Advertisement

Relevance of surfactant inactivation by anti-surfactant antibodies to the evaluation of therapies for neonatal RDS

  • David S. Strayer
Chapter

Abstract

Infantile respiratory distress syndrome (IRDS) develops because immature lungs in preterm infants may not synthesize sufficient surfactant to maintain low pulmonary alveolar surface tension [1]. The course of IRDS is characterized by atelectasis, poor arterial oxygenation and end expiratory collapse of airways. Complications of IRDS include both pulmonary and neurological impairment. It is thus an important cause of morbidity and mortality in the neonatal period, especially for preterm infants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Avery, M. E. and Mead, J. Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child 1959; 97: 517–23.Google Scholar
  2. [2]
    Collaborative European Multicenter Study Group. Surfactant replacement therapy for severe neonatal respiratory distress syndrome: an international randomized clinical trial. Pediatrics 1988; 82: 683–91.Google Scholar
  3. [3]
    Kendig, J. W. and Sinkin, R. A. The effect of surfactant replacement therapy on conditions associated with respiratory distress syndrome: patent ductus arteriosus, intraventricular hemorrhage and bronchopulmonary dysplasia. Semin Perinato; 1988 12: 255–8.Google Scholar
  4. [4]
    Konishi, M., Fujiwara, T., Naito, T., et al. Surfactant replacement therapy in neonatal respiratory distress syndrome—a multi-centre, randomized clinical trial: comparison of high versus low dose of surfactant TA. Eur J Pediatr 1988; 147: 20–5.CrossRefGoogle Scholar
  5. [5]
    McCord, F. B., Curstedt, T., Halliday, H. L. et al. Surfactant treatment and incidence of intraventricular haemorrhage in severe respiratory distress syndrome. Arch Dis Child 1988; 63: 10–16.CrossRefGoogle Scholar
  6. [6]
    Merritt, T. A., Hallman, M., Bloom, B. T., et al. Prophylactic treatment of very premature infants with human surfactant. New Engl J Med 1986; 315: 785–90.CrossRefGoogle Scholar
  7. [7]
    Morely, C. J. Surfactant substitution in the newborn by application of artificial surfactant. J Perinatal Med 1987; 15: 469–78.CrossRefGoogle Scholar
  8. [8]
    US Exosurf Pediatric Study Group. Effects of single prophylactic dose of Exosurf Pediatric at birth in 700–1100 gram infants. 60 Years of Surfactant Research, A#64. 1989.Google Scholar
  9. [9]
    Hallman, M., Merritt, T. A. and Schneider, H. Isolation of human surfactant from amniotic fluid and a pilot study of its efficacy in respiratory distress syndrome. Pediatrics 1983; 71: 473–82.Google Scholar
  10. [10]
    Strayer, D. S., Merritt, T. A., Makunike, C. and Hallman, M. Antigenicity of low molecular weight surfactant protein. Am J Pathol 1989; 134: 723–32.Google Scholar
  11. [11]
    Kennett, R. H. Fusion protocols. In Kennett, R. H., McKearn, T. J. and Bechtol, K. B. eds. Monoclonal Antibodies, New York: Plenum Press, 1980; 365–7.CrossRefGoogle Scholar
  12. [12]
    Enhorning, G. Pulsating bubble technique for evaluating pulmonary surfactant. J Appl Physiol 1977; 43: 198–203.Google Scholar
  13. [13]
    Towbin, H., Staheiln, T. and Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 76: 4350–4.CrossRefGoogle Scholar
  14. [14]
    Strayer, D., Merritt, T. A., Lwebuga-Mukasa, J. and Hallman, M. Surfactant-anti-surfactant immune complexes in infants with respiratory distress syndrome. Am J Pathol 1986; 122: 353–62.Google Scholar
  15. [15]
    Taeusch, H. W. Clinical trials with animal surfactants and non-clinical trials with non-animal surfactants. 60 Years of Surfactant Research, A#37. 1989.Google Scholar
  16. [16]
    Bartmann, P., Bamberger, U., Pohlandt, X. and Gortner, L. Immunogenicity of SF-RI in laboratory animals and preterm infants with respiratory distress syndrome. 60 Years of Surfactant Research, A#42. 1989.Google Scholar
  17. [17]
    Hawgood, S., Benson, B. J. and Hamilton, R. L. Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry 1985; 24: 184–90.CrossRefGoogle Scholar
  18. [18]
    Revak, S. D., Merritt, T. A., Degryse, E., et al. Use of human surfactant low molecular weight (LMW) apoproteins in the reconstitution of surfactant biologic activity. J Clin Invest 1988; 81: 826–33.CrossRefGoogle Scholar
  19. [19]
    Floros, J., Phelps, D., Taeusch, W., et al. Isolation and characterization of a cDNA clone coding for precursor of a low molecular weight human surfactant protein. Am Rev Resp Dis 1987; 84: 66–70.Google Scholar
  20. [20]
    Jacobs, et al. 1987.Google Scholar

Copyright information

© Macmillan Publishers Limited 1991

Authors and Affiliations

  • David S. Strayer

There are no affiliations available

Personalised recommendations