicol., 2, 485–494PubMedCrossRefGoogle Scholar
  279. Lin, J.-H. and Castora, F. J. (1991). DNA topoisomerase II from mammalian mitochondria is inhibited by the antitumour drugs mAMSA and VM-26. Biochem. Biophys. Res. Commun., 176, 690–697PubMedCrossRefGoogle Scholar
  280. Ling, Y. H., Tseng, M. and Nelson, J. A. (1991). Differentiation induction of human promyelocytic leukemia cells by 10-hydroxyl-camptothecin, a DNA topoisomerase I inhibitor. Differentiation, 46, 135–142PubMedCrossRefGoogle Scholar
  281. Liu, L. F. (1983). DNA-topoisomerases—enzymes that catalyse the breaking and rejoining of DNA. CRC Crit. Rev. Biochem., 15, 1–24PubMedCrossRefGoogle Scholar
  282. Liu, L. F. (1989). DNA topoisomerase poisons as antitumour drugs. Ann. Rev Biochem., 58, 351–375PubMedCrossRefGoogle Scholar
  283. Liu, L. F. and Miller, K. G. (1981). Eukaryotic DNA topoisomerases. Two forms of type I DNA topoisomerases from Hela cell nuclei. Proc. Natl Acad. Sci. USA, 78, 3487–3491PubMedPubMedCentralCrossRefGoogle Scholar
  284. Liu, L. F. and Wang, J. C. (1987). Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA, 84, 7024–7027PubMedPubMedCentralCrossRefGoogle Scholar
  285. Ljungman, M. and Hanawalt, P. C. (1992). Localized torsional tension in the DNA of human cells. Proc. Natl Acad. Sci. USA, 89, 6055–6059PubMedPubMedCentralCrossRefGoogle Scholar
  286. Lock, R. B. and Ross, W. E. (1987). DNA topoisomerases in cancer therapy. Anti-cancer Drug Res., 2, 151–165Google Scholar
  287. Lock, R. B. and Ross, W. E. (1990). Inhibition of p34cdc2 kinase activity by etoposide or irradiation as a mechanism of G2 arrest in Chinese hamster ovary cells. Cancer Res., 50, 3761–3766PubMedGoogle Scholar
  288. Lodge, J. K., Kazic, T. and Berg, D. E. (1989). Formation of supercoiling domains in plasmid pBR322. J. Bacteriol., 171, 2181–2187PubMedPubMedCentralGoogle Scholar
  289. Lönn, U., Lönn, S., Nylen, U. and Winblad, G. (1989). Altered formation of DNA in human cells treated with inhibitors of DNA topoisomerase II (etoposide and teniposide). Cancer Res., 49, 6202–6207PubMedGoogle Scholar
  290. Lorico, A., Boiocchi, M., Rappa, G., Sen, S., Erba, E. and D’Incalci, M. (1990). Increase in topoisomerase II-mediated DNA breaks and cytotoxicity of VP-16 in human U937 lymphoma cells pretreated with low doses of methotrexate. Int. J. Cancer, 45, 156–162PubMedCrossRefGoogle Scholar
  291. Lund, K., Andersen, A. H., Christiansen, K., Svejstrup, J. Q. and Westergaard, O. (1990). Minimal DNA requirement for topoisomerase II-mediated cleavage in vitro. J. Biol. Chem., 265, 13856–13863PubMedGoogle Scholar
  292. Lynn, R. M., Bjornsti, M. A., Caron, P. R. and Wang, J. C. (1989). Peptide sequencing and site-directed mutagenesis identify tyrosine-727 as the active site tyrosine of Saccharomyces cerevisiae DNA topoisomerase I. Proc. Natl Acad. Sei. USA, 86, 3559–3563CrossRefGoogle Scholar
  293. McCoubrey, W. K. and Champoux, J. J. (1986). The role of single-strand breaks in the catenation reaction catalysed by the rat type I topoisomerase. J. Biol. Chem., 261, 5130–5137PubMedGoogle Scholar
  294. McHugh, M. M., Woynarowski, J. M., Sigmund, R. D. and Beerman, T. A. (1989). Effect of minor groove binding drugs on mammalian topo-isomerase I activity. Biochem. Pharmacol., 38, 2323–2328PubMedCrossRefGoogle Scholar
  295. McLane, K. E., Fisher, J. and Ramakrishnan, K. (1983). Reductive drug metabolism. Drug Metab. Rev., 14, 741–770CrossRefGoogle Scholar
  296. Markovits, J., Linassier, C., Fossé, P., Coupie, J., Pierre, J., Jacquemin, S. A., Saucier, J. M., Le, P. J. and Larsen, A. K. (1989). Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res., 49, 5111–5117PubMedGoogle Scholar
  297. Markovits, J., Pommier, Y., Kerrigan, D., Covey, J. M., Tilchen, E. J. and Kohn, W. K. (1987). Topoisomerase II-mediated DNA breaks and cytotoxicity in relation to cell proliferation and the cell cycle in NIH 3T3 fibroblasts and L1210 leukemia cells. Cancer Res., 47, 2050–2055PubMedGoogle Scholar
  298. Marquardt, D., McCrone, S. and Center, M. S. (1990). Mechanisms of multidrug resistance in HL-60 cells: detection of resistance associated proteins with antibodies against synthetic peptides that correspond to the deduced sequence of P glycoprotein. Cancer Res., 50, 1426–1430PubMedGoogle Scholar
  299. Marsh, W. and Center, M. S. (1987). Adriamycin resistance in HL-60 cells and accompanying modification of a surface membrane protein contained in drug sensitive cells. Cancer Res., 47, 5080–5086PubMedGoogle Scholar
  300. Marshall, B. and Ralph, R. K. (1985). The mechanism of action of mAMSA. Adv. Cancer Res., 44, 267–293PubMedCrossRefGoogle Scholar
  301. Matsuo, K., Kohno, K., Takano, H., Sato, S., Kiue, A. and Kuwano, M. (1990). Reduction of drug accumulation and DNA topoisomerase II activity in acquired teniposide-resistant human cancer KB cell lines. Cancer Res., 50, 5819–5824PubMedGoogle Scholar
  302. Mattern, M. R., Mong, S. M., Bartus, H. F., Mirabelli, C. K., Crooke, S. T. and Johnson, R. K. (1987). Relationships between the intracellular effects of camp-tothecin and the inhibition of DNA topoisomerase I in cultured L1210 cells. Cancer Res., 47, 1793–1798PubMedGoogle Scholar
  303. Mattern, M. R., Mong, S., Mong, S. M., Bartus, J. O., Sarau, H. M., Clark, M. A., Foley, J. J. and Crooke, S. T. (1990). Transient activation of topoisomerase I in leukotriene D4 signal transduction in human cells. Biochem. J., 265, 101–107PubMedPubMedCentralCrossRefGoogle Scholar
  304. Mattern, M. R., Tan, K. B., Zimmerman, J. P., Mong, S. M., Bartus, J. O., Hofmann, G. A., Drake, F. H., Johnson, R. K., Crooke, S. T. and Mirabelli, C. K. (1989). Evidence for the participation of topoisomerase I and II in cadmium-induced metallothionein expression in Chinese hamster ovary cells. Anti-cancer Drug Des., 4, 107–124Google Scholar
  305. Matines, E., Langan, P., Brachwitz, H., Schroder, H. C., Maidhof, A., Weiler, B. E., Renneisen, K. and Muller, W. A. (1990). Alteration of DNA topoisomerase II activity during infection of H9 cells by human immunodeficiency virus type I in vitro: a target for potential therapeutic agents. Antiviral Res., 13, 273–286CrossRefGoogle Scholar
  306. Maul, G. G., French, B. T., Van, V. W. and Jimenez, S. A. (1986). Topoisomerase I identified by scleroderma 70 antisera: enrichment of topoisomerase I at the centromere in mouse mitotic cells before anaphase. Proc. Natl Acad. Sci. USA, 83, 5145–5149PubMedPubMedCentralCrossRefGoogle Scholar
  307. Maxwell, A. and Geliert, M. (1986). Mechanistic aspects of DNA topoisomerases. Adv. Prot. Chem., 38, 69–103CrossRefGoogle Scholar
  308. Meijer, C., Mulder, N. H., Timmer-Bosscha, H., Zijlstra, J. G. and de Vries, E. G. E. (1987). Role of free radicals in an adriamycin-resistant human small cell lung cancer cell line. Cancer Res., 47, 4613–4617PubMedGoogle Scholar
  309. Meisner, H. and Czech, M. P. (1991). Phosphorylation of transcription factors and cell-cycle-dependent proteins by casein kinase II. Curr. Opinion Cell Biol., 3, 474–483PubMedCrossRefGoogle Scholar
  310. Melendy, T. and Ray, D. S. (1989). Novobiocin affinity purification of a mitochondrial type II topoisomerase from the trypanosomatid Crithidia fasciculata. J. Biol. Chem., 264, 1870–1876PubMedGoogle Scholar
  311. Miller, K. G., Liu, L. F. and Englund, P. T. (1981). A homogeneous type II DNA topoisomerase from Hela cell nuclei. J. Biol. Chem., 256, 9334–9339PubMedGoogle Scholar
  312. Minato, K., Kanzawa, F., Nishio, K., Nakagawa, K., Fujiwara, Y. and Saijo, N. (1990). Characterization of an etoposide-resistant human small-cell lung cancer line. Cancer Chemother. Pharmacol., 26, 313–317PubMedCrossRefGoogle Scholar
  313. Mirkovitch, J., Gasser, S. M. and Laemmli, U. K. (1988). Scaffold attachment of DNA loops in metaphase chromosomes. J. Mol. Biol, 200, 101–110PubMedCrossRefGoogle Scholar
  314. Mirkovitch, J., Spierer, P. and Laemmli, U. K. (1986). Genes and loops in 320,000 base pairs of the Drosophila melanogaster chromosome. J. Mol. Biol., 190, 255–258PubMedCrossRefGoogle Scholar
  315. Miskimins, R., Miskimins, W. K., Bernstein, H. and Shimizu, N. (1983). Epidermal growth factor-induced topoisomerase(s). Exp. Cell Res., 146, 53–62PubMedCrossRefGoogle Scholar
  316. Misra, N. C. and Roberts, D. (1975). Inhibition by 4’-demethyl-epipodo-phyllotoxin-9-(4,6-0-2-thenylidene-6-D-glucopyranoside) of human lymphoblast cultures in G2 phase of the cell cycle. Cancer Res., 35, 99–105PubMedGoogle Scholar
  317. Mita, S., Rizzuto, R., Moraes, C. T., Shanske, S., Arnaudo, E., Fabrizi, G. M., Koga, Y., Di Mauro, S. and Schon, E. A. (1990). Recombination via flanking direct repeats is a major cause of large scale deletions of human mitochondrial DNA. Nucleic Acids Res., 18, 561–567PubMedPubMedCentralCrossRefGoogle Scholar
  318. Mizutani, M., Ohta, T., Watanabe, H., Handa, H. and Hirose, S. (1991). Negative supercoiling of DNA facilitates an interaction between transcription factor IID and the fibroin gene promoter. Proc. Natl Acad. Sci. USA, 88, 718–722PubMedPubMedCentralCrossRefGoogle Scholar
  319. Moertel, C. G., Schutt, A. J., Reitemeier, R. J. and Hahn, R. G. (1972). Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother. Rep., 56, 95–101PubMedGoogle Scholar
  320. Monnot, M., Mauffret, O., Simon, V., Lescot, E., Psaume, B., Saucier, J. M., Charra, M., Belehradek, J, Jr., and Fermandjian, S. (1991). DNA-drug recognition and effects on topoisomerase II-mediated cytotoxicity. A three-mode binding model for ellipticine derivatives. J. Biol. Chem., 266, 1820–1829PubMedGoogle Scholar
  321. Moreno, S. and Nurse, P. (1990). Substrates for p34cdc2: in vivo Veritas?Cell, 61, 549–551PubMedCrossRefGoogle Scholar
  322. Muggia, F. M., Creaven, P. J., Hansen, H. H., Cohen, M. H. and Selawry, O. S. (1972). Phase I clinical trial of weekly and daily treatment with camptothecin (NSC-100880). Correlation with preclinical studies. Cancer Chemother., 56, 515–521Google Scholar
  323. Muller, M. T., Pfund, W. P., Mehta, V. B. and Trask, D. K. (1985). Eukaryotic type 1 topoisomerase is enriched in the nucleolus and catalytically active on ribosomal RNA. EMBO Jl, 4, 1237–1243Google Scholar
  324. Naito, M., Hamada, H. and Tsuruo, T. (1988). ATP/Mg2+-dependent binding of vincristine to the plasma membrane of multidrug-resistant K-562 cells. J. Biol. Chem., 263, 11887–11891PubMedGoogle Scholar
  325. Nakaya, K., Chou, S., Kaneko, M. and Nakamura, Y. (1991). Topoisomerase inhibitors have potent differentiation-inducing activity for human and mouse myeloid leukemia cells. Jpn J. Cancer Res., 82, 184–191PubMedCrossRefGoogle Scholar
  326. Neil, G. L. and Homan, E. R. (1973). The effects of dose interval on the survival of L1210 leukemic mice treated with DNA synthesis inhibitors. Cancer Res., 33, 895–901PubMedGoogle Scholar
  327. Nelson, E. M., Tewey, K. M. and Liu, L. F. (1984). Mechanism of antitumour drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4’- (9-acridinylamino)methanesulfon-m-anisidide. Proc. Natl Acad. Sci. USA, 81, 1361–1365PubMedPubMedCentralCrossRefGoogle Scholar
  328. Nelson, W. G., Cho, K. R., Hsiang, Y.-H., Liu, L. F. and Coffey, D. S. (1987). Growth-related elevations of DNA topoisomerase II levels found in Dunning R3327 rat prostatic adenocarcinomas. Cancer Res., 47, 3246–3250PubMedGoogle Scholar
  329. Nelson, W. G., Liu, L. F. and Coffey, D. S. (1986). Newly replicated DNA is associated with DNA topoisomerase II in cultured rat prostatic adenocarcinoma cells. Nature, 322, 187–189PubMedCrossRefGoogle Scholar
  330. Nitiss, J. and Wang, J. C. (1988). DNA topoisomerase targeting antitumour drugs can be studied in yeast. Proc. Natl Acad. Sci. USA, 85, 7501–7505PubMedPubMedCentralCrossRefGoogle Scholar
  331. Noguchi, H., Reddy, G. P. U. and Pardee, A. P. (1983). Rapid incorporation of label from ribonucleoside disphosphates into DNA by a cell-free high molecular weight fraction from animal cell nuclei. Cell, 32, 443–451PubMedCrossRefGoogle Scholar
  332. Nurse, P. (1990). Universal control mechanism regulating onset of M phase. Nature, 344, 503–507PubMedCrossRefGoogle Scholar
  333. Nyce, J. (1989). Drug-induced DNA hypermethylation and drug resistance in human tumours. Cancer Res., 49, 5829–5836PubMedGoogle Scholar
  334. Ohno, R., Okada, K., Masaoka, T., Kuramoto, A., Arima, T., Yoshida, Y., Ariyoshi, H., Ichimaru, M., Sakai, Y. and Oguro, M. (1990). An early phase II study of CPT-11, a new derivative of camptothecin, for the treatment of leukemia and lymphoma. J. Clin. Oncol., 8, 1907–1912PubMedGoogle Scholar
  335. Osheroff, N. (1987). Role of the divalent cation in topoisomerase II mediated reactions. Biochemistry, 26, 6402–6406PubMedCrossRefGoogle Scholar
  336. Osheroff, N., Zechiedrich, E. L. and Gale, K. C. (1991). Catalytic function of DNA topoisomerase II. Bioessays, 13, 269–273PubMedCrossRefGoogle Scholar
  337. Patel, S., Austin, C. A. and Fisher, L. M. (1990). Development and properties of an etoposide-resistant human leukaemic CCRF-CEM cell line. Anti-cancer Drug Des., 5, 149–157Google Scholar
  338. Patet, J., Huppert, J., Fourade, A. and Tapiero, H. (1986). Cytogenetic modifications of Friend Leukemia cells resistant to adriamycin. Leuk. Res., 10, 651–658PubMedCrossRefGoogle Scholar
  339. Pommier, Y., Capranico, G., Orr, A. and Kohn, K. W. (1991a). Local base sequence preferences for DNA cleavage by mammalian topoisomerase II in the presence of amsacrine and teniposide. Nucleic Acids Res., 19, 5973–5980PubMedPubMedCentralCrossRefGoogle Scholar
  340. Pommier, Y., Capranico, G., Orr, A. and Kohn, K. W. (1991b). Distribution of topoisomerase II cleavage sites in simian virus 40 DNA and the effects of drugs. J. Mol Biol , 222, 909–924PubMedCrossRefGoogle Scholar
  341. Pommier, Y., Cockerill, P. N., Kohn, K. W. and Garrard, W. T. (1990a). Identification within the Simian virus 40 genome of a chromosomal loop attachment site that contains topoisomerase II cleavage sites. J. Virol, 64, 419–423PubMedPubMedCentralGoogle Scholar
  342. Pommier, Y., Jaxel, C., Kerrigan, D. and Kohn, K. W. (1991c). Structure activity relationship of topoisomerase I inhibition by camptothecin derivatives: evidence for the existence of a ternary complex. In Potmesil, M. and Kohn, K. W. (Eds), DNA Topoisomerases in Cancer, Oxford University Press, New York, pp. 121–132Google Scholar
  343. Pommier, Y., Kerrigan, D., Covey, J. M., Kao-Shan, C.-S. and Whang-Peng, J. (1988). Sister chromatid exchanges, chromosomal aberrations and cytotoxicity produced by antitumour topoisomerase II inhibitors in sensitive (DC3F) and resistant (DC3F19-OHE) Chinese hamster cells. Cancer Res., 48, 512–516PubMedGoogle Scholar
  344. Pommier, Y., Kerrigan, D., Hartman, K. D. and Glazer, R. I. (1990b). Phosphorylation of mammalian DNA topoisomerase I and activation by protein kinase C. J. Biol. Chem., 265, 9418–9422PubMedGoogle Scholar
  345. Pommier, Y., Kohn, K. W., Capranico, G. and Jaxel, C. (1992). Base sequence selectivity of topoisomerase inhibitors suggests a common model for drug action. In Andoh, T., Ikeda, H. and Oguro, O. (Eds), Molecular Biology of DNA Topoisomerases and Its Applications to Cancer Chemotherapy, CRC Press, Boca Raton (in press)Google Scholar
  346. Pommier, Y., Runger, T. M., Kerrigan, D. and Kraemer, K. H. (1991d). Relationship of DNA strand breakage produced by bromodeoxyuridine to topoisomerase II activity in Bloom-syndrome fibroblasts. Mutation Res., 254, 185–190PubMedCrossRefGoogle Scholar
  347. Pommier, Y., Zwelling, L. A., Kao-Shan, C.-S., Whang-Peng, J. and Bradley, M. O. (1985). Correlations between intercalator-induced DNA strand breaks and sister chromatid exchanges, mutations and cytotoxicity in Chinese hamster cells. Cancer Res., 45, 3143–3149PubMedGoogle Scholar
  348. Porter, S. E. and Champoux, J. J. (1989a). The basis for camptothecin enhancement of DNA breakage by eukaryotic topoisomerase I. Nucleic Acids Res., 17, 8521–8532PubMedPubMedCentralCrossRefGoogle Scholar
  349. Porter, S. E. and Champoux, J.J. (1989b). Mapping in vivo topoisomerase I sites on simian virus 40 DNA: asymmetric distribution of sites on replicating molecules. Mol Cell. Biol., 9, 541–550PubMedPubMedCentralCrossRefGoogle Scholar
  350. Preston, G. M. and White, B. (1990). Effects of the DNA topoisomerase II inhibitor VM-26 on transcriptional initiation in vitro. Life Sci., 46, 1309–1318PubMedCrossRefGoogle Scholar
  351. Ralph, R. K., Darkin-Rattray, S. and Schofield, P. (1990). Growth related protein kinases. Bioessays, 12, 121–124PubMedCrossRefGoogle Scholar
  352. Ralph, R. K. and Schneider, E. (1987). DNA topoisomerases and anti-cancer drugs. In Kon, O. H., Chung, M. C.-M., Hwang, P. L. N., Leong, S.-F., Loke, K. N., Thiyagarajah, P. and Wong, P. T.-H. (Eds), Integration and Control of Metabolic Processes: Pure and Applied Aspects, ICSU Press, pp. 373–388Google Scholar
  353. Rappa, G., Lorico, A. and Sartorelli, A. C. (1990). Induction of the differentiation of WEHI-3B D+ monomyelocytic leukemia cells by inhibitors of topoisomerase II. Cancer Res., 50, 6723–6730PubMedGoogle Scholar
  354. Razin, S.V. (1987). DNA interactions with the nuclear matrix and spatial organisation of replication and transcription. Bioessays., 6, 19–23PubMedCrossRefGoogle Scholar
  355. Razin, S. V., Petrov, P. and Hancock, R. (1991). Precise localisation of the α-globin gene cluster within one of the 20–300-kilobase DNA fragments released by cleavage of chicken chromosomal DNA at topoisomerase II sites in vivo: evidence that the fragments are DNA loops or domains. Proc. Natl Acad. Sci. USA, 88, 8515–8519PubMedPubMedCentralCrossRefGoogle Scholar
  356. Reitman, M., and Felsenfeld, G. (1990). Developmental regulation of topoisomerase II sites and DNase I-hypersensitive sites in the chicken beta-globin locus. Mol. Cell. Biol., 1990, 2774–2786CrossRefGoogle Scholar
  357. Richard, R. E. and Bogenhagen, D. F. (1991). The 165kDa DNA topoisomerase I from Xenopus laevis oocytes is a tissue specific variant. Develop. Biol., 146, 4–11PubMedCrossRefGoogle Scholar
  358. Richter, A., Strausfeld, U. and Knippers, R. (1987). Effects of VM-26 (tempo-side), a specific inhibitor of type II DNA topoisomerase, on SV40 DNA replication in vivo. Nucleic Acids Res., 15, 3455–3468PubMedPubMedCentralCrossRefGoogle Scholar
  359. Riou, J.-F., Lefevre, D. and Riou, G. (1989). Stimulation of the topoisomerase II induced DNA cleavage sites in the c-myc protooncogene by antitumour drugs is associated with gene expression. Biochemistry, 28, 9104–9110PubMedCrossRefGoogle Scholar
  360. Rius, C., Zorilla, A. R., Cabanas, A. R., Mata, C., Bernabeu, C. and Aller, P. (1991). Differentiation of human promonocytic leukemia U937 cells with DNA topoisomerase II inhibitors: induction of vimentin gene expression. Mol. Pharmacol., 39, 442–448PubMedGoogle Scholar
  361. Robbie, M. A., Baguley, B. C., Denny, W. A., Gavin, J. B. and Wilson, W. R. (1988). Mechanism of resistance of noncycling mammalian cells to 4’-(9-acridinylamino)methanesulfon-m-anisidide: comparison of uptake, metabolism, and DNA breakage in log- and plateau-phase Chinese hamster fibroblast cell cultures. Cancer Res., 48, 310–319PubMedGoogle Scholar
  362. Roberge, M., Th’ng, J., Hamaguchi, J. and Bradbury, E. M. (1990). The topoisomerase II inhibitor VM-26 induces marked changes in histone H1 kinase activity, histones H1 and H3 phosphorylation, and chromosome condensation in G2 phase in mitotic BHK cells. J. Cell. Biol, 111, 1753–1762PubMedCrossRefGoogle Scholar
  363. Robinson, M. J. and Osheroff, N. (1991). Effects of antineoplastic drugs on the post-strand-passage DNA cleavage/religation equilibrium of topoisomerase II. Biochemistry, 30, 1807–1813PubMedCrossRefGoogle Scholar
  364. Robson, C. N., Hoban, P. R., Harris, A. L. and Hickson, I. D. (1987). Cross-sensitivity to topoisomerase II inhibitors in cytotoxic drug-hypersensitive Chinese hamster ovary cell lines. Cancer Res., 47, 1560–1565PubMedGoogle Scholar
  365. Roca, J. and Mezquita, C. (1989). DNA topoisomerase II activity in non-replicating, transcriptionally inactive chicken late spermatids. EMBO Jl, 8, 1855–1860Google Scholar
  366. Romig, H. and Richter, A. (1990). Expression of the topoisomerase I gene in serum stimulated human fibroblasts. Biochim. Biophys. Acta, 1048, 274–280PubMedCrossRefGoogle Scholar
  367. Rosenberg, B. H., Ungers, G. and Deutsch, J. F. (1976). Variation in DNA swivel enzyme activity during the mammalian cell cycle. Nucleic Acids Res., 3, 3305–3311PubMedPubMedCentralCrossRefGoogle Scholar
  368. Rottman, M., Schroder, H., Gramson, M., Reinneisen, K., Karelec, B., Dorn, A., Freise, N. and Muller, E. G. (1987). Specific phosphorylation of protein in pore-complex-laminae from the sponge Geordia cydonium by the homologous aggregation factor and phorbol ester. Role of protein kinase C in the phosphorylation of DNA topoisomerase II. EMBO Jl, 6, 3939–3944Google Scholar
  369. Rowe, T. C., Chen, G. L., Hsiang, Y.-H. and Liu, F. (1986a). DNA damage by antitumour acridines mediated by mammalian DNA topoisomerase II. Cancer Res., 46, 2021–2026PubMedGoogle Scholar
  370. Rowe, T., Wang, J. C. and Liu, L. F. (1986b). In vivo localization of DNA topoisomerase II cleavage sites on Drosophila heat shock chromatin. Mol. Cell. Biol, 6, 985–992PubMedPubMedCentralCrossRefGoogle Scholar
  371. Rowley, R. and Kort, L. (1989). Novobiocin, nalidixic acid, etoposide and 4’-(9-acridinylamino)methanesulfon-m-anisidide effects on G2 and mitotic Chinese hamster ovary cell progression. Cancer Res., 49, 4752–4757PubMedGoogle Scholar
  372. Rubin, E., Kharbanda, S., Gunji, H. and Kufe, D. (1991). Activation of the c-jun protooncogene in human myeloid leukemia cells treated with etoposide. Mol. Pharmacol., 39, 697–701PubMedGoogle Scholar
  373. Ryan, A. J., Squires, S., Strutt, H. L. and Johnson, R. T. (1991). Camptothecin cytotoxicity in mammalian cells is associated with the induction of persistent double strand breaks in replicating DNA. Nucleic Acids Res., 19, 3295–3300PubMedPubMedCentralCrossRefGoogle Scholar
  374. Sahyoun, N., Wolf, M., Bestermann, J., Hsieh, T. S., Sanders, M., le Vine, H., Chang, K. J. and Cuatrecasas, P. (1986). Protein kinase C phosphorylates topoisomerase II: topoisomerase activation and its possible role in phorbol ester-induced differentiation of HL-60 cells. Proc. Natl Acad. Sci. USA, 83, 1603–1607PubMedPubMedCentralCrossRefGoogle Scholar
  375. Saijo, M., Enomoto, T., Hanaoka, F. and Ui, M. (1990). Purification and characterization of type II DNA topoisomerase from mouse FM3A cells: phosphorylation of topoisomerase II and modification of its activity. Biochemistry, 29, 583–590PubMedCrossRefGoogle Scholar
  376. Sander, M. and Hsieh, T. S. (1983). Double strand DNA cleavage by type II DNA topoisomerase from Drosophila melanogaster. J. Biol. Chem., 258, 8421–8428PubMedGoogle Scholar
  377. Sander, M. and Hsieh, T. S. (1985). Drosophila topoisomerase II double-stranded DNA cleavage: analysis of DNA sequence homology at the cleavage site. Nucleic Acids Res., 13, 1057–1072PubMedPubMedCentralCrossRefGoogle Scholar
  378. Sander, M., Nolan, J. M. and Hsieh, T. S. (1984). A protein kinase activity tightly associated with Drosophila type II DNA topoisomerase. Proc. Natl Acad. Sci. USA, 81, 6938–6942PubMedPubMedCentralCrossRefGoogle Scholar
  379. Schaak, J., Schedl, P. and Shenk, T. (1990a). Topoisomerase I and II cleavage of adenovirus DNA in vivo: both topoisomerase activities appear to be required for adenovirus DNA replication. J. Virol., 64, 78–85Google Scholar
  380. Schaak, J., Schedl, P. and Shenk, T. (1990b). Transcription of adenovirus and Hela cell genes in the presence of drugs that inhibit topoisomerase I and II function. Nucleic Acids Res., 18, 1499–1508PubMedPubMedCentralCrossRefGoogle Scholar
  381. Schaffer, R. and Traktman, P. (1987). Vaccinia virus encapsidates a novel topoisomerase with the properties of eukaryotic type I enzyme. J. Biol. Chem., 262, 9309–9316Google Scholar
  382. Schneider, E., Hsiang, Y.-H. and Liu, L. F. (1990). DNA topoisomerases as anti-cancer drug targets. Adv. Pharmacol., 21, 149–183PubMedCrossRefGoogle Scholar
  383. Schneider, E., Hutchins, A.-M., Darkin, S., Lawson, P. A. and Ralph, R. K. (1988a). 4’-(9-acridinylamino)methanesulfon-m-anisidide and DNA topoisomerase II in a cold-sensitive cell cycle mutant of a murine mastocytoma cell line. Biochim. Biophys. Acta, 951, 85–97PubMedCrossRefGoogle Scholar
  384. Schneider, E., Lawson, P. A. and Ralph, R. K. (1988b). Inhibition of protein synthesis reduces the cytotoxicity of 4’-(9-acridinylamino)-methanesulfon-m-anisidide without affecting DNA breakage and DNA topoisomerase II in a murine mastocytoma cell line. Biochem. Pharmacol, 38, 263–269CrossRefGoogle Scholar
  385. Schroder, H. C., Steffen, R., Wenger, R., Ugarkovic, D. and Muller, W. E. (1989). Age-dependent increase of DNA topoisomerase II activity in quail oviduct: modulation of the nuclear matrix-associated enzyme activity by protein phosphorylation and poly(ADP-ribosyl)ation. Mutation Res., 219, 283–294PubMedCrossRefGoogle Scholar
  386. Schultz, M. C., Brill, S. J., Ju, Q., Sternglanz, R. and Reeder, R. H. (1992). Topoisomerases and yeast rRNA transcription: negative supercoiling stimulates initiation and topoisomerase activity is required for elongation. Genes Devel., 6 1332–1341PubMedCrossRefGoogle Scholar
  387. Sekiguchi, J. A. M. and Kmiec, E. G. (1988). Studies on DNA topoisomerase activity during in vitro chromatin assembly. Mol. Cell. Biochem., 83, 195–205PubMedGoogle Scholar
  388. Shapiro, T. A. and Englund, P. T. (1990). Selective cleavage of kinetoplast DNA minicircles promoted by antitrypanosomal drugs. Proc. Natl Acad. Sci. USA, 87, 950–954PubMedPubMedCentralCrossRefGoogle Scholar
  389. Shapiro, T. A., Klein, V. A. and Englund, P. T. (1989). Drug promoted cleavage of kinetoplast DNA minicircles. J. Biol. Chem., 264, 4173–4178PubMedGoogle Scholar
  390. Shen, J. W., Subjeck, J. R., Lock, R. B. and Ross, W. E. (1989). Depletion of topoisomerase II in isolated nuclei during a glucose-regulated stress response. Mol. Cell. Biol., 9, 3284–3291PubMedPubMedCentralCrossRefGoogle Scholar
  391. Shibuya, M. L., Buddenbaum, W. E., Don, A. L., Utsumi, D., Suciu, T., Kosaka, T. and Elkind, M. (1991). Amsacrine-induced lesions in DNA and their modulation by novobiocin and 2,4-dinitrophenol. Cancer Res., 51, 573–580PubMedGoogle Scholar
  392. Shin, C.-G. and Snapka, R. M. (1990a). Patterns of strongly protein-associated simian virus 40 DNA replication intermediates resulting from exposures to specific topoisomerase poisons. Biochemistry, 29, 10934–10939PubMedCrossRefGoogle Scholar
  393. Shin, C.-G. and Snapka, R. M. (1990b). Exposure to camptothecin breaks leading and lagging strand simian virus 40 DNA replication forks. Biochem. Biophys. Res. Commun., 168, 135–140PubMedCrossRefGoogle Scholar
  394. Shuman, S. (1989). Vaccinia DNA topoisomerase I promotes illegitimate recombination in Escherichia coli. Proc. Natl Acad. Sci. USA, 86, 3489–3493PubMedPubMedCentralCrossRefGoogle Scholar
  395. Sinha, B. K., Katki, A. G. and Batist, G. (1987). Adriamycin-stimulated hydroxyl radical formation in human breast tumour cells. Biochem. Pharmacol., 36, 793–799PubMedCrossRefGoogle Scholar
  396. Smith, C. A. (1977). Absence of ethidium bromide induced nicking and degradation of mitochondrial DNA in mouse L cells. Nucleic Acids Res., 4, 1419–1427PubMedPubMedCentralCrossRefGoogle Scholar
  397. Snapka, R. M. (1986). Topoisomerase inhibitors can selectively interfere with different stages of simian virus 40 DNA replication. Mol. Cell. Biol., 6, 4221–4227PubMedPubMedCentralCrossRefGoogle Scholar
  398. Snapka, R. M., Powelson, M. A. and Strayer, J. M. (1988). Swiveling and decatenation of replicating simian virus 40 genomes in vivo. Mol. Cell. Biol., 8, 1515–1521CrossRefGoogle Scholar
  399. Snow, K. and Judd, W. (1991). Characterisation of adriamycin- and amsacrine-resistant human leukemic T cell lines. Br. J. Cancer, 63, 17–28PubMedPubMedCentralCrossRefGoogle Scholar
  400. Sobczak, J., Tournier, M.-F., Lotti, A.-M. and Duguet, M. (1989). Gene expression in regenerating liver in relation to cell proliferation and stress. Eur. J. Biochem., 180, 49–55PubMedCrossRefGoogle Scholar
  401. Sorensen, B. S., Jensen, P. S., Andersen, A. H., Christiansen, K., Alsner, J., Thomsen, B. and Westergaard, O. (1990). Stimulation of topoisomerase II mediated DNA cleavage at specific sequence elements by the 2-nitroimidazole Ro 15–0216. Biochemistry, 29, 9507–9515PubMedCrossRefGoogle Scholar
  402. Sperry, A. O., Blasquez, V. C. and Garrard, W. T. (1989). Dysfunction of chromosomal loop attachment sites: illegitimate recombination linked to matrix association regions and topoisomerase II. Proc. Natl Acad. Sci. USA, 86, 5497–5501PubMedPubMedCentralCrossRefGoogle Scholar
  403. Spitzner, J. R. and Muller, M. T. (1988). A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acid Res., 16, 5533–5556PubMedPubMedCentralCrossRefGoogle Scholar
  404. Spitzner, J. R. and Muller, M. T. (1989). Application of a degenerate consensus sequence to quantify recognition sites by vertebrate DNA topoisomerase II. J. Mol. Recog., 2, 63–74CrossRefGoogle Scholar
  405. Stetina, R. and Vesela, D. (1991). The influence of DNA topoisomerase II inhibitors novobiocin and fostriecin on the induction and repair of DNA damage in Chinese hamster ovary (CHO) cells treated with mitoxantrone. Neoplasia, 38, 109–117Google Scholar
  406. Stevnsner, T., Mortensen, U. H., Westergaard, O. and Bonven, B. J. (1989). Interactions between eukaryotic DNA topoisomerase I and a specific binding sequence. J. Biol. Chem., 264, 10110–10113PubMedGoogle Scholar
  407. Stewart, A. F. and Schütz, G. (1987). Camptothecin-induced in vivo topoisomerase I cleavages in transcriptionally active tyrosine amino-transferase gene. Cell, 50, 1109–1117PubMedCrossRefGoogle Scholar
  408. Sugimoto, Y., Tsukahara, S., Oh-hara, T., Isoe, T. and Tsuruo, T. (1990). Decreased expression of DNA topoisomerase I in camptothecin-resistant tumour cell lines as determined by a monoclonal antibody. Cancer Res., 50, 6925–6930PubMedGoogle Scholar
  409. Sullivan, D. M., Glisson, B. S., Hodges, P. K., Smallwood-Kentro, S. and Ross, W. E. (1986). Proliferation dependence of topoisomerase II mediated drug action. Biochemistry, 25, 2248–2256PubMedCrossRefGoogle Scholar
  410. Sullivan, D. M., Latham, M. D. and Ross, W. E. (1987). Proliferation-dependent topoisomerase II content as a determinant of antineoplastic drug action in human, mouse, and Chinese hamster ovary cells. Cancer Res., 47, 3973–3979PubMedGoogle Scholar
  411. Sullivan, D. M., Latham, M. D., Rowe, T. C. and Ross, W. E. (1989). Purification and characterization of an altered topoisomerase II from a drug-resistant Chinese hamster ovary cell line. Biochemistry, 28, 5680–5687PubMedCrossRefGoogle Scholar
  412. Svejstrup, J. Q., Christiansen, K., Andersen, A. H., Lund, K. and Westergaard, O. (1990). Minimal DNA duplex requirements for topoisomerase I-mediated cleavages in vitro. J. Biol. Chem., 265, 12529–12535PubMedGoogle Scholar
  413. Tabuchi, H. and Hirose, S. (1988). DNA supercoiling facilitates formation of the transcription initiation complex of the fibroin gene promoter. J. Biol. Chem., 263, 15282–15287PubMedGoogle Scholar
  414. Takano, H., Kohno, K., Ono, ML, Uchida, Y. and Kuwano, M. (1991). Increased phosphorylation of DNA topoisomerase II in etoposide resistant mutants of human cancer KB cells. Cancer Res., 51, 3951–3957PubMedGoogle Scholar
  415. Tamura, H., Ikegami, Y., Ono, K., Sekimizu, K. and Andoh, T. (1990). Acidic phospholipids directly inhibit DNA binding of mammalian DNA topoisomerase I. FEBS Lett., 261, 151–154PubMedCrossRefGoogle Scholar
  416. Tamura, H., Kohchi, C., Yamada, R., Ikeda, T., Koiwai, O., Patterson, E., Keene, J. D., Okada, K., Kjeldsen, E., Nishikawa, K. and Andoh, T. (1991). Molecular cloning of a cDNA of a camptothecin-resistant human DNA topoisomerase I and identification of mutation sites. Nucleic Acids Res., 19, 69–75PubMedPubMedCentralCrossRefGoogle Scholar
  417. Tan, K. B., Martern, M. R., Eng, W. K., McCabe, F. L. and Johnson, R. K. (1989). Nonproductive rearrangement of DNA topoisomerase I and II genes: correlation with resistance to topoisomerase inhibitors. J. Natl Cancer Inst., 81, 1731–1735CrossRefGoogle Scholar
  418. Tan, K. B., Per, S. R., Boyce, R. A., Mirabelli, C. K. and Crooke, S. T. (1988). Altered expression and transcription of the topoisomerase II gene in nitrogen mustard-resistant human cells. Biochem. Pharmacol., 37, 4413–4416PubMedCrossRefGoogle Scholar
  419. Tanabe, K., Ikegami, Y., Ishida, R. and Andoh, T. (1991). Inhibition of topoisomerase II by antitumor agents bis(2,6-dioxopiperazine) derivatives. Cancer Res., 51, 4903–4908PubMedGoogle Scholar
  420. Taudou, G., Mirambeau, G., Lavenot, C., der Garabedian, A., Vermeersch, J. and Duguet, M. (1984). DNA topoisomerase activities in concanavalin A-stimulated lymphocytes. FEBS Lett., 176, 431–435PubMedCrossRefGoogle Scholar
  421. Tarr, M. and van Holden, P. D. (1990). Inhibition of transcription by adriamycin is a consequence of the loss of negative superhelicity in DNA mediated by topoisomerase II. Mol. Cell. Biochem., 93, 141–146PubMedCrossRefGoogle Scholar
  422. Thomsen, B., Bendixen, C., Lund, K., Andersen, A. H., Sorenson, B. S. and Westergaard, O. (1990). Characterisation of the interaction between topoiso-merase II and DNA by transcriptional footprinting. J. Mol Biol, 215, 237–244PubMedCrossRefGoogle Scholar
  423. Thomsen, B., Mollerup, S., Bonven, B. J., Frank, R., Blocker, H., Nielsen, O. F. and Westergaard, O. (1987). Sequence specificity of DNA topoisomerase I in the presence and absence of camptothecin. EMBO Jl, 6, 1817–1823Google Scholar
  424. Tobey, R. A., Deaven, L. L. and Oka, M. S. (1978). Kinetic response of cultured Chinese hamster cells to treatment with 4’[(9-acridinyl)-amino]methane-sulphon-m-anisidide-HCl. J. Natl Cancer Inst., 60, 1147–1152PubMedGoogle Scholar
  425. Tricoli, J. V., Sahai, B. M., McCormick, P. J., Jarlinski, S. J., Bertram, J. S. and Kowalski, D. (1985). DNA topoisomerase I and II activities during cell proliferation and the cell cycle in cultured mouse embryo fibroblast (C3H 10TF(1,2)) cells. Exp. Cell Res., 158, 1–14PubMedCrossRefGoogle Scholar
  426. Tsai-Pflugfelder, M., Liu, L. F., Liu, A. A., Tewey, K. M., Whang-Peng, J., Knutsen, T., Huebner, K., Croce, C. M. and Wang, J. C. (1988). Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q 21–22. Proc. Natl Acad. Sci. USA, 85, 7177–7181PubMedPubMedCentralCrossRefGoogle Scholar
  427. Tsao, Y. P., Wu, H.-Y. and Liu, L. F. (1989). Transcription-driven supercoiling of DNA. Direct biochemical evidence from in vitro studies. Cell, 56, 111–118PubMedCrossRefGoogle Scholar
  428. Tse, Y.-C., Kirkegaard, K., and Wang, J. C. (1980). Covalent bonds between protein and DNA. Formation of phosphotyrosine linkage between certain DNA topoisomerases and DNA. J. Biol. Chem., 255, 5560–5565PubMedGoogle Scholar
  429. Tse-Dinh, Y.-C., Wong, T. W. and Goldberg, A. R. (1984). Virus and cell-encoded tyrosine protein kinases inactivate DNA topoisomerase in vitro. Nature, 312, 785–786PubMedCrossRefGoogle Scholar
  430. Tsuruo, T., Matsuzaki, T., Matsushita, M., Saito, H. and Yokohura, T. (1988). Antitumour effect of CPT-11, a new derivative of camptothecin, against pleio-tropic drug-resistant tumours in vitro and in vivo. Cancer Chemother. Pharmacol, 21, 71–74PubMedGoogle Scholar
  431. Udvardy, A., Schedl, P., Sander, M. and Hsieh, T.-S. (1985). Novel partitioning of DNA cleavage sites for Drosophila topoisomerase II. Cell, 40, 933–941PubMedCrossRefGoogle Scholar
  432. Udvardy, A., Schedl, P., Sander, M. and Hsieh, T. (1986). Topo II cleavage in chromatin. J. Mol Biol, 191, 231–236PubMedCrossRefGoogle Scholar
  433. Uemura, T., Morino, K., Uzawa, S., Shiozaki, K. and Yanagida, M. (1987). Cloning and sequencing of Schizosaccharomyces pombe topoisomerase I gene, and effect of gene disruption. Nucleic Acids Res., 15, 9727–9739PubMedPubMedCentralCrossRefGoogle Scholar
  434. Uemura, T. and Yanagida, M. (1984). Isolation of type I and II DNA topoisomerase mutants from fusion yeast: single and double mutants show different phenotypes in cell growth and chromatin organisation. EMBO Jl, 3, 1737–1744Google Scholar
  435. Utsugi, T., Mattern, M. R., Mirabelli, C. K. and Hanna, W. (1990). Potentiation of topoisomerase inhibitor-induced DNA strand breakage and cytotoxicity by tumour necrosis factor: enhancement of topoisomerase activity as a mechanism of potentiation. Cancer Res., 50, 2636–2640PubMedGoogle Scholar
  436. Utsumi, H., Shibuya, M. L., Kosaka, T., Buddenbaum, W. E. and Elkind, M. M. (1990). Abrogation by novobiocin of cytotoxicity due to the topoisomerase II inhibitor amsacrine in Chinese hamster cells. Cancer Res., 50, 2577–2581PubMedGoogle Scholar
  437. Van Dyke, M. and Roeder, R. G. (1987). Novobiocin interferes with the binding of transcription factors TFIIIA and TFIIIC to the promotor of class III genes. Nucleic Acids Res., 15, 4365–4374PubMedPubMedCentralCrossRefGoogle Scholar
  438. van Kries, S. P., Buhrmester, H. and Strätling, W. H. (1991). A matrix/ scaffold attachment region binding protein: identification, purification and mode of binding. Cell, 64, 123–135CrossRefGoogle Scholar
  439. Vasanthakumar, G. and Ahmed, N. K. (1986). Contribution of drug transport and reductases to daunorubicin resistance in human myelocytic cells. Cancer Chemother. Pharmacol., 18, 105–110PubMedGoogle Scholar
  440. Vassetzky, Y., Bakayev, V., Kalandadze, A. G. and Razin, S. V. (1990). Topoisomerase I is associated with the regulatory region of transcriptionally active SV40 minichromosomes. Mol. Cell. Biochem., 95, 95–106PubMedCrossRefGoogle Scholar
  441. Vassetzky, Y. S., Razin, S. V. and Georgiev, G. P. (1989). DNA fragments which specifically bind to isolated nuclear matrix in vitro interact with matrix-associated DNA topoisomerase II. Biochem. Biophys. Res. Commun., 159, 1263–1268PubMedCrossRefGoogle Scholar
  442. Verheijen, R., Venrooij, W. V. and Ramaekers, F. (1988). The nuclear matrix. Structure and composition. J. Cell Sci., 90, 11–36PubMedGoogle Scholar
  443. Vigani, A., Chiara, S., Miglietta, L., Repetto, L., Conte, P. F., Cimoli, G., Morelli, L., Billi, G., Parodi, S. and Russo, P. (1991). Effect of recombinant human tumour necrosis factor on A2774 human ovarian cancer cell line: potentiation of mitoxantrone cytotoxicity. Gynecol. Oncol., 41, 52–55PubMedCrossRefGoogle Scholar
  444. Vilcek, J. and Lee, T. H. (1991). Tumour necrosis factor. J. Biol. Chem., 265, 7313–7316Google Scholar
  445. Villeponteau, B. (1989). Characterization of a topoisomerase-like activity at specific hypersensitive sites in the Drosophila histone gene cluster. Biochem. Biophys. Res. Commun., 162(1), 232–237PubMedCrossRefGoogle Scholar
  446. Vosberg, P.-H. (1985). DNA topoisomerase: enzymes that control DNA conformation. Curr. Top. Microbiol. Immunol., 114, 19–102PubMedGoogle Scholar
  447. Walker, P. R., Smith, C., Youdale, T., Leblanc, J., Whitfield, J. F. and Sikorska, M. (1991). Topo II-reactive chemotherapeutic drugs induce apoptosis in thymocytes. Cancer Res., 51, 1078–1085PubMedGoogle Scholar
  448. Wang, H. P. and Rogler, C. E. (1991). Topoisomerase I-mediated integration of hepadnavirus DNA in vitro. J. Virol., 65, 2381–2392PubMedPubMedCentralGoogle Scholar
  449. Wang, J. C. (1985). DNA topoisomerases. Ann. Rev. Biochem., 54, 665–697PubMedCrossRefGoogle Scholar
  450. Wang, J. C. (1987). Recent studies of DNA topoisomerases. Biochim. Biophys. Acta, 909, 1–9PubMedCrossRefGoogle Scholar
  451. Wang, J. C. (1991). DNA topoisomerases: why so many? J. Biol. Chem., 266, 6659–6662PubMedGoogle Scholar
  452. Wang, J. C., Caron, P. R. and Kim, R. A. (1990). The role of DNA topoisomerases in recombination and genome stability: a double-edged sword. Cell, 62, 403–406PubMedCrossRefGoogle Scholar
  453. Wani, M. C., Nicholas, A. W., Manikumar, G. and Wall, M. E. (1987). Plant antitumor agents. 25. Total synthesis and antileukemic activity of ring A substituted camptothecin analogues. Structure-activity correlations. J. Med. Chem., 30, 1774–1779PubMedCrossRefGoogle Scholar
  454. Watanabe, T., Kondo, K. and Oishi, M. (1991). Induction of in vitro differentiation of mouse erythroleukemia cells by genistein, an inhibitor of tyrosine protein kinase. Cancer Res., 51, 764–768PubMedGoogle Scholar
  455. Watson, J. D. and Crick, F. H. C. (1953). Genetic implications of the structure of deoxyribonucleic acid. Nature, 171, 964–967PubMedCrossRefGoogle Scholar
  456. Waud, W. R., Harrison, S. D., Jr., Gilbert, K.S., Laster, W. R., Jr., and Griswald, D. (1991). Antitumour drug cross-resistance in vivo in a cisplatin-resistant murine P388 leukemia. Cancer Chemother. Pharmacol., 27, 456–463PubMedCrossRefGoogle Scholar
  457. Webb, M. L. and Jacob, S. T. (1988). Inhibition of RNA polymerase I-directed transcription by novobiocin. Potential use of novobiocin as a general inhibitor of eukaryotic transcription initiation. J. Biol. Chem., 263, 4745–4748PubMedGoogle Scholar
  458. Webb, M. L., Maguire, K. A. and Jacob, S. T. (1987). Novobiocin inhibits initiation of RNA polymerase II-directed transcription of the mouse metallothionein-1 gene independent of its effects on DNA topoisomerase II. Nucleic Acids Res., 15, 8547–8560PubMedPubMedCentralCrossRefGoogle Scholar
  459. Whalen, A. M., McConnell, M. and Fisher, P. A. (1991). Developmental regulation of Drosophila DNA topoisomerase II. J. Cell Biol, 112, 203–213PubMedCrossRefGoogle Scholar
  460. Wong, M-L. and Hsu, M-T. (1990). Involvement of topoisomerases in replication, transcription, and packaging of the linear adenovirus genome. J. Virol., 64, 691–699PubMedPubMedCentralGoogle Scholar
  461. Wu, H.-Y., Shyy, S. H., Wang, J. C. and Liu, L. F. (1988). RNA transcription generates negatively and positively supercoiled domains in the template. Cell, 53, 433–440PubMedCrossRefGoogle Scholar
  462. Xu, Z.-Z., Miyahara, K., Liszczynsky, H., Seno, S. and Naora, H. (1991). Reversible conversion of cells between cancerous and normal states. Proc. Jap. Acad., 67 (Ser. B), 11–15CrossRefGoogle Scholar
  463. Yamagishi, M. and Nomura, M. (1988). Deficiency in both type I and II DNA topoisomerase activities differentially affects rRNA and ribosomal protein synthesis in Schizosaccharomyces pombe. Curr. Genet., 13, 305–314PubMedCrossRefGoogle Scholar
  464. Yamashita, Y., Kawada, S.-Z., Fujii, N. and Nakano, H. (1991). Induction of mammalian DNA topoisomerase I and II mediated DNA cleavage by saintopin, a new antitumour agent from fungus. Biochemistry, 30, 5838–5845PubMedCrossRefGoogle Scholar
  465. Yang, G., Kunze, N., Baumgärtner, B., Jiang, Z., Sapp, M., Knippers, R. and Richter, A. (1990). Molecular structures of two human DNA topoisomerase retro sequences. Gene, 91, 247–253PubMedCrossRefGoogle Scholar
  466. Yang, L., Rowe, T. C., Nelson, E. M., and Liu, L. F. (1985). In vivo mapping of DNA topoisomerase II-specific cleavage sites on SV40 chromatin. Cell, 41, 127–132PubMedCrossRefGoogle Scholar
  467. Yang, L., Wold, M. S., Li, J. J., Kelly, T. J. and Liu, L. F. (1987). Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro. Proc. Natl Acad. Sci. USA, 84, 950–954PubMedPubMedCentralCrossRefGoogle Scholar
  468. Yang, Y. and Ames, G. F.-L. (1988). DNA gyrase binds to the family of prokaryo-tic repetitive extragenic palindomic sequences Proc. Natl Acad. Sci. USA, 85, 8850–8854PubMedPubMedCentralCrossRefGoogle Scholar
  469. Zechiedrich, E. L. and Osheroff, N. (1990). Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO Jl, 9, 4555–4562Google Scholar
  470. Zhang, H., D’Arpa, P. and Liu, L. F. (1990). A model for tumour cell killing by topoisomerase poisons. Cancer Cells, 2, 23–27PubMedGoogle Scholar
  471. Zhang, H., Wang, J. C. and Liu, L. F. (1988). Involvement of DNA topoisomerase I in the transcription of human ribosomal RNA genes. Proc. Natl Acad. Sci. USA, 85, 1060–1064PubMedPubMedCentralCrossRefGoogle Scholar
  472. Zhou, B. S., Bastow, K. F. and Cheng, Y. C. (1989). Characterisation of the 3’ region of the human DNA topoisomerase I gene. Cancer Res., 49, 3922–3927PubMedGoogle Scholar
  473. Zucker, R. M. and Elstein, K. H. (1991). A new action for topoisomerase inhibitors. Chem.-biol. Interact., 79, 31–40PubMedCrossRefGoogle Scholar
  474. Zunino, F. and Capranico, G. (1990). DNA topoisomerase II as a primary target of antitumour anthracyclines. Anti-cancer Drug Des., 5, 307–317Google Scholar
  475. Zwelling, L. A. (1989). Topoisomerase II as a target of anti-leukemia drugs: a review of controversial areas. Hematol. Pathol., 3, 101–112PubMedGoogle Scholar
  476. Zwelling, L. A., Estey, E., Silberman, L., Doyle, S. and Hittelman, W. (1987). Effect of cell proliferation and chromatin conformation on intercalator-induced, protein-associated DNA cleavage in human brain tumour cells and human fibroblasts. Cancer Res., 47, 251–257PubMedGoogle Scholar
  477. Zwelling, L. A., Hinds, M., Chan, D., Altschuler, E., Mayes, J. and Zipf, T. F. (1990a). Phorbol ester effects on topoisomerase II activity and gene expression in HL60 human leukemia cells with different proclivities towards monocytoid differentiation. Cancer Res., 50, 7116–7122PubMedGoogle Scholar
  478. Zwelling, L. A., Kerrigan, D., Michaels, S. and Kohn, K. W. (1982). Cooperative sequestration of mAMSA in L1210 cells. Biochem. Pharmacol., 31, 3269–3277PubMedCrossRefGoogle Scholar
  479. Zwelling, L. A., Michaels, S., Erickson, L. C., Ungerleider, R. S., Nichols, M. and Kohn, K. W. (1981). Protein associated DNA strand breaks in L1210 cells treated with the DNA intercalating agents mAMSA and adriamycin. Biochemistry, 20, 6553–6563PubMedCrossRefGoogle Scholar
  480. Zwelling, L. A., Slovak, M. L., Doroshow, J. H., Hinds, M., Chan, D., Parker, E., Mayes, J., Sie, K. L., Meltzer, P. S. and Trent, J. M. (1990b). HT1080/DR4: a P-glycoprotein-negative human fibrosarcoma cell line exhibiting resistance to topoisomerase II-reactive drugs despite the presence of a drug-sensitive topoisomerase II. J. Natl Cancer Inst., 82, 1553–1561PubMedCrossRefGoogle Scholar

Copyright information

© The contributors 1994

Authors and Affiliations

  • Raymond K. Ralph
  • Warren Judd
  • Yves Pommier
  • Kurt W. Kohn

There are no affiliations available

Personalised recommendations