Skip to main content

The Folding, Stability and Dynamics of T4 Lysozyme: A Perspective Using Nuclear Magnetic Resonance

  • Chapter
NMR of Proteins

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

In general, the primary amino acid sequence of a polypeptide chain is thought to encode all the information necessary to determine the final folded structure of a protein. However, the contributions made by individual amino acid residues to the overall structure, dynamics and stability of the folded protein as well as the role(s) of individual residues in the kinetic pathways between the unfolded and folded states remains less clear. In recent years, there has been a substantial amount of progress in addressing these questions (Alber, 1989; Goldenberg et al., 1989; Lim and Sauer, 1989; Bowie et al., 1990; Dill, 1990; Kim and Baldwin, 1990; Pace et al., 1990; Matthews, 1991). The lysozyme produced by bacteriophage T4 offers an excellent experimental system to address these important questions. In addition, the collaborative research efforts of the Matthews (crystallography, structural bases of protein stability), Schellman (thermodynamics), Hudson (nanosecond dynamics) and our laboratories at the University of Oregon offer a nearly unique environment for the investigation of these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alber, T. (1989). Mutational effects on protein stability. Ann. Rev. Biochem., 58, 765–798

    Article  Google Scholar 

  • Alber, T., Dao-pin, S., Wilson, K., Wozniak, J. A., Cook, S. P. and Matthews, B. W. (1987). Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme. Nature, 330, 41–46

    Article  Google Scholar 

  • Anderson, D. E., Becktel, W. J. and Dahlquist, F. W. (1990). pH-induced denaturation of proteins: A single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry, 29, 2403–2408

    Article  Google Scholar 

  • Bax, A., Griffey, R. H. and Hawkins, B. L. (1983). Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. Magn. Reson., 55, 301–315

    Google Scholar 

  • Bax, A., Sparks, S. W. and Torchia, D. A. (1988). Long range heteronuclear correlation. A powerful tool for the NMR analysis of medium-size proteins. J. Am. Chem. Soc., 110, 7926–7927

    Article  Google Scholar 

  • Bax, A. and Summers, M. F. (1986). Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc., 108, 2093–2094

    Article  Google Scholar 

  • Bowie, J. U., Reidhaar-Olson, J. F., Lim, W. A. and Sauer, R. T. (1990). Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science, 247, 1306–1310

    Article  Google Scholar 

  • Briggs, M. S. and Roder, H. (1992). Early hydrogen bonding events in the folding reaction of ubiquitin. Proc. Natl Acad. Sci. USA, 89, 2017–2021

    Article  Google Scholar 

  • Brown, L. R., DeMaro, A., Richarz, R., Wagner, G. and Wüthrich, K. (1978). The influence of a single salt bridge on static and dynamic features of the globular solution conformation of the basic pancreatic trypsin inhibitor. Proton and carbon-13 nuclear magnetic resonance studies of the native and transaminated inhibitor. Eur. J. Biochem., 88, 87–95

    Article  Google Scholar 

  • Bycroft, M., Matouschek, A., Kellis, J. T., Jr., Serrano, L. and Fersht, A. R (1990). Detection and characterization of a folding intermediate in barnase by NMR. Nature, 346, 488–490

    Article  Google Scholar 

  • Cybulski, S. M. and Scheiner, S. (1989). Hydrogen bonding and proton transfers involving the carboxylate group. J. Am. Chem. Soc., 111, 23–31

    Article  Google Scholar 

  • Dao-pin, S., Anderson, D. E., Baase, W. A., Dahlquist, F. W. and Matthews, B. W. (1991a). Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme. Biochemistry, 30, 11521–11529

    Article  Google Scholar 

  • Dao-pin, S., Sauer, U., Nicholson, H. and Matthews, B. W. (1991b). Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis. Biochemistry, 30, 7142–7153

    Article  Google Scholar 

  • Dao-pin, S., Söderlind, E., Baase, W. A., Wozniak, J. A., Sauer, U. and Matthews, B. W. (1991c). Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability. J. Mol. Biol., 221, 873–887

    Article  Google Scholar 

  • Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29, 7133–7155

    Article  Google Scholar 

  • Dixon, M. M., Nicholson, H., Shewchuck, L., Baase, W. A. and Matthews, B. W. (1992). The structure of a ‘hinge-bending’ T4 lysozyme mutation, Ile 3, Pro. J. Mol. Biol. (in press)

    Google Scholar 

  • Dolgikh, D. A., Kolomiets, A. P., Bolotina, I. A. and Ptitsyn, O. B. (1984). ‘Molten-globule’ state accumulates in carbonic anhydrase folding. FEBS Lett., 165, 88–92

    Article  Google Scholar 

  • Eriksson, A. E., Baase, W. A., Wozniak, J. A. and Matthews, B. W. (1992a). A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature, 355, 371–373

    Article  Google Scholar 

  • Eriksson, A. E., Baase, W. A., Zhang, X.-J., Heinz, S. W., Blaber, M., Baldwin, E. P. and Matthews, B. W. (1992). Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science, 255, 178–183

    Article  Google Scholar 

  • Faber, H. R. and Matthews, B. W. (1990). A mutant T4 lysozyme displays five different crystal conformations. Nature, 348, 263–266

    Article  Google Scholar 

  • Gil’manshin, R. I. and Ptitsyn, O. B. (1987). An early intermediate of refolding α-lactalbumin forms within 20 ms. FEBS Lett., 223, 327–329

    Article  Google Scholar 

  • Goldenberg, D. P., Frieden, R. W., Haack, J. A. and Morrison, T. B. (1989). Mutational analysis of a protein-folding pathway. Nature, 338, 127–132

    Article  Google Scholar 

  • Goto, Y., Calciano, L. J. and Fink, A. L. (1990). Acid-induced folding of proteins. Proc. Natl Acad. Sci. USA, 87, 573–577

    Article  Google Scholar 

  • Griffey, R. H., Redfield, A. G., McIntosh, L. P., Oas, T. G. and Dahlquist, F. W. (1986). Assignment of proton amide resonances of T4 lysozyme using 13C and 15N multiple isotopic labelling. J. Am. Chem. Soc., 108, 6816–6817

    Article  Google Scholar 

  • Heinz, D. W., Baase, W. A. and Matthews, B. W. (1992). Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrate the redundancy of information in an amino acid sequence. Proc. Natl Acad. Sci. USA, 89, 3751–3755

    Article  Google Scholar 

  • Hughson, F. M., Wright, P. E. and Baldwin, R. L. (1990). Structural characterization of a partly folded apomyoglobin intermediate. Science, 249, 1544–1548

    Article  Google Scholar 

  • Ikeguchi, M., Kuwajima, K., Mitani, M. and Sugai, S. (1986). Evidence for identity between the equilibrium unfolding intermediate and a transient folding: a comparative study of the folding reactions of α-lactalbumin and lysozyme. Biochemistry, 25, 6965–6972

    Article  Google Scholar 

  • Karpusas, M., Baase, W. A., Matsumura, M. and Matthews, B. W. (1989). Hydrophobic packing in T4 lysozyme probed by cavity-filled mutants. Proc. Natl Acad. Sci. USA, 86, 8237–8241

    Article  Google Scholar 

  • Kim, P. S. and Baldwin, R. L. (1990). Intermediates in the folding reactions of small proteins. Ann. Rev. Biochem., 59, 459–489

    Article  Google Scholar 

  • Kuwajima, K., Hiraoka, Y., Ikeguchi, M. and Sugai, S. (1985). Comparison of the transient folding intermediates in lysozyme and α-lactalbumin. Biochemistry, 24, 874–881

    Article  Google Scholar 

  • Kuwajima, K., Yamaya, H., Miwa, S., Sugai, S. and Nagamura, T. (1987). Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular dichroism. FEBS Lett., 221, 115–118

    Article  Google Scholar 

  • Langsetmo, K., Fuchs, J. A. and Woodward, C. (1991). The conserved, buried aspartic acid in oxidized Escherichia coli thioredoxin has a pK a of 7.5. Its titration produces a related shift in global stability. Biochemistry, 30, 7603–7609

    Article  Google Scholar 

  • Lee, B. and Richards, F. M. (1971). Interpretation of protein structures: estimation of static accessibility. J. Mol. Biol., 55, 379–400

    Article  Google Scholar 

  • Lim, W. A. and Sauer, R. T. (1989). Alternative packing arrangements in the hydrophobic core of lambda repressor. Nature, 339, 31–36

    Article  Google Scholar 

  • Lu, J. and Dahlquist, F. W. (1992). Detection and characterization of an early folding intermediate of T4 lysozyme using pulsed hydrogen exchange and two-dimensional NMR. Biochemistry, 31, 4749–4756

    Article  Google Scholar 

  • McCoy, L. F. J., Rowe, E. S. and Wong, K. P. (1980). Multiparameter kinetic study on the unfolding and refolding of bovine carbonic anhydrase B. Biochemistry, 19, 4738–4743

    Article  Google Scholar 

  • McIntosh, L. P., Wand, A. J., Lowry, D. F., Redfield, A. G. and Dahlquist, F. W. (1990). Assignment of backbone 1H and 15N-NMR resonances of bacteriophage T4 lysozyme. Biochemistry, 29, 6341–6362

    Article  Google Scholar 

  • Malcomb, B. A., Rosenberg, S., Corey, M. J., Allen, J. S., deBaetselier, A. and Kirsh, J. F. (1989). Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme. Proc. Natl Acad. Sci. USA, 86, 133–137

    Article  Google Scholar 

  • Matsumura, M. Becktel, W. J., Levitt, M. and Matthews, B. W. (1989). Stabilization of phage T4 lysozyme by engineered disulfide bonds. Proc. Natl Acad. Sci. USA, 86, 6562–6566

    Article  Google Scholar 

  • Matsumura, M., Becktel, W. J. and Matthews, B. W. (1988). Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile3. Nature, 334, 406–410

    Article  Google Scholar 

  • Matsumura, M. and Matthews, B. W. (1989). Control of enzyme activity by an engineered disulfide bond. Science, 243, 792–794

    Article  Google Scholar 

  • Matthews, B. W. and Remington, S. J. (1974). The three-dimensional structure of the lysozyme from bacteriophage T4. Proc. Natl Acad. Sci. USA, 71, 4178–4182

    Article  Google Scholar 

  • Matthews, C. R. (1991). The mechanism of protein folding. Curr. Opinion Struct. Biol., 1, 28–35

    Article  Google Scholar 

  • Miranker, A., Radford, S. E., Karplus, M. and Dobson, C. M. (1991). Demonstration by NMR of folding domains in lysozyme. Nature, 349, 633–636

    Article  Google Scholar 

  • Molday, R. S., Englander, S. W. and Kallen, R. G. (1972). Primary structure effects on peptide group hydrogen exchange. Biochemistry, 11, 150–158

    Article  Google Scholar 

  • Muchmore, D. C., McIntosh, L. P., Russell, C. B., Anderson, E. E. and Dahlquist, F. W. (1990). Expression and 15N labelling of proteins for proton and nitrogen-15 NMR. Meth. Enzymol., 177, 44–73

    Article  Google Scholar 

  • Nicholson, H., Anderson, D. E., Dao-pin, S. and Matthews, B. W. (1991). Analysis of the interaction between charged side chains and the α-helix dipole using designed thermostable mutants of phage T4 lysozyme. Biochemistry, 30, 9816–9828

    Article  Google Scholar 

  • Nicholson, H., Becktel, W. J. and Matthews, B. W. (1988). Enhanced protein thermostability from designed mutations that interact with α-helix dipoles. Nature, 366, 651–656

    Article  Google Scholar 

  • Pace, C. N., Laurents, D. V. and Thomson, J. A. (1990). pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribo-nuclease T1. Biochemistry, 29, 2564–2572

    Article  Google Scholar 

  • Rennell, D., Bouvier, S. E., Hardy, L. W. and Poteete, A. (1991). Systematic mutation of bacteriophage T4 lysozyme. J. Mol Biol., 222, 67–87

    Article  Google Scholar 

  • Robertson, A. D. and Baldwin, R. L. (1991). Hydrogen exchange in thermally denatured ribonuclease. Biochemistry, 30, 9907–9914

    Article  Google Scholar 

  • Roder, H., Elove, G. A. and Englander, S. W. (1988). Structural characterization of folding intermediates in cytochrome c by hydrogen-exchange labelling and proton NMR. Nature, 335, 700–704

    Article  Google Scholar 

  • Semisotnov, G. V., Rodionova, N. A., Kutyshenko, V. P., Ebert, B., Blanck, J. and Ptitsyn, O. B. (1987). Sequential mechanism of refolding of carbonic anhydrase B. FEBS Lett., 224, 9–13

    Article  Google Scholar 

  • Sharp, K. A. and Honig, B. (1990). Electrostatic interactions in macromolecules: theory and applications. Ann. Rev. Biophys. Biophys. Chem., 19, 301–332

    Article  Google Scholar 

  • Stites, W. E., Gittis, A. G., Lattman, E. E. and Shortle, D. (1991). In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core. J. Mol. Biol., 221, 7–14

    Article  Google Scholar 

  • Udgaonkar, J. B. and Baldwin, R. L. (1988). NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature, 335, 694–699

    Article  Google Scholar 

  • Udgaonkar, J. B. and Baldwin, R. L. (1990). Early folding intermediate of ribonuclease A. Proc. Natl Acad. Sci. USA, 87, 8197–201

    Article  Google Scholar 

  • Varadarajan, R., Lambright, D. G. and Boxer, S. G. (1989). Electrostatic interactions in wild-type and mutant recombinant human myoglobins. Biochemistry, 28, 3771–3781

    Article  Google Scholar 

  • Weaver, L. H. and Matthews, B. W. (1987). Structure of bacteriophage T4 lysozyme refined at 1.7 Ã… resolution. J. Mol. Biol., 193, 189–199

    Article  Google Scholar 

  • Zuiderweg, E. R. P. (1990). A proton-detected heteronuclear chemical-shift correlation experiment with improved resolution and sensitivity. J. Magn. Reson., 86, 346–357

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1993 The contributors

About this chapter

Cite this chapter

Anderson, D.E., Lu, J., McIntosh, L., Dahlquist, F.W. (1993). The Folding, Stability and Dynamics of T4 Lysozyme: A Perspective Using Nuclear Magnetic Resonance. In: Clore, G.M., Gronenborn, A.M. (eds) NMR of Proteins. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12749-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12749-8_9

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12751-1

  • Online ISBN: 978-1-349-12749-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics