Skip to main content

A Perspective of Peptide Modelling

  • Chapter
Molecular Modelling and Drug Design

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

  • 41 Accesses

Abstract

Were it not for the immense range of biological activities possessed by the peptide hormones and enzyme inhibitors, it seems likely that the molecular modelling of peptides would remain the province of a few dedicated and perhaps slightly masochistic academics. The complexity of the problem arises from the high density of functional groups found in peptides together with their inherent flexibility, which can seldom be studied satisfactorily either by such theoretical means as conformational grid search algorithms devised with ‘small molecules’ in mind, or — worse — by many experimental techniques. Spectral complexity, insolubility and solvent dependence, together with a number of other problems, make spectral analysis difficult, while the assumption that intramolecular interactions will dominate intermolecular ones cannot be made for small peptides in the solid state, and so the structural knowledge gained from X-ray data is difficult to transfer to the solution, gas phase or ‘receptor bound’ structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schäfer, L., Van Alsenoy, C. and Scarsdale, J. N. (1982). J. Chem. Phys., 76, 1439

    Article  Google Scholar 

  2. Scarsdale, J. N., Van Alsenoy, C., Klimkowski, V. J., Schäfer, L. and Momany, F. A. (1983). J. Am. Chem. Soc., 105, 3438

    Article  Google Scholar 

  3. Schäfer, L., Newton, S. Q., Momany, F. A. and Klimkowski, V. J. (1991) J. Mol. Struct. (THEOCHEM), 232, 275;

    Article  Google Scholar 

  4. Momany, F. A., Klimkowski, V. J. and Schäfer, L. (1990) J. Comp. Chem., 11, 654

    Article  Google Scholar 

  5. Schäfer, L., Klimkowski, V. J., Momany, F. A., Chuman, H. and Van Alsenoy, C. (1984). Biopolymers, 23, 2335

    Article  Google Scholar 

  6. Klimkowski, V. J., Schäfer, L., Momany, F. A. and Van Alsenoy, C. (1985). J. Mol. Struct. (THEOCHEM), 124, 143

    Article  Google Scholar 

  7. Chuman, H., Momany, F. A. and Schäfer, L. (1984) Int. J. Pept. Protein Res., 24, 233;

    Article  Google Scholar 

  8. Chuman, H. and Momany, F. A. (1984) Int. J. Pept. Protein Res., 24, 249

    Article  Google Scholar 

  9. Stern, P. S., Chorev, M., Goodman, M. and Hagler, A. T. (1983). Biopolymers, 22, 1885

    Article  Google Scholar 

  10. Cheam, T. C. and Krimm, S. (1989). J. Mol. Struct., 188, 15

    Article  Google Scholar 

  11. Cheam, T. C. and Krimm, S. (1989). J. Mol. Struct., 193, 1

    Article  Google Scholar 

  12. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. (1983). J. Comp. Chem., 4, 187

    Article  Google Scholar 

  13. Rossky, P. J. and Karplus, M. (1979). J. Am. Chem. Soc., 101, 1913

    Article  Google Scholar 

  14. Hagler, A. T., Osguthorpe, D. J. and Robson, B. (1980). Science, 208, 599

    Article  Google Scholar 

  15. Hillier, I. H. and Robson, B. (1979) J. Theor. Biol., 76, 83;

    Article  Google Scholar 

  16. Robson, B., Hillier, I. H. and Guest, M. (1978) Trans. Faraday Soc. Ser. 2, 74, 1311

    Article  Google Scholar 

  17. Brady, J. and Karplus, M. (1985). J. Am. Chem. Soc. 107, 6103

    Article  Google Scholar 

  18. Anderson, A., Carson, M. and Hermans, J. (1986). Ann. N. Y. Acad. Sci., 482, 51

    Article  Google Scholar 

  19. Stern, P. S., Chorev, M., Goodman, M. and Hagler, A. T. (1983). Biopolymers, 22, 1885

    Article  Google Scholar 

  20. Stern, P. S., Chorev, M., Goodman, M. and Hagler, A. T. (1983). Biopolymers, 22, 1901

    Article  Google Scholar 

  21. See, for example: Chou, P. Y. and Fasman, G. D. (1978) Ann. Rev. Biochem., 47, 251;

    Article  Google Scholar 

  22. Dufton, M. J. and Hider, R. C. (1977) J. Mol. Biol., 115, 177

    Article  Google Scholar 

  23. See ‘Perspective’ article/review, Howard, A. E. and Kollman, P. A. (1988). J. Med. Chem., 31, 1669

    Article  Google Scholar 

  24. Oka, M., Montelione, G. T. and Scheraga, H. A. (1984). J. Am. Chem. Soc., 106, 7959

    Article  Google Scholar 

  25. Vásquez, M. and Scheraga, H. A. (1985). Biopolymers, 24, 1437

    Article  Google Scholar 

  26. Paine, G. H. and Scheraga, H. A. (1985). Biopolymers, 24, 1391

    Article  Google Scholar 

  27. Keys, C., Payne, P., Amsterdam, P., Toll, L. and Loew, G. (1988). Mol. Pharmacol., 33, 528

    Google Scholar 

  28. Froimowitz, M. and Hruby, V. J. (1989). Int. J. Pept. Protein Res., 34, 88

    Article  Google Scholar 

  29. Wilkes, B. C. and Schiller, P. W. (1991). J. Comp.-Aided Mol. Des., 5, 293

    Article  Google Scholar 

  30. Froimowitz, M. (1990). Biopolymers, 30, 1011

    Article  Google Scholar 

  31. White, D. N. J. and Kitson, D. H. (1986). J. Mol. Graph., 4, 112

    Article  Google Scholar 

  32. Dammkoehler, R. A., Karasek, S. F., Shands, E. F. B. and Marshall, G. R. (1989). J. Comp.-Aided Mol. Des., 3, 3

    Article  Google Scholar 

  33. Goodman, J. M. and Still, W. C. (1991). J. Comp. Chem., 12, 1110

    Article  Google Scholar 

  34. Hinds, M. G., Welsh, J. H., Brennand, D. M., Fisher, J., Glennie, M. J., Richards, N. G. J., Turner, D. L. and Robinson, J. A. (1991). J. Med. Chem., 34, 1777

    Article  Google Scholar 

  35. Fournié-Zaluski, M. C., Belleney, J., Lux, B., Durieux, C., Gérard, D., Gacel, G., Maigret, B. and Roques, B. P. (1986). Biochemistry, 25, 3778

    Article  Google Scholar 

  36. Fournié-Zaluski, M. C., Gacel, G., Maigret, B., Premilat, S. and Roques, B. P. (1981). Mol. Pharmacol., 20, 484

    Google Scholar 

  37. Belleney, J., Gacel, G., Fournié-Zaluski, M. C., Maigret, B. and Roques, B. P. (1989). Biochemistry, 28, 7392

    Article  Google Scholar 

  38. Premilat, S. and Maigret, B. (1977). J. Chem. Phys., 66, 3418

    Article  Google Scholar 

  39. Kawai, H., Kikuchi, T. and Okamoto, Y. (1989). Protein Eng., 3, 85

    Article  Google Scholar 

  40. von Freyberg, B. and Braun, W. (1991). J. Comp. Chem., 12, 1065

    Article  Google Scholar 

  41. Noguti, T. and Go, N. (1985). Biopolymers, 24, 527

    Article  Google Scholar 

  42. Hagler, A. T., Moult, J. and Osguthorpe, D. J. (1980). Biopolymers, 19, 395

    Article  Google Scholar 

  43. Mosberg, H. I., Sobczyk-Kojiro, K., Subramanian, P., Crippen, G. M., Ramalingam, K. and Woodard, R. W. (1990). J. Am. Chem. Soc., 112, 822

    Article  Google Scholar 

  44. Kitson, D. H. and Hagler, A. T. (1988). Biochemistry, 27, 5246

    Article  Google Scholar 

  45. Karplus, M. and McCammon, J. A. (1983). Ann. Rev. Biochem., 53, 263

    Article  Google Scholar 

  46. Hagler, A. T., Osguthorpe, D. J., Dauber-Osguthorpe, P. and Hempel, J. C. (1985). Science, 227, 1309

    Article  Google Scholar 

  47. Broughton, H. B., unpublished observations

    Google Scholar 

  48. Chew, C., Villar, H. O. and Loew, G. H. (1991). Mol. Pharmacol., 39, 502

    Google Scholar 

  49. Telleman, O., Lindberg, M. and Engström, S. (1991). J. Comp.-Aided Mol. Des., 5, 187

    Article  Google Scholar 

  50. Lii, J. H. and Allinger, N. L. (1991). J. Comp. Chem., 12, 186

    Article  Google Scholar 

  51. Vedani, A. (1988). J. Comp. Chem., 9, 269

    Article  Google Scholar 

  52. Clark, M., Cramer, R. D. III and van Opdenbosch, N. (1989). J. Comp. Chem., 10, 982

    Article  Google Scholar 

  53. Hall, D. and Pavitt, N. (1984). J. Comp. Chem., 5, 441

    Article  Google Scholar 

  54. Weiner, S. J., Kollman, P. A., Case, D., Singh, U. C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P. (1984). J. Am. Chem. Soc., 106, 765

    Article  Google Scholar 

  55. Roterman, I. K., Lambert, M. H., Gibson, K. D. and Scheraga, H. A. (1989). J. Biomol. Struct. Dynam., 7, 421

    Article  Google Scholar 

  56. Roterman, I. K., Gibson, K. D. and Scheraga, H. A. (1989). J. Biomol. Struct. Dynam., 7, 391

    Article  Google Scholar 

  57. Stewart, J. J. P. (1989). J. Comp. Chem., 10, 209

    Article  Google Scholar 

  58. See, for example: Guantieri, Y., Tamburro, A. M., Cabrol, D., Broch, H. and Vasilescu, D. (1987) Int. J. Pept. Protein Res., 29, 216;

    Article  Google Scholar 

  59. Vasilescu, D., Cabrol, D. and Tamburro, A. M. (1988) J. Mol. Struct. (THEOCHEM), 179, 185

    Article  Google Scholar 

  60. Balazs, A. (1989). Biochim. Biophys. Acta, 998, 215

    Article  Google Scholar 

  61. Barone, V., Fraternali, F. and Cristinziano, P. L. (1990). Macromolecules, 23, 2038

    Article  Google Scholar 

  62. Larsson, S., Braga, M., Broo, A. and Kallebring, B. (1991). Int. J. Quantum Chem., Quantum Biol. Symp., 18, 99

    Article  Google Scholar 

  63. See, for example: Gund, P., Andose, J. D., Rhodes, J. B. and Smith, G. M. (1980). Science, 208, 1425

    Article  Google Scholar 

  64. For a review, see: Hruby, V. J. (1982) Life Sci., 31, 189.

    Article  Google Scholar 

  65. For an example of conformational constraint introduced in aromatic side-chains, see: Schiller, P. W., Weltrowska, G., Nguyen, TM-D., Lemieux, C., Chung, N. N., Marsden, B. J. and Wilkes, B. C. (1991) J. Med. Chem., 34, 3125; dynamics studies are extensively used to demonstrate the relative flexibilities of the enkephalin analogues studied.

    Article  Google Scholar 

  66. For an example of multiple, tandem linking of side-chains to backbone and to each other, see: Flynn, G. A., Giroux, E. L. and Dage, R. C. (1987). J. Am. Chem. Soc., 109, 7914

    Article  Google Scholar 

  67. Freidinger, R. M., Veber, D. F., Perlow, D. S., Brooks, J. R. and Saperstein, R. (1980). Science, 210, 656

    Article  Google Scholar 

  68. Momany, F. A. (1976). J. Am. Chem. Soc., 98, 2990

    Article  Google Scholar 

  69. Paul, P. K. C., Burney, P. A., Campbell, M. M. and Osguthorpe, D. J. (1990). J. Comp.-Aided Mol. Des., 4, 239

    Article  Google Scholar 

  70. Dauber, P., Goodman, M., Hagler, A. T., Osguthorpe, D. J., Sharon, R. and Stern, P. S. (1981). Proc. ACS Symp. on Supercomputers in Chemistry, 173, 161

    Article  Google Scholar 

  71. Kahn, M., Wilke, S., Chen, B., Fujita, K., Lee, Y-H. and Johnson, M. E. (1988). J. Mol. Recognition, 1, 75

    Article  Google Scholar 

  72. Kahn, M., Nakanishi, H., Chrusciel, R. A., Fitzpatrick, D. and Johnson, M. E. (1991). J. Med. Chem., 34, 3395

    Article  Google Scholar 

  73. Rholam, M., Nicolas, P. and Cohen, P. (1986). FEBS Lett., 207, 1

    Article  Google Scholar 

  74. Manavalan, P. and Momany, F. A. (1981). Int. J. Pept. Protein Res., 18, 256

    Article  Google Scholar 

  75. For example, Maigret, B., Premilat, S., Fournié-Zaluski, M.-C. and Roques, B. P. (1981). Biochem. Biophys. Res. Commun., 99, 267

    Article  Google Scholar 

  76. Kreissler, M., Pesquer, M., Maigret, B., Fournié-Zaluski, M. C. and Roques, B. P. (1989). J. Comp.-Aided Mol. Des., 3, 85

    Article  Google Scholar 

  77. Demetropoulos, I. N. and Gresh, N. (1991). J. Comp.-Aided Mol. Des., 5, 81

    Article  Google Scholar 

  78. Liwo, A., Tempczyk, A. and Grzonka, Z. (1989). J. Comp.-Aided Mol. Des., 3, 261

    Article  Google Scholar 

Download references

Authors

Editor information

J. G. Vinter Mark Gardner

Copyright information

© 1994 J. G. Vinter and M. Gardner

About this chapter

Cite this chapter

Broughton, H. (1994). A Perspective of Peptide Modelling. In: Vinter, J.G., Gardner, M. (eds) Molecular Modelling and Drug Design. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12973-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12973-7_10

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12975-1

  • Online ISBN: 978-1-349-12973-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics