Advertisement

Heteronuclear NMR Studies of the Molecular Dynamics of Staphylococcal Nuclease

  • Dennis A. Torchia
  • Linda K. Nicholson
  • Holly B. R. Cole
  • Lewis E. Kay
Chapter
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

During the past decade tremendous progress has been made in developing NMR techniques to determine the structure of proteins in solution. For proteins containing less than c. 100 residues, essentially complete proton signal assignments can be obtained using two- and three-dimensional homonuclear (proton) pulse sequences (Wüthrich, 1986; Clore and Gronenborn, 1989). These assignments together with distance and dihedral angle constraints, derived from NOEs and coupling constants, respectively, provide sufficient information to determine the three-dimensional structure of the protein. Recently it has been shown that NMR methods can be applied to larger proteins, containing up to c. 200 residues, by combining heteronuclear labelling (with 13C and/or 15N) with sophisticated double- and triple-resonance multidimensional techniques (Bax et al., 1990; Fesik et al., 1990; Ikura et al., 1990; Kay et al., 1990a,b; Clore et al., 1991a,b; Pelton et al., 1991).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. (1961). In Marshall, W. C. and Wilkinson, D. H. (Eds), The Principles of Nuclear Magnetism. Clarendon Press, Oxford, pp. 289–305Google Scholar
  2. Baldisseri, D. M., Torchia, D. A., Poole, L. B. and Gerlt, J. A. (1991). Deletion of the Ω-loop in the active site of staphylococcal nuclease. 2. Effects on protein structure and dynamics. Biochemistry, 30, 3628–3633CrossRefGoogle Scholar
  3. Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. and Bax, A. (1992). Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry, 31. 5269–5278CrossRefGoogle Scholar
  4. Bax, A., Clore, G. M. and Gronenborn, A. M. (1990a). 1H–1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. Magn. Reson., 88, 425–431Google Scholar
  5. Bloembergen, N., Purcell, E. M. and Pound, R. V. (1948). Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev., 73, 679–712CrossRefGoogle Scholar
  6. Boyd, J., Hommel, U. and Campbell, I. D. (1990). Influence of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms upon longitudinal relaxation rates of 15N in macromolecules. Chem. Phys. Lett., 175, 477–482CrossRefGoogle Scholar
  7. Clore, G. M., Bax, A., Driscoll, P. C., Wingfield, P. T. and Gronenborn, A. M. (1990a). Assignment of the side-chain 1H and 13C resonances of interleukin-1β using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Biochemistry, 29, 8172–8184CrossRefGoogle Scholar
  8. Clore, G. M. and Gronenborn, A. M. (1989). Determination of three dimensional structures of proteins and nucleic acids in solution by NMR spectroscopy. CRC Crit. Rev. Biochem. Mol. Biol., 24, 479–564CrossRefGoogle Scholar
  9. Clore, G. M., Kay, L. E., Bax, A. and Gronenborn, A. M. (1991a). Four-dimensional 13C/13C-edited nuclear overhauser enhancement spectroscopy of a protein in solution: Application to interleukin-1 β. Biochemistry, 30, 11–18Google Scholar
  10. Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Discoll, P. C. and Gronenborn, A. M. (1990b). Deviation from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc., 112. 4989–4991CrossRefGoogle Scholar
  11. Clore, G. M., Wingfield, P. T. and Gronenborn, A. M. (1991b). High resolution three-dimensional structure of interleukin-1β in solution by three- and four-dimensional nuclear magnetic resonance spectroscopy. Biochemistry, 30, 2315–2330CrossRefGoogle Scholar
  12. Cole, H. B. R. and Torchia, D. A. (1991). An NMR study of the backbone dynamics of staphylococcal nuclease in the crystalline state. Chem. Phys., 158, 271–281CrossRefGoogle Scholar
  13. Dellwo, M. J. and Wand, A. J. (1989). Model-independent and model-dependent analysis of the global and internal dynamics of cyclosporin A. J. Am. Chem. Soc., 111, 4571–4578CrossRefGoogle Scholar
  14. Ernst, R. R. (1966). Nuclear magnetic double resonance with an incoherent radio-frequency field. J. Chem. Phys., 45, 3845–3854CrossRefGoogle Scholar
  15. Fesik, S. W., Eaton, H. L., Olejneczak, E. T., Zuiderweg, E. R. P., McIntosh, L. P. and Dahlquist, F. W. (1990). 2D and 3D NMR spectroscopy employing 13C–13C magnetization transfer by isotropic mixing. Spin system identification in large proteins. J. Am. Chem. Soc., 112, 886–888CrossRefGoogle Scholar
  16. Goldman, M. (1984). Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei. J. Magn. Reson., 60, 437–452Google Scholar
  17. Haeberlen, U. (1976). High resolution NMR in solids: Selective averaging. Adv. Magn. Reson., Suppl. 1, 1–190Google Scholar
  18. Hynes, T. R. and Fox, R. O. (1991). The crystal structure of staphylococcal nuclease refined at 1.7 Å resolution. Protein Struct. Func., 10, 92–105CrossRefGoogle Scholar
  19. Ikura, M., Kay, L. E. and Bax, A. (1990). A novel approach for sequential assignment of 1H, 13C, and 15N spectra of larger proteins: Heteronuclear triple-resonance three-dimensional NMR spectrosocopy. Application to calmodulin. Biochemistry, 29, 4659–4667CrossRefGoogle Scholar
  20. Ikura, M., Spera, S., Barbato, G., Kay, L. E., Krinks, M. and Bax, A. (1991). Secondary structure and side-chain 1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy. Biochemistry, 30, 9216–9228CrossRefGoogle Scholar
  21. Kamath, U. and Shriver, G. W. (1989). Characterization of thermotropic state changes in myosin subfragment-1 and heavy meromyosin by UV difference spectroscopy. J. Biol. Chem., 264, 5586–5592Google Scholar
  22. Karplus, M. and McCammon, J. A. (1986). The dynamics of proteins. Sci. Am., 254, April, 42–51CrossRefGoogle Scholar
  23. Kay, L. E., Bull, T. E., Nicholson, L. K., Griesinger, C., Schwalbe, H., Bax, A. and Torchia, D. A. (1992a). On the measurement of heteronuclear transverse relaxation times in AX3 spin systems via polarization transfer techniques. J. Magn. Reson., 100, 538–558Google Scholar
  24. Kay, L. E., Clore, G. M., Bax, A. and Gronenborn, A. M. (1990a). Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 ß in solution. Science, 249, 411–414CrossRefGoogle Scholar
  25. Kay, L. E., Ikura, M. and Bax, A. (1990b). Proton-proton correlation via carbon-carbon couplings: A three dimensional NMR approach for the assignment of aliphatic resonances in proteins labeled with carbon-13. J. Am. Chem. Soc., 112, 888–889CrossRefGoogle Scholar
  26. Kay, L. E., Nicholson, L. K., Delaglio, F., Bax, A. and Torchia, D. A. (1992b). Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T 1 and T 2 values in proteins. J. Magn. Reson., 97, 359–375Google Scholar
  27. Kay, L. E. and Torchia, D. A. (1991). The effects of dipolar cross correlation on 13C methyl-carbon T 1, T 2 and NOE measurements in macromolecules. J. Magn. Reson., 95, 536–547Google Scholar
  28. Kay, L. E., Torchia, D. A. and Bax, A. (1989). Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: Application to staphylococcal nuclease. Biochemistry, 28, 8972–8979CrossRefGoogle Scholar
  29. Lipari, G. and Szabo, A. (1982a). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc., 104, 4546–4559CrossRefGoogle Scholar
  30. Lipari, G. and Szabo, A. (1982b). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc., 104, 4559–4570CrossRefGoogle Scholar
  31. Loll, P. J. and Lattman, E. E. (1989). The crystal structure of the ternary complex of staphylococcal nuclease, Ca2+, and the inhibitor pdTp, refined at 1.65 Å. Proteins: Struct. Func. Genet., 5, 183–201CrossRefGoogle Scholar
  32. London, R. E. (1989). Interpreting protein dynamics with NMR relaxation experiments. Meth. Enzymol., 176, 358–375CrossRefGoogle Scholar
  33. Messerle, B. A., Weder, G., Otting, G., Weber, C. and Wüthrich, K. (1989). Solvent suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O solutions. J. Magn. Reson., 85, 608–613Google Scholar
  34. Nicholson, L. K., Kay, L. E., Baldisseri, D. M., Arango, J., Young, P. E., Bax, A. and Torchia, D. A. (1992). Dynamics of methyl groups in proteins as studied by proton detected 13C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry, 31, 5253–5263CrossRefGoogle Scholar
  35. Nirmala, N. R. and Wagner, G. (1989). Measurement of 13C spin-spin relaxation times by two-dimensional heteronuclear 1H–13C correlation spectroscopy. J. Magn. Reson., 82, 659–661Google Scholar
  36. Palmer, A. G., III, Rance, M. and Wright, P. E. (1991a). Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13C heteronuclear NMR spectroscopy. J. Am. Chem. Soc., 113, 4371–4380CrossRefGoogle Scholar
  37. Palmer, A. G., III, Skelton, N. J., Chazin, W. J., Wright, P. E. and Rance, M. (1992). Suppression of the effects of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms in the measurement of spin— spin relaxation rates. Mol. Phys., 75. 699–711CrossRefGoogle Scholar
  38. Palmer, A. G., III, Wright, P. E. and Rance, M. (1991b). Measurement of relaxation time constants for methyl groups by proton-detected heteronuclear NMR spectroscopy. Chem. Phys. Lett., 185, 41–46CrossRefGoogle Scholar
  39. Pelton, J. G., Torchia, D. A., Meadow, N. D., Wong, C. Y. and Roseman, S. (1991). 1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Escherichia coli, using three-dimensional triple-resonance techniques. Biochemistry, 30, 10043–10057CrossRefGoogle Scholar
  40. Peng, J. W., Thenabal, V. and Wagner, G. (1991a). Improved accuracy of heteronuclear transverse relaxation time measurements in macromolecules. Elimination of antiphase contributions. J. Magn. Reson., 95, 421–427Google Scholar
  41. Peng, J. W., Thenabal, V. and Wagner, G. (1991b). 2D heteronuclear NMR measurements of spin-lattice relaxation times on the rotating frame of X nuclei in heteronuclear HX spin systems. J. Main. Reson., 94, 82–100CrossRefGoogle Scholar
  42. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1988). In Numerical Recipes in C. Cambridge University Press, Cambridge, pp. 317–323Google Scholar
  43. Richarz, R., Nagayama, K. and Wüthrich, K. (1980). Carbon-13 nuclear magnetic resonance relaxation studies of internal mobility of the polypeptide chain in basic pancreatic trypsin inhibitor and a selectively reduced analogue. Biochemistry, 19, 5189–5196CrossRefGoogle Scholar
  44. Schneider, D. M., Dellwo, M. J. and Wand, A. J. (1992). Fast internal mainchain dynamics of ubiqutin. Biochemistry, 31, 3645–3652CrossRefGoogle Scholar
  45. Shortle, D. (1983). A genetic system for analysis of staphylococcal nuclease. Gene, 22, 181–189CrossRefGoogle Scholar
  46. Sparks, S. W., Cole, H. B. R., Torchia, D. A. and Young, P. E. (1989). Molecular dynamics and structure of staphylococcal nuclease in the crystalline state and in solution. Chem. Scripta, 29A, 31–38Google Scholar
  47. Stone, M. J., Fairbrother, W. J., Palmer, A. G., III, Reizer, J., Saier, M. H., Jr., and Wright, P. E. (1992). The backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N nmr relaxation measurements. Biochemistry, 31, 4394–4406CrossRefGoogle Scholar
  48. Takahashi, H., Suzuke, E., Shimada, I. and Arata, Y. (1992). Dynamical structure of the antibody combining site as studied by 1H–15N shift correlation NMR spectroscopy. Biochemistry, 31, 2464–2468CrossRefGoogle Scholar
  49. Torchia, D. A., Sparks, S. W. and Bax, A. (1989). Staphylococcal nuclease: Sequential assignments and solution structure. Biochemistry, 28, 5509–5524CrossRefGoogle Scholar
  50. Torchia, D. A. and Szabo, A. (1985). The information content of powder lineshapes in the fast motion limit. J. Magn. Reson., 64, 135–141Google Scholar
  51. Venable, R. M. and Pastor, R. W. (1988). Frictional models for stochastic simulations of proteins. Biopolymers, 27, 1001–1014CrossRefGoogle Scholar
  52. Wang, J., Hinck, A. P., Loh, S. N. and Markley, J. M. (1990a). Two dimensional studies of staphylococcal nuclease: Evidence for conformational heterogeneity from hydrogen-1, carbon-13, and nitrogen-15 spin system assignments of the aromatic amino acids in the nuclease H124L-thymidine 3′-5′-bisphosphate-Ca2+ ternary complex. Biochemistry, 29, 4242–4253CrossRefGoogle Scholar
  53. Wang, J., LeMaster, D. M. and Markley, J. M. (1990b). Two-dimensional NMR studies of staphylococcal nuclease. 1. Sequence-specific assignments of hydrogen-1 signals and solution structure of the nuclease H124L–thymidine 3′-5′-bisphosphate–Ca2+ ternary complex. Biochemistry, 29, 88–101CrossRefGoogle Scholar
  54. Werbelow, L. G. and Grant, D. M. (1977). Intramolecular dipolar relaxation in multispin systems. Adv. Magn. Reson., 9, 189CrossRefGoogle Scholar
  55. Wittebort, R. J., Rothgeb, T. M., Szabo, A. and Gurd, F. R. N. (1979). Aliphatic groups of sperm whale myoglobin: 13C NMR study. Proc. Natl Acad. Sci. USA, 76, 1059–1063CrossRefGoogle Scholar
  56. Woessner, D. E. (1962). Spin relaxation processes in a two-proton system undergoing anisotropic reorientation. J. Chem. Phys., 36, 1–8CrossRefGoogle Scholar
  57. Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. Wiley, New YorkGoogle Scholar

Copyright information

© The contributors 1993

Authors and Affiliations

  • Dennis A. Torchia
  • Linda K. Nicholson
  • Holly B. R. Cole
  • Lewis E. Kay

There are no affiliations available

Personalised recommendations