Galanin pp 247-258 | Cite as

Galanin regulation of acetylcholine release and carbachol-stimulated phosphoinositide turnover in rat ventral hippocampus

  • S. Consolo
  • R. Bertorelli
  • C. La Porta
  • E. Palazzi
  • M. Zambelli
  • G. Fisone
  • T. Bartfai
Part of the Wenner-Gren Center International Symposium Series book series


Immunohistochemical analysis has shown that galanin (GAL) and choline acetyltransferase-like immunoreactivities coexist within cholinergic cell bodies in rat medial septal and diagonal band nuclei which innervate the hippocampal formation. However, the cholinergic cell bodies containing GAL project almost entirely to the ventral part of the hippocampus (see Melander et al., this volume). The greater presence of GAL immunoreactive fibers in this part of the hippocampus correlates well with the higher density of [125I]GAL binding sites in the ventral than in the dorsal part as determined by equilibrium binding studies and receptor autoradiography (Fisone et al., this volume). After transection of the septal and fimbrial afferents to the hippocampus, the density of the [125I] GAL binding sites is markedly reduced in the ventral hippocampus indicating that a large proportion of the putative GAL receptors are localized on the septal cholinergic afferents to this brain region.


Muscarinic Receptor Dorsal Hippocampus Acetylcholine Release Kynurenic Acid Ventral Hippocampus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartfai, T., Bertorelli, R., Consolo, S., Diaz-Araesto, L., Fisone, G., Hokfelt, T., Iverfeldt, K., Palazzi, E. and Ogren, S.O. (1988–89). Acute and chronic studies on functional aspects of coexistence. J. Physiol., 83, 126–132.Google Scholar
  2. Baudry, M., Evans, J. and Lynch, G. (1986). Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus. Nature. 319, 329–331.PubMedCrossRefGoogle Scholar
  3. Consolo, S., Wu, C.F., Fiorentini, F., Ladinsky, H. and Vezzani, A. (1987). Determination of endogenous acetylcholine release in freely moving rats by transstriatal dialysis coupled to a radioenzymatic assay: Effect of drugs. J. Neurochem., 48, 1459–1465.PubMedCrossRefGoogle Scholar
  4. De Weille, J., Schmid-Antomarchi, H., Fosset, M. and Lazdunski, M. (1988). ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc. natn. Acad. Sci. USA. 85, 1312–1316.CrossRefGoogle Scholar
  5. Downes, C.P. and Stone, M.A. (1986). Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland. Biochem. J., 234, 199–204.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Dutar, P., Lamour, Y. and Nicoll, R.A. (1989). Galanin blocks the slow cholinergic EPSP in CA1 pyramidal neurons from ventral hippocampus. European Journal Pharmacology. 164, 355–360.CrossRefGoogle Scholar
  7. Eberhard, D.A. and Holz, R.W. (1988). Intracellular Ca2+ activates phospholipase C. Trends Neuroscience. 11, 517–520.CrossRefGoogle Scholar
  8. Eva, C. and Costa, E. (1986). Potassium ion facilitation of phosphoinositide turnover activation by muscarinic receptor agonists in rat brain. J. Neurochem., 46, 1429–1435.PubMedCrossRefGoogle Scholar
  9. Fain, J.N., Wallace, M.A. and Wojcikiewicz, R. (1988). Evidence for involvment of guanine nucleotide-binding regulatory proteins in the activation of phospholipases by hormones. FASEB J., 2, 2569–2574.PubMedGoogle Scholar
  10. Fisone, G., Wu, C.F., Consolo, S., Nordström, Ö., Brynne, N., Bartfai, T., Melander, T. and Hökfelt, T. (1987). Galanin inhibits acetylcholine release in the ventral hippocampus of the rat: Histochemical, autoradiographic, in vivo, and in vitro studies. Proc. natn. Acad. Sci. USA. 84, 7339–7343.CrossRefGoogle Scholar
  11. Hescheler, J., Rosenthal, W., Trautwein, W. and Schultz, G. (1987). The GTP-binding protein, GO, regulates neuronal calcium channels. Nature. 325, 445–447.PubMedCrossRefGoogle Scholar
  12. Kendall, D.A., Brown, E. and Nahorski, S.R. (1985). α1-Adrenoceptor-mediated inositol phospholipid hydrolysis in rat cerebral cortex: Relationship between receptor occupancy and response and effects of denervation. European Journal Pharmacology, 114, 41–52CrossRefGoogle Scholar
  13. Kendall, D.A. and Nahorski, S.R. (1985). 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacological characterization and effects of antidepressants. J. Pharmac. exp. Ther., 233, 473–479.Google Scholar
  14. McCleskey, E.W., Fox, A.P., Feldman, D.H., Cruz, L.J., Olivera, B.M., Tsien, R.W. and Yoshikami, D. (1987). ω-Conotoxin: Direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. natn. Acad. Sci. USA. 84, 4327–4331.CrossRefGoogle Scholar
  15. Miller, R.J. (1987). Multiple calcium channels and neuronal function. Science. 235, 46–52.PubMedCrossRefGoogle Scholar
  16. Morrisett, R.A., Chow, C.C., Sakaguchi, T., Shin, C. and McNamara, J.O. (1990). Inhibition of muscarinic-coupled phosphoinositide hydrolysis by N-Methyl-D-Aspartate is dependent on depolarization via channel activation. J. Neurochem., 54, 1517–1525.PubMedCrossRefGoogle Scholar
  17. Palazzi, E., Fisone, G., Hökfelt, T., Bartfai, T. and Consolo, S. (1988). Galanin inhibits the muscarinic stimulation of phosphoinositide turnover in rat ventral hippocampus. European Journal Pharmacology, 148, 479–480.CrossRefGoogle Scholar
  18. Plummer, M.R., Logothetis, D.E. and Hess, P. (1989). Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron, 2, 1453–1463.PubMedCrossRefGoogle Scholar
  19. Vallar, L., Vicentini, L.M. and Meldolesi, J. (1988). Inhibition of inositol phosphate production is a late, Ca2+-dependent effect of D2 dopaminergic receptor activation in rat lactotroph cells. J. biol. Chem., 263, 10127–10134.PubMedGoogle Scholar
  20. Weber, A. and Winicur, S. (1961). The role of calcium in the superprecipitation of actomyosin. J. biol. Chem., 236, 3198–3202.PubMedGoogle Scholar
  21. Wu, C.F., Bertorelli, R., Sacconi, M., Pepeu, G. and Consolo, S. (1988). Decrease of brain acetylcholine release in aging freely-moving rats detected by microdialysis. Neurobiology Aging, 9, 357–361.CrossRefGoogle Scholar

Copyright information

© The Wenner-Gren Center 1991

Authors and Affiliations

  • S. Consolo
  • R. Bertorelli
  • C. La Porta
  • E. Palazzi
  • M. Zambelli
  • G. Fisone
  • T. Bartfai

There are no affiliations available

Personalised recommendations