A Review of Polycrystalline Cubic Boron Nitride Cutting tool Developments and Application

  • A. M. Abrão
  • D. K. Aspinwall
  • M. L. H. Wise


This paper reviews published literature on the manufacture and application of polycrystalline cubic boron nitride (PCBN) cutting tools. More specifically, it details the various commercial CBN products, their composition/microstructure and physical properties, together with workpiece/material applications and associated machinability data. In addition, tool wear mechanisms and component surface integrity information are reviewed. Contrasts are also made with the performance of a growing number of conventional ceramic products, including silicon nitride and whisker reinforced alumina.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WENTORF, Jr., R.H. (1957) Cubic form of boron nitride — J. Chem. Phys. (26): 956.CrossRefGoogle Scholar
  2. 2.
    TABUCHI, N., HARA, A., YAZU, K., KONO, Y., ASAI, K., TSUJI, K., NAKATANI, S., UCHIDA, T. and MORI, Y. (1978) Performance of “Sumiboron BN 200” — Sumitomo Electric Technical Review, 18: 57–65.Google Scholar
  3. 3.
    RICHARDS, N. and ASPINWALL, D. (1989) Use of ceramic tools for machining nickel based alloys-International Journal of Machine Tools Manufacturing, 29(4): 575–588.CrossRefGoogle Scholar
  4. 4.
    BROOKES, K.J.A. (1992) World Directory and Handbook of Hardmetals and Hard Materials, International Carbide Data, U.K.Google Scholar
  5. 5.
    HEATH, P.J. (1987) Properties and uses of Amborite-Carbide and Tool Journal, 19(2): 12–22.Google Scholar
  6. 6.
    ORDINARTSEV, I.A.(1984) Widening the use of synthetic super-hard tool materials-Soviet Engineering Research, 4(7): 50–51.Google Scholar
  7. 7.
    CHEN, W. (1990) The machining of grey cast iron and hardened steel using superhard tooling — MPhil thesis, School of Manufacturing and Mechanical Engineering, University of Birmingham, U.K.Google Scholar
  8. 8.
    ASPINWALL, D. (1984) Superhard tooling ten years on-Metalworking Production, Nov.: 90–98.Google Scholar
  9. 9.
    MOMPER, F. (1988) Take the grind out of hard steel turning-Metalworking Production 72–77.Google Scholar
  10. 10.
    HOOPER, R.M., SHAKIB, J.I., PARRY, A. and BROOKES, C.A. Mechanical properties, microstructure and wear of DBC50 — Industrial Diamond Review, 4(89): 170–173. Ref.34.Google Scholar
  11. 11.
    BROOKES, K.J.A. (1986) Hard and superhard tools are a cut above the rest-Metalworking Production, Oct.: 92–104.Google Scholar
  12. 12.
    EDA, H., KISHI, K. and HASHIMOTO, H. (1980) Wear resistance and cutting ability of a newly developed cutting tool-Cutting tool materials: Proceedings of an International Conference, Ft. Mitchell, Kentucky, published by ASM: 265–280.Google Scholar
  13. 13.
    BROSKEA, T.J. (1988) Milling of ferrous materials with polycrystalline cubic boron nitride-SME Milling Technology and Applications Seminar, Detroit, Michigan, USA, 12p.Google Scholar
  14. 14.
    ASPINWALL, TUNSTALL, M. and HAMMERTON, R. (1985) Cutting tool life comparisons — Proceedings of the 25th International Machine Tool Design and Reseanch Conference 269–275.Google Scholar
  15. 15.
    ADJUNTA, J.E., DEMING, M.S. and RATLIFF, D.A. (1989) A study on the performance characteristics of a polycrystalline CBN composite cutting tool material — High Speed Machining: Solutions for Productivity, Proceedings of the SCTE’89 Conference, San Diego, California: 81–88.Google Scholar
  16. 16.
    GE Superabrasives (1991) Polycrystalline products for machining applications, GES 91–964. 17 BOSSOM, P.K. (1990) Finish machining of hard ferrous workpieces — Industrial Diamond Review, 5(90): 228–232.Google Scholar
  17. 18.
    NAKAI, T., GOTO, M., YAZU, S. and HARA, A.(1988) Development of very-tough CBN compacts — Sumitomo Electric Technical Review, 27: 197–203.Google Scholar
  18. 19.
    NAKAI, T., GOTO, Y. and NAKATANI, S.(1988) Cutting performance of PCBN and PCD for P/M parts — Modern Developments in Powder Metallurgy, (19): 379–393. Orlando, Florida, USA.Google Scholar
  19. 20.
    TRENT, E.M. (1984) Metal Cutting, 2nd edition, Butterworths & Co. Ltd., London, 245 p.Google Scholar
  20. 21.
    COLEMAN, J.R. (1983) Taming tough turning — Tooling Production, 49(5): 19–31Google Scholar
  21. 22.
    STEVENS, R. and EVANS, P.A. (1984) Transformation toughening by dispersed polycrystalline zirconia-Br. Ceramic Trans. J., 83: 28–31.Google Scholar
  22. 23.
    GRUSS. W.W. (1988) Ceramic tools improve cutting performance — American Ceramic Society Bulletin, 67(6): 993–996.Google Scholar
  23. 24.
    TÖNSHOFF, H.K. and BARTSCH, S. (1987) Wear of aluminum oxide tools in steel cutting — Advanced Manufacturing Processes, 2(3&4): 267–361.CrossRefGoogle Scholar
  24. 25.
    GREARSON, A.N. and JACK, D.H. (1984) The significance of ceramic tool materials in the pursuit of productivity-Proc. of International Machine Tool Conference, Birmingham, UK.Google Scholar
  25. 26.
    BILLMAN, E.R., MEHROTRA, P.K., SHUSTER, A.F. and BEEGHLY, C.W. (1988) Machining with Al2O3-SiC-whisker cutting tools — American Ceramic Society Bulletin, 67(6): 1016–1019.Google Scholar
  26. 27.
    WHITNEY, E.D. and VAIDYANATHAN, P.N.(1988) Microstructural engineering of ceramic cutting tools — American Ceramic Society Bulletin, 67(6): 1010–1014.Google Scholar
  27. 28.
    EVANS, A.G. (1988) High toughness ceramics — Materials Science and Engineering, A105/106: 65–75.CrossRefGoogle Scholar
  28. 29.
    SMITH, K.H. (1989) The application of whisker reinforced and phase transformation toughened materials in machining of hardened steels and nickel-based alloys — High Speed Machining: Solutions for Productivity, Proceedings of the SCTE’89 Conference, San Diego, California: 81–88.Google Scholar
  29. 30.
    HEPWORTH, M.A. (1991) Nonoxide engineering ceramics-Manufacturing TechnologyGoogle Scholar
  30. 31.
    WHITNEY, E.D. (1983) Modern ceramic cutting tool materials — Powder Metallurgy International, 15(4): 201–205.Google Scholar
  31. 32.
    COTHER, N.E. and HODGSON, P. (1982) The development of Syalon ceramics and their engineering applications-Trans. J. Br. Ceram. Soc., 81: 141–144.Google Scholar
  32. 33.
    BULJAN, S.T. and SARIN, V.K. (1985) The future of silicon nitride cutting tools-The Carbide and Tool Journal, 17(3):4–7.Google Scholar
  33. 34.
    BALDONI, J.G. and BULJAN, S.T. (1988) Ceramics for machining — American Ceramic Society Bulletin, 67(2): 381–387.Google Scholar
  34. 35.
    JACK, D.H. (1986) Ceramic cutting tool materials-Materials & Design, 7(5): 267–273.CrossRefGoogle Scholar
  35. 36.
    WERNER, G. and KNAPPERT, W. (1985) Machining hardened bearing races with PCBN-Industrial Diamond Review, 3(85): 117–120.Google Scholar
  36. 37.
    KÖNIG, W. and WAND, Th. (1987) Turning bearing steel with Amborite and ceramic-Industrial Diamond Review, 3(87): 117–120.Google Scholar
  37. 38.
    KÖNIG, W., IDING, M. and LINK, R. (1990) Fine turning & drilling hardened steels-Industrial Diamond Review, 2(90): 79–85.Google Scholar
  38. 39.
    OISHI, K. and NISHIDA, T. (1992) Study on the fracture characteristics of ceramic cutting tools (first report) — Wear, 154: 361–370.CrossRefGoogle Scholar
  39. 40.
    ASPINWALL, D.K., RADFORD, M. and WISE, M.L.H. (1991) Machining of hardened AISI H13 hot work die steel using advanced ceramic tool materials — IMechE, C412/055: 221–225.Google Scholar
  40. 41.
    LEE, M. and HIBBS, L. (1976) The effect of heat treatment on the performance of Borazon compact cutting tools machining alloy steels — GE Co. Technical Information Series, n° 76CRD016, 21p.Google Scholar
  41. 42.
    HODGSON, T. and TRENDLER, P.H.H. (1981) Turning hardened tool steels with cubic boron nitride inserts-Annals of the CIRP, 30(1): 63–69.CrossRefGoogle Scholar
  42. 43.
    NOTTER, A.T. and HEATH, P.J. The selection of machining parameters using Amborite — De Beers Industrial Diamond Division, Technical Service Centre, Charters, Ascot, England: 15–19.Google Scholar
  43. 44.
    NOTTER, A.T. and HEATH, P.J. Machining of hard ferrous materials with Amborite-De Beers Industrial Diamond Division, Technical Service Centre, Charters, Ascot, England: 6–13.Google Scholar
  44. 45.
    XIAO, H. (1990) Wear behaviour and wear mechanism of ceramic tools in machining hardened alloy steel-Wear, 139: 439–451.CrossRefGoogle Scholar
  45. 46.
    BHATTACHARYYA, S.K., ASPINWALL, D.K. and NICOL, A.W. (1978) The application of polycrystalline compacts for ferrous machining-Proceedings of the 19th International Machine Tool Design and Research Conference 425–434.Google Scholar
  46. 47.
    BORDUI, D. (1988) Hard-part machining with ceramic inserts — American Ceramic Society Bulletin, 67(6): 998–1001.Google Scholar
  47. 48.
    OHTANI, T., and YOKOGAWA, H. The effects of workpiece hardness on tool wear characteristics/Machining of cold work tool steel with CBN, ceramic and carbide tools — Bulletin of Japan Society of Precision Engineering, 22(3): 229–231, 1988. Ref. 94.Google Scholar
  48. 49.
    OHTANI, T., FUJISE, K. and YOKOGAWA, H. (1986) Cutting force characteristics in machining of hardened steel-Bulletin of Japan Society of Precision Engineering, 20(2): 127–129.Google Scholar
  49. 50.
    OHTANI, T. (1991) Plastic deformation of ceramic tools in machining of hardened steel — International Journal of the Japan Society of Precision Engineering, 25(1): 30–31.MathSciNetGoogle Scholar
  50. 51.
    SCHWAIGHOFER, R.P. and KALIN, A. (1986) Finish cutting of case-hardened gears-Annals of the CIRP, 35(1): 45–50.CrossRefGoogle Scholar
  51. 52.
    KONO, Y., HARA, A., YAZU, S., UCHIDA, T., MORI, Y. (1980) Cutting performance of sintered CBN tools-Cutting Tool Materials: Proceedings of an International Conference, Ft. Mitchell, Kentucky: 281–295.Google Scholar
  52. 53.
    SHINTANI, K., UEKI, M. and FUJIMURA, Y. (1989, a) Optimum tool geometry of CBN tool for continuous turning of carburized steel-International Journal of Machine Tools Manufact., 29(3): 403–413.CrossRefGoogle Scholar
  53. 54.
    KÖNIG, W., KOMANDURI, R., TÖNSHOFF, H.K. and ACKERSHOTT, G. (1984) Machining of hard materials — Annals of the CIRP, 33(2): 417–427.CrossRefGoogle Scholar
  54. 55.
    SHINTANI, K., UEKI, M. and FUJIMURA, Y. (1989, b) Optimum cutting tool geometry when interrupted cutting carburized steel by CBN tool-International Journal of Machine Tools Manufacturing, 29(3): 415–423.CrossRefGoogle Scholar
  55. 56.
    TÖNSHOFF, H.K., BUSSMANN, W. and STANSKE, C. (1986) Requirements on tools and machines when machining hard materials-Proceedings of the 26th International Machine Tool Design and Research Conference: 349–357.Google Scholar
  56. 57.
    CHRYSSOLOURIS, G. (1982) Effects of machine-tool-workpiece stiffness on the wear behaviour of superhard cutting materials-Annals of the CIRP, 31(1): 65–69.CrossRefGoogle Scholar
  57. 58.
    TÖNSHOFF, H.K. and BARTSCH, S. (1988) Wear mechanisms of ceramic cutting tools — American Ceramic Society Bulletin, 67(6): 1020–1025.Google Scholar
  58. 59.
    KIM, S. and DURHAM, D.R. (1991) Microscopic study of flank wear on alumina tools-Journal of Tribology (Transactions of the ASME), 113(1): 204–209.CrossRefGoogle Scholar
  59. 60.
    BRANDT, G. (1986) Flank and crater wear mechanisms of alumina-based cutting tools when machining steel — Wear, 112: 39–56.CrossRefGoogle Scholar
  60. 61.
    HASHEMIPOUR, M. (1988) Tool life and wear mechanisms for ceramic on steel — Production Egineer, 67(6): 33–34.CrossRefGoogle Scholar
  61. 62.
    TÖNSHOFF, H.K. and BARTSCH, S. (1989) Machining of steel and cast iron using silicon nitride tools-Canadian Metallurgical Quarterly, 28(4): 353–359.CrossRefGoogle Scholar
  62. 63.
    BULJAN, S.T. and WAYNE, S.F. (1987) Silicon-nitride-based composite cutting tools: material design approach — Advanced Ceramic Materials, 2(4): 813–816.CrossRefGoogle Scholar
  63. 64.
    GANE, N. and STEPHENS, L.W. (1983) The wear and fracture resistance of ceramic cutting tools — Wear, 88: 67–83.CrossRefGoogle Scholar
  64. 65.
    MATSUMOTO, Y., BARASH, M.M. and LIU, C.R. (1987) Cutting mechanism during machining of hardened steel-Materials Science and Technology, 3: 299–305.CrossRefGoogle Scholar
  65. 66.
    BRAKHMAN, L.A. et al (1984) Super-hard material and ceramic cutting tools in the auto industry — Soviet Engineering Research, 4(7): 57–59.Google Scholar
  66. 67.
    FLOM, D.G., REED, W.R., Jr, HIBBS, L.E., Jr. and BROSKEA, T.J. (1991) High speed machining of cast iron with BZN compacts — Wear, 147: 253–265.CrossRefGoogle Scholar
  67. 68.
    BROSKEA, T.J. (1987) High speed machining of gray cast iron with polycrystalline cubic boron nitride — Carbide and Tool Journal, 19(5): 17–20.Google Scholar
  68. 69.
    PROKOP, J. (1982) Finish-machining of bores in grey cast iron — Industrial Diamond Review, 42(488): 26–28.Google Scholar
  69. 70.
    WALLBANK, J. and EZUGWU, E. (1988) Wear of ceramic tools when machining cast iron — Advanced Materials & Manufacturing Processes, 3(3): 447–468.CrossRefGoogle Scholar
  70. 71.
    BHATTACHARYYA, S.K., EZUGWU, E.O. and JAWAID, A. (1989) The performance of ceramic tool materials for the machining of cast iron — Wear, 135: 147–159.CrossRefGoogle Scholar
  71. 72.
    BULTAN, S.T. and WAYNE, S.F.(1989) Wear and design of ceramic cutting tool materials — Wear, 133: 309–321.CrossRefGoogle Scholar
  72. 73.
    OBELOER, M. (1982) Drehen und frasen mit kubschem bomitrid — Werkstatt und Betrieb, 115(9): 613–617.Google Scholar
  73. 74.
    ANON. (1983) Machining abrasion resistant cast iron with Amborite — Cast Engineering and Foundry World: 15(3): 30–39.Google Scholar
  74. 75.
    HERBERT, S. and HEATH, P. (1981) Amborite — an answer to the Nihard machining problem-Industrial Diamond Review, 2(81): 53–56.Google Scholar
  75. 76.
    MÜLLER, H. and STEINMETZ, K. Machining mineral crushing rings with Amborite — Industrial Diamond Review, 43(494): 30–33, 1983. Ref.138.Google Scholar
  76. 77.
    EMERSON, E.L. (1981) Wear performance of cubic boron nitride — S.B. Thesis, M.I.T., USA, 27p.Google Scholar
  77. 78.
    TAKATSU, S., SHIMODA, H. and OTANI, K. (1983) Effects of CBN content on the cutting performance of polycrystalline CBN tools — International Journal of Refractory and Hard Metals, 2(4): 175–178.Google Scholar
  78. 79.
    LESKOVAR, P. and PEKLENIK, J. (1982) Influences affecting surface integrity in the cutting process-Annals of the CIRP, 31(1): 447–450.CrossRefGoogle Scholar
  79. 80.
    XIE, Q., BAYOUMI, E. and KENDALL, L.A. (1990) On tool wear and its effect on machined surface integrity-Journal of Materials Shaping Technology, 8: 255–265.CrossRefGoogle Scholar
  80. 81.
    WEINDORF, T. (1988) DBC50 for finish-turning hardened HSS-Industrial Diamond Review, 48(526): 112–114.Google Scholar
  81. 82.
    SADAT, A.B. (1990) Effect of high cutting speed on surface integrity of AISI 4340 steel during turning-Materials Science and Technology, 6: 371–375.CrossRefGoogle Scholar
  82. 83.
    MATSUMOTO, Y., BARASH, M.M. and LIU, C.R. (1986) Effect of hardness on the surface integrity of AISI 4340 steel — Journal of Engineering for Industry (Transactions of the ASME), 108: 169–175.CrossRefGoogle Scholar
  83. 84.
    WU, D.W. and MATSUMOTO, Y. (1990) The effect of hardness on residual stresses in orthogonal machining of AISI 4340 steel — Journal of Engineering for Industry (Transactions of the ASME), 112: 245–252.CrossRefGoogle Scholar

Copyright information

© Department of Mechanical Engineering University of Manchester Institute of Science and Technology 1993

Authors and Affiliations

  • A. M. Abrão
    • 1
  • D. K. Aspinwall
    • 1
    • 2
  • M. L. H. Wise
    • 2
  1. 1.University of BirminghamEdgbastonUK
  2. 2.IRC in MaterialsUniversity of BirminghamUK

Personalised recommendations