Skip to main content

Alternative Methods and Their Application in Neurotoxicity Testing

  • Chapter

Abstract

It has been estimated that there are approximately 4–5 million chemical compounds in the environment, with around 50,000–60,000 in common industrial use (1). Up to 1,000 new chemicals enter commerce each year, so it is impossible for populations of living organisms, including man, to avoid exposure to chemicals in some form or another. The existence of this extensive chemical universe, plus the fact that some chemicals are highly toxic to biological systems, emphasises the need to define how chemicals can be safely incorporated into the fabric of modern societies. With regard to neurotoxicants, there is currently an increasing scientific and regulatory awareness of neurotoxicological issues as many more neurologically-important, environmental pollution problems arise; for example, problems involving exposure to lead, aluminium, tin, organic solvents and agrochemicals (2). Moreover, new, potentially centrally-active and neurotoxic xenobiotics are continually entering the development ‘pipeline’ in industry. To identify neurotoxic chemicals and then legislate their use in society, previous and current emphasis is on the use of in vivo methodology. The purpose of this review is to identify the main sources of information on existing in vitro neurotoxicity methods, to highlight some new techniques or concepts, and to indicate key reviews on invertebrate and lower vertebrate neuroscience, since, in theory, some of these simple nervous systems could be exploited for neurotoxicological testing purposes.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Johnson, B.L. (1983). Occupational toxicology: NIOSH perspective. Journal of the American College of Toxicology 2, 43–49.

    Article  Google Scholar 

  2. Tanner, C.M. (1989). The role of environmental toxins in the etiology of Parkinson’s disease. Trends in Neuroscience 12, 49–52.

    Article  CAS  Google Scholar 

  3. Price, D.L. & Griffin, J.W. (1980). Neurons and ensheathing cells as targets of disease processes. In Experimental and Clinical Neurotoxicology (ed. S. Spencer & H.H. Schaumburg), pp. 2–23. Baltimore, MD, USA: Williams & Wilkins.

    Google Scholar 

  4. Hirano, A. & Hena, J.F. (1980). The central nervous system as a target in toxic-metabolic states. In Experimental and Clinical Neurotoxicology (ed. S. Spencer & H.H. Schaumburg), pp. 24–35. Baltimore, MD, USA: Williams & Wilkins.

    Google Scholar 

  5. Anger, W.K. & Johnson, B.L. (1985). Chemicals affecting behaviour. In Neurotoxicity of Industrial and Commercial Chemicals (ed. J.L. O’Donoghue). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  6. Tilson, H.A. (1989). Screening for neurotoxicity principles and practices: introduction. Journal of the American College of Toxicology 8, 13–18.

    Article  Google Scholar 

  7. Spencer, P.S. & Schaumburg, H.H. (1980). Experimental and Clinical Neurotoxicology. Baltimore, MD, USA: Williams & Wilkins.

    Google Scholar 

  8. Anger, W.K. (1984). Neurobehavioural testing of chemicals: impact on recommended standards. Neurobehavioural Toxicology and Teratology 6, 147–153.

    CAS  Google Scholar 

  9. Blum, K. & Manzo, L., eds (1985). Neurotoxicology, 676 pp. New York & Basel: Marcel Dekker.

    Google Scholar 

  10. McGeer, E.G. & McGeer, D.L. (1985). Neurotoxin-induced animal models of human diseases. In Neurotoxicology (ed. K. Blum & L. Manzo). New York & Basel: Marcel Dekker.

    Google Scholar 

  11. Federal Register (1985). S.O. 188, 798–6400, 39433–39461.

    Google Scholar 

  12. Gad, S.C. ed. (1969). Screening for neurotoxicity: principles and practices. Journal of the American College of Toxicology 8, 1–239.

    Google Scholar 

  13. Anon. (1983). Report of the FRAME Toxicity Committee. Nottingham: FRAME.

    Google Scholar 

  14. Dewar, A. (1982). Neurotoxicity. In Animals and Alternatives in Toxicity Testing (ed. M. Balls., R. Riddell & A.N. Worden), 550 pp. London: Academic Press.

    Google Scholar 

  15. Graziadei, P.P.C., Karlan, M.S., Monti-Graziadei, G.A. & Bernstein, J.J. (1980). Neurogenesis of sensory neurons in the primate olfactory system offer section of the file olfactoria. Brain Research 186, 289–300.

    Article  PubMed  CAS  Google Scholar 

  16. Gordon, T., Stein, R.B. & Smith, P.A. (1988). Neurology and Neurobiology, Vol 38, The Current Status of Peripheral Nerve Regeneration. New York: Alan R. Liss, Inc.

    Google Scholar 

  17. Balls, M., Riddell, R. & Worden, A.N., eds (1982). Animals and Alternatives in Toxicity Testing. London: Academic Press.

    Google Scholar 

  18. Goldberg, A.M., ed. (1985). Alternative Methods in Toxicology, Vol. 3, A Progress Report from the Johns Hopkins Centre for Alternatives to Animal Testing. New York: Mary Ann Leibert.

    Google Scholar 

  19. Goldberg, A.M. & Shahar, A. (1987). Model Systems in Neurotoxicology: Alternative Approaches to Animal Testing. New York: Alan R. Liss, Inc.

    Google Scholar 

  20. Hooisma, J. (1982). Tissue culture and neurotoxicology. Neurobehavioural Toxicology and Teratology 4, 617–622.

    CAS  Google Scholar 

  21. Schrier, B. (1982). Nervous system cultures as toxicologic test systems. In Nervous System Toxicology (ed. C.L. Mitchell), pp. 337–348. New York: Raven Press.

    Google Scholar 

  22. Vernnadakis, A., Davies, D.L. & Gremok, F. (1985). Neural culture: a tool to study cellular neurotoxicity. In Neurotoxicology (ed. K. Blum & L. Manzo). New York & Basel: Marcel Dekker.

    Google Scholar 

  23. Atterwill, C.K. & Walum, E. (1989). Neurotoxicology in vitro: model systems and practical applications. Toxicology in Vitro 3, 159–161.

    CAS  Google Scholar 

  24. Goldberg, A.M., ed. (1987). Alternative Methods in Toxicology, Vol. 5, Approaches to Validation. New York: Mary Ann Leibert.

    Google Scholar 

  25. Allen, S., Sheldon, R., Simpson, M. & Oliver, G. (1989). A neurological test battery for use in toxicity studies. In Proceedings of the 2nd Meeting of the International Neurotoxicology Association (INA), B2, p. 116. Sitger, Spain: INA

    Google Scholar 

  26. Simpson, M.G., Allen, S.L. & Sheldon, R. (1989). Histopathological assessment of neurotoxic injury in mammals: possible applications for similar studies on fish. Marine Environmental Research 28, 437–440.

    Article  CAS  Google Scholar 

  27. Jolicoeur, F.B., Rondeau, D.B., Barbeau, A. & Wagner, M.J. (1979). Comparison of neurobehavioural effects induced by various experimental models of ataxia in the rat. Neurobehavioural Toxicology, Suppl. 1, pp. 175–178.

    Google Scholar 

  28. Pryor, G.T., Uyeno, E.T., Tilson, H.A. & Mitchell, C.L. (1983). Assessment of chemicals using a battery of neurobehavioural tests: a comparative study. Neurobehavioural Toxicology and Teratology 5, 91–117.

    CAS  Google Scholar 

  29. Irwin, S. (1968). Comprehensive observational assessment: Ia A systemic, quantitative procedure for assessing the behavioural and physiologic state of the mouse. Psychopharma-cologia, Berlin 13, 222–257.

    Article  CAS  Google Scholar 

  30. Alder, S. & Zbinden, G. (1983). Neurobehavioural tests in single and repeated dose toxicity studies in small rodents. Archives of Toxicology 54, 1–23.

    Article  PubMed  CAS  Google Scholar 

  31. Rebert, C.S. (1983). Multisensory-evoked potentials in experimental and applied neurotoxicology. Neurobehavioural Toxicology and Teratology 5, 659–671.

    CAS  Google Scholar 

  32. Flint, O.P. & Orton, T.C. (1984). An in vitro assay for teratogens with cultures of rat embryo mid-brain and limb bud cells. Toxicology and Applied Pharmacology 76, 383–395.

    Article  PubMed  CAS  Google Scholar 

  33. Varnbo, I., Peterson, A. & Walum, E. (1985). Effects of toxic chemicals on the respiratory activity of cultured mouse neuroblastoma cells. Xenobiotica 15, 727–733.

    Article  PubMed  CAS  Google Scholar 

  34. Atterwill, C.K., Atkinson, D.J., Bermudez, I. & Balazs, R. (1985). Effect of thyroid hormone and serum on the development of Na+K+-ATPase and associated ion fluxes in cultures from rat brain. Neuroscience 14, 361–373.

    Article  PubMed  CAS  Google Scholar 

  35. Honegger, P. & Lenoir, D. (1980). Triiodothyronine enhancement of neuronal differentiation in aggregating foetal rat brain cells cultured in a chemically-defined medium. Brain Research 199, 425–434.

    Article  PubMed  CAS  Google Scholar 

  36. Bottenstein, J.E. & Sato, G.H. (1979). Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proceedings of the National Academy of Sciences of the United States of America 76, 514–517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ericsson, A.C. & Walum, E. (1984). Cytotoxicity of cyclophosphamide and acrylamide in glioma and neuroblastoma cell lines co-cultured with liver cells. Toxicology Letters 20, 251–256.

    Article  PubMed  CAS  Google Scholar 

  38. Ericsson, A.C. & Walum, E. (1988). Differential effects of alyl alcohol on hepatocytes and fibroblasts demonstrated in roller chamber co-culture. ATLA 15, 208–213.

    CAS  Google Scholar 

  39. Irwin, I. & Langston, J.W. (1985). Selective accumulatin of MPP+ in the substantia nigra: a key to neurotoxicity. Life Sciences 36, 207–212.

    Article  PubMed  CAS  Google Scholar 

  40. Ransom, B.R., Kumis, D.M., Irwin, I. & Langston, J.W. (1987). Astrocytes convert the Parkinsonism-inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neuroscience Letters 75, 323–328.

    Article  PubMed  CAS  Google Scholar 

  41. Thomas, S. (1989). Neurotoxin-induced cytoskeletal protein derangement in in vitro cultures. In Proceedings of the the 2nd Meeting of the International Neurotoxicology Association (INA), A37, p. 90. Sitges, Spain: INA.

    Google Scholar 

  42. Muller, L.J., Moorevan Delft, C. & Roubos, E.W. (1988). Snail neurons as a possible model for testing neurotoxic side-effects of antitumour agents: paracrystal formation by vinca alkaloids. Cancer Research 48, 7184–7188.

    PubMed  CAS  Google Scholar 

  43. Narahashi, T. (1987). Nerve membrane ion channels as the target site of environmental toxicants. Environmental Health Perspectives 71, 25–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pentraeth, V.W. (1989). Inervertebrate glial cells. Comparative Biochemistry and Physiology 93, 77–83.

    Article  Google Scholar 

  45. Treherne, J.E. & Schofield, P.K. (1981). Mechanisms of ionic homeostasis in the central nervous system of an insect. Journal of Experimental Biology 95, 61–73.

    PubMed  CAS  Google Scholar 

  46. O’Shea, M. & Schaffer, M. (1985). Neuropeptide function: the invertebrate contribution. Annual Reviews of Neuroscience 8, 171–198.

    Article  Google Scholar 

  47. Thomas, J.B., Bastiani, M.J., Bate, M. & Goodman, C.S. (1984). From grasshopper to Drosophila: a common plan for neuronal development. Nature, London 310, 203–207.

    Article  CAS  Google Scholar 

  48. Doe, C.Q., Kuwada, J.Y. & Goodman, C.S. (1985). From epithelium to neuroblasts to neurons: the role of cell interactions and cell lineage during insect neurogenesis. Philosophical Transactions of the Royal Society of London, Series B, 312, 67–81.

    Article  PubMed  CAS  Google Scholar 

  49. Campos-Ortega, J. A. (1988). Cellular interactions during early neurogenesis of Drosophila melanogaster. Trends in Neuroscience 11, 400–405.

    Article  CAS  Google Scholar 

  50. Trueman, J.W. & Bate, M. (1988). Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Developmental Biology 125, 145–157.

    Article  Google Scholar 

  51. Ax, P., Ehlers, U. & Sopottehlers, B., eds (1988) Fortschritte der Zoologie, Vol 36, Free living and symbiotic Platyhelminthes, 529 pp. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  52. Whittington, P.M. (1989). The early development of motor axon pathways in the locust embryo: the establishment of the segmental nerves in the thoracic ganglia. Development 105, 715–721.

    Google Scholar 

  53. Bournias-Vardiabasis, N., Teplitz, R., Chernoff, G.F. & Seerof, R.L. (1983). Detection of teratogens in the Drosophila embryonic cell culture test: assay of 100 chemicals. Teratology 28, 109–122.

    Article  PubMed  CAS  Google Scholar 

  54. Rowan, M.J. & Chambers, P.L. (1982). The assessments of neurotoxicity using the cockroach nerve cord. Neurolch. Toxicol. Teratol. 4, 605–611.

    CAS  Google Scholar 

  55. Carr, W.E.S., Ache, B.W. & Gleeson, R.A. (1987). Chemoreceptors of crustaceans: similarities to receptors for neuroactive substances in internal tissues. Environmental Health Perspectives 71, 31–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sawyer, R.T. (1986). Leech biology and behaviour, 1065 pp. Oxford: Oxford University Press.

    Google Scholar 

  57. Bissen, S.T. & Wiesblat, D.A. (1989). The duration and compositions of cell cycles in embryos of the leech, Helobdella triserialis. Development 105, 105–118.

    Google Scholar 

  58. Jones, H.B., Kryriakides, A.M. & Sawyer, R.T. (1989). Electrophysiological assessment of potential chemical neurotoxicity using the leech nervous system. In Proceedings of the 2nd Meeting of the International Neurotoxicity Association (INA), C15, p. 196. Sitges, Spain: INA.

    Google Scholar 

  59. Kyriakides, M.A., Sawyer, R.T., Allen, S.L. & Simpson, M.G. (1990). Mechanism of action of triethyl tin on identified leech neurons. Toxicology Letters, in press.

    Google Scholar 

  60. Williams, P.L. & Dusenbury, D.B. (1987). Screening test for neurotoxins using Caenornab-ditis elegans. In Alternative Approaches to Animal Testing: Mode Systems in Neurotoxicolo-gy (ed. A. Shahar & A.S. Goldberg). New York: Alan R. Liss, Inc.

    Google Scholar 

  61. Kappers, C.V.A. & Huber, G.C. (1960). The comparative anatomy of the nervous system of vertebrates including man, Vols. 1–3. Hafner Publishing Co.

    Google Scholar 

  62. Web, J.F. (1989). Cross morphology and evolution of the mecahnoreceptive lateral-line system in Teleost fishes. Brain Behaviour and Evolution 33, 34.

    Article  Google Scholar 

  63. Guarino, A.M. (1987). Aquatic versus mammalian toxicology: applications of the comparative approach. Environmntal Health Perspectives 71, 17–24.

    Article  CAS  Google Scholar 

  64. Villani, L., Migani, P., Poli, A., Niso, R. & Contestabile, A. (1982). Neurotoxic effect of kainic acid on ultrastructure and GABAergic parameters in the goldfish cerebellum. Neuroscience 7, 2515–2524.

    Article  PubMed  CAS  Google Scholar 

  65. Kleinschmidt, J., Zucker, C.L. & Yazulla, S. (1986). Neurotoxic action of kainic acid in the isolated toad and goldfish retina. II. Mechanism of action. Journal of Comparative Neurology 254, 196–208.

    Article  PubMed  CAS  Google Scholar 

  66. Peterson, D.W., Cooper, R.K., Friedman, M.A. & Lech, J.J. (1987). Behavioural and histological effects of acrylamide on rainbow trout. Toxicology and Applied Pharmacology 87, 177–184.

    Article  Google Scholar 

  67. Simpson, M.G., Sheldon, R., Allen, S.L. & Oliver, G.J.A. (1989). The neuropathological assessment of industrial chemicals in the laboratory rat. In Proceedings of the 2nd Meeting of the International Neurotoxicology Association (INA), p. 142. Sitges, Spain: INA.

    Google Scholar 

  68. Danner, H. & Pfeister, C. (1973). Zur Entwicklung des Kleinhurns von Salmo irideus (Gibbons 1855). Z. Mikrosk Anat. Forsch. 87, 637–652.

    CAS  Google Scholar 

  69. Dornescu, G.T., Marcu, E. & Babecs, L. (1970). Epitholamus morphogenesis in Cyprinus carpoio. L.J. Hurnsforsch 15, 237–247.

    Google Scholar 

  70. Hanneman, E., Trevarrow, B., Metcalfe, W.K., Kimmel, C.B. & Westerfield, M. (1988). Segmental pattern of development of the hind-brain and spinal cord of the zebrafish embryo. Development 103, 49–58.

    PubMed  CAS  Google Scholar 

  71. Sudaghiani, B. & Vielkind, J.R. (1989). Neural crest development in Xiphorus fishes: scanning electron and light microscopic studies. Development 105, 487–450.

    Google Scholar 

  72. Hitchcock, P.F. (1989). Exclusimary dendritic interactions in the retina of the goldfish. Development 106, 589–598.

    PubMed  CAS  Google Scholar 

  73. Moss, W. & Williamson, R. (1986). A quantitative analysis of the spinal motor pool and its target muscle during growth in the dogfish Scylcorhisus canicula. Journal of Comparative Neurology 248, 431–440.

    Article  Google Scholar 

  74. Myers, P.Z., Eisen, J.S. & Westerfield, M. (1986). Development and axonal outgrowth of identified motorneurons in the zebrafish. Journal of Neuroscience 6, 2278–2289.

    PubMed  CAS  Google Scholar 

  75. Kranz, D. & Richter, W. (1975). Neurogenese und regeneration im gehran von teleostiern in abhangigkeit von levensalter (autoradiographische untersuchangen). Z. Alternsforsch. 30, 371–382.

    CAS  Google Scholar 

  76. Landreth, G.E. & Agranoff, B.W. (1979). Explant culture of adult goldfish retina: a model for the studies of CNS regeneration. Brain Research 161, 39–55.

    Article  PubMed  CAS  Google Scholar 

  77. Taylor, T.J., Lewis,. D. & Shashova, V.E. (1981). Neurophysiological and biochemical properties of the goldfish optic tectum maintained in vitro. Brain Research Bulletin 7, 45–56.

    Article  Google Scholar 

  78. Matsumoto, N., Kiyama, H. & Bando, T. (1983). An intracellular study of the optic tectum of the carp in vitro. Neuroscience Letters 38, 17–22.

    Article  PubMed  CAS  Google Scholar 

  79. Anderson, M.J. & Waxman, S.G. (1985). Neurogenesis in adult vertebrate spinal cord in situ and in vitro: a new model system. Annals of the New York Academy of Sciences 457, 213–233.

    Article  PubMed  CAS  Google Scholar 

  80. Anderson, M.J., Waxman, S.G., Lee, Y.L. & Eng, L.F. (1987). Molecular differentiation of neurons from ependyma derived cells in tissue cultures of regenerating teleost spinal cord. Brain Research 388, 131–136.

    Article  PubMed  CAS  Google Scholar 

  81. Ahne, W. (1985). Studies on the use of fish tissue cultures for toxicity tests in order to reduce and replace the fish tests. Zentrall Bacteriol. Mikrobiol. Hyg. ABTI B. Hyg. Umweltig Krankenhaus Hyg. Arbeitshyg Praev Med. 180, 480–500.

    CAS  Google Scholar 

  82. Babich, H. & Borenfreund, E. (1987). Fathead minnow FHM cells for use in in vitro cytotoxicity assays of aquatic pollutants. Ecotoxicology and Environmental Safety 14, 78–87.

    Article  PubMed  CAS  Google Scholar 

  83. Babich, H. & Borenfreund, E. (1988). Structure-activity relationships for diorganotins, chlorinated benzenes and chlorinated ambines established with the gill sunfish BF-2 cells. Fundamental and Applied Toxicology 10, 295–301.

    Article  PubMed  CAS  Google Scholar 

  84. Babich, H., Martin-Alguacil, N. & Borenfreund, E. (1989). Arsenic-selenium interactions determined with cultured fish cells. Toxicology Letters 45, 157–164.

    Article  PubMed  CAS  Google Scholar 

  85. McCellan, A.D. (1988). Functional regeneration of descending brainstorm command pathways for locomotion demonstrated in the in vitro lamprey CNS. Brain Research 448, 339–345.

    Article  Google Scholar 

  86. Yonezawa, T., Bernstein, M.B. & Peterson, E.R. (1980). Organotypic cultures of nerve tissue as a model system for neurotoxicity investigation and screening. In Experimental and Clinical Neurotoxicology (ed. P.S. Spencer & H.H. Schaumburg). Baltimore, MD, USA: Williams & Wilkins.

    Google Scholar 

  87. Atterwill, C.K. (1989). Brain reaggregate cultures in neurotoxicological investigations: studies with cholinergic neurotoxins. ATLA 16, 221–229.

    Google Scholar 

  88. Spencer, P., Nunn, P.B., Hugon, J., Ludolph, A.C., Ross, S.M., Roy, D.N. & Robertson, R.C. (1987). Guam amyotrophic lateral sclerosis—Parkinsonism/dementia linked to a plant excitant neurotoxin. Science, New York 237, 465–564.

    Article  Google Scholar 

  89. Gebhart, A.M. & Goldstein, G.W. (1988). Use of an in vitro system to study the effects of lead on astrocyte-endothelial cell interactions: a model for studying toxic injury to the blood-brain barrier. Toxicology and Applied Pharmacology 94, 191–206.

    Article  PubMed  CAS  Google Scholar 

  90. Talamo, B.R., Rudel, R.A., Kosik, K.S., Lee, V.M.Y., Ness, S., Adelman, L. & Kaurer, J.S. (1989). Pathological changes in olfactory neurons in patients with Alzheimer’s disease. Nature, London 337, 736–739.

    Article  CAS  Google Scholar 

  91. Jones, C.A., Brown, C.G., Dickens, T.A. & Atterwill, C.K. (1988). Differential effects of D- and L-isomers of tri-iodothyromine on pituitary TSH secretion and peripheral deiodinase activity in the rat. Toxicology 48, 273–284.

    Article  PubMed  CAS  Google Scholar 

  92. Khera, K.S. & Whalen, C. (1988). Detection of neuroteratogens with in vitro cytotoxicity assay using primary monolayers cultured from dissociated foetal rat brains. Toxicology in Vitro 2, 251–252.

    Google Scholar 

  93. Atterwill, C.K., Simpson, M.G., Evans, R.J., Allen, S.L. and Ray, D. (1991). Alternative methods and their application in neurotoxicity testing. This volume, pp. 121–134.

    Google Scholar 

  94. Priestley, T., Horne, A.L., McKernan, R.M. & Kemp, J.A. (1990). The effect of NMDA receptor glycine site antagonists on hypoxia-induced neurodegeneration of rat cortical cell cultures. Brain Research 531, 183–188.

    Article  PubMed  CAS  Google Scholar 

  95. Irwin, S. (1962). Drug screening and evaluative procedures. Science, New York 136, 123–128.

    Article  CAS  Google Scholar 

  96. Kety, S. (1960). A biologist examines the mind and behaviour. Science, New York 132, 1861–1870.

    Article  CAS  Google Scholar 

  97. Irwin, S. (1964). Drug screening and evaluation of new compounds in animals. In Animal and Clinical Pharmacological Techniques in Drug Evaluation (ed. Nodine & Siegler). Chicago: Year Book.

    Google Scholar 

  98. Dewar, A.J. (1983). Neurotoxicity. In Animals and Alternatives in Toxicity Testing (ed. M. Balls, R. Riddell & A.N. Worden), pp. 229–284. London: Academic Press.

    Google Scholar 

  99. Ericsson, A.C. & Walum, E. (1984). Cytotoxicity of cyclophosphamide and acrylamide in glioma and neuroblastoma cell lines co-cultured with liver cells. Toxicology Letters 20, 251–256.

    Article  PubMed  CAS  Google Scholar 

  100. Gebhart, A.M. & Goldstein, G.W. (1988). Use of an in vitro system to study the effects of lead on astrocyte-endothelial cell interactions: a model for studying toxic injury to the blood-brain barrier. Toxicology and Applied Pharmacology 94, 191–206.

    Article  PubMed  CAS  Google Scholar 

  101. Atterwill, C.K. (1987). Brain reaggregate cultures in neurotoxicological investigations. In In Vitro Methods in Toxicology (ed. C.K. Atterwill & C.E. Steele C E), pp. 133–164. Cambridge: Cambridge University Press.

    Google Scholar 

  102. Khera, K.S. & Whalen, C. (1988). Detection of neuroteratogens with an in vitro cytotoxicity assay using primary monolayers cultured from dissociated fetal rat brains. Toxicology in Vitro 2, 257–273.

    CAS  Google Scholar 

  103. Smith, R.A. (1991). Primary cultures of adult mammalian sensory neurons and other in vitro systems of use in neurotoxicological studies. Archives of Toxicology, Supplement 14, in press.

    Google Scholar 

  104. Smith, R.A., Orr, D.J. & McInnes, I.B. (1987). A refined primary culture system of adult mouse sensory neurons for neurotoxicity testing. In Model Systems in NeurotoxicologyAlternatives to Animal Testing (ed. A. Shahar & A. Goldberg), pp. 69–75. New York: Alan R. Liss, Inc.

    Google Scholar 

  105. Spencer, P.S., Crain, S.M., Bornstein, M.B. & Peterson, E.R. (1986). Chemical neurotoxicity: detection and analysis in organtypic cultures of sensory and motor systems. Food and Chemical Toxicology 24, 539–544.

    Article  PubMed  CAS  Google Scholar 

  106. Greene, R.W., Haas, H.L. & Hermann, A. (1985). Effects of caffeine on hippocampal pyramidal cells in vitro. British Journal of Pharmacology 85, 163–169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Webster, H., Trapp B.D. & Cullen, M.J. (1980). Xenopus tadpole: a useful model for studying cellular effects of neurotoxic compounds. In Experimental and Clinical Neurotoxicology (ed. P.S. Spencer & H.H. Schaumber), pp. 775–787. Baltimore, MD: Williams & Wilkins.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 FRAME

About this chapter

Cite this chapter

Atterwill, C.K., Simpson, M.G., Evans, R.J., Allen, S.L., Ray, D. (1991). Alternative Methods and Their Application in Neurotoxicity Testing. In: Balls, M., Bridges, J., Southee, J. (eds) Animals and Alternatives in Toxicology. Palgrave, London. https://doi.org/10.1007/978-1-349-12667-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12667-5_5

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12669-9

  • Online ISBN: 978-1-349-12667-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics