Skip to main content

Platelet-derived Substances in Acute Myocardial Injury

  • Chapter
Myocardial Response to Acute Injury

Abstract

The use of the term ‘current of injury’ may give rise to some misunder-standing. In classical studies on cardiac electrophysiology, part of the heart was deliberately injured by, e.g. locally applying heat, mechanical injury or chemical irritants, and recordings were made between an electrode placed on the injured part and one on the intact cardiac surface (Burdon-Sanderson and Page, 1879). Because of the potential difference between the injured part (equivalent to the intracellular compartment) and the intact surface (the extracellular space), a ‘current of injury’ would flow through a resistor connecting both parts. The effect on the recorded action potential was described by Burdon-Sanderson and Page as follows: ‘… if either of the leading-off contacts is injured … the initial phase is followed by an electrical condition in which the injured surface is more positive, or less negative relatively to the uninjured surface consequently the equilibrium which normally exists between all parts of the surface during the “isoelectric interval” is destroyed.’ In other words, instead of an extracellular electrogram, characterized by a QRS complex, an isoelectric ST segment and a T wave, one would record a ‘monophasic’ potential resembling a transmembrane action potential as recorded with a microelec-trode. In the early part of this century, recordings of such ‘injury potentials’ or ‘monophasic potentials’ yielded a great many data on cardiac electrophysiology (see, for example, Schutz, 1931).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Annable, C. R., McManus, L. M., Carey, K. D. and Pinkard, R. N. (1985). Isolation of platelet-activating factor (PAF) from ischaemic baboon myocardium. Fed. Proc., 44, 1271

    Google Scholar 

  • Bhat, A. V., Sasks, H., Osborne, J. A. and Lefer, A. M. (1989). Protective effect of the thromboxane receptor antagonist BM 13,505, in reperfusion injury following acute myocardial ischaemia in cats. Am. Heart J., 117, 799–803

    Article  PubMed  CAS  Google Scholar 

  • Brezinski, M. E., Osborne, J. A., Yanagisawa, A. and Lefer, A. M. (1987). Beneficial actions of the thromboxane receptor antagonist, AH-23,848, in acute myocardial ischaemia. Meth. Find. Exp. Clin. Pharmacol., 9, 703–709

    CAS  Google Scholar 

  • Burke, S. E., DiCola, G. and Lefer, A. M. (1983a). Protection of ischaemic cat myocardium by CGS-13080, a selective potent thromboxane A2 synthetase inhibitor. J. Cardiovasc. Pharmacol., 5, 842–847

    Article  PubMed  CAS  Google Scholar 

  • Burke, S. E., Lefer, D. J. and Lefer, A. M. (1983b). Cardioprotective actions of a selective thromboxane synthetase inhibitor in acute myocardial ischaemia. Arch. Int. Pharmacodyn., 265, 76–84

    PubMed  CAS  Google Scholar 

  • Cazenave, J. P., Dejana, E., Kinlough-Rathbone, R. L., Richardson, M., Packham, M. A. and Mustard, J. F. (1989). Prostaglandins I2 and E1, reduce rabbit and human platelet adherence without inhibiting serotonin release from adherent platelets. Thromb. Res., 15, 273–279

    Article  Google Scholar 

  • Coker, S. J., Parratt, J. R., Ledingham, I. McA. and Zeitlin, I. J. (1981a). Thromboxane and prostacyclin release from ischaemic myocardium in relation to arrhythmias. Nature, 291,323–324

    Article  PubMed  CAS  Google Scholar 

  • Coker, S. J., Ledingham, I. McA., Parratt, J. R. and Zeitlin, I. J. (1981b). Aspirin inhibits the early myocardial release of thromboxane B2 and ventricular ectopic activity following acute coronary artery occlusion in dogs. Br. J. Pharmac., 72, 593–595

    Article  CAS  Google Scholar 

  • Davies, M. J., Thomas, A. C., Knapman, P. A. and Hangartner, J. R. (1986). Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischaemic cardiac death. Circulation, 73, 418–427

    Article  PubMed  CAS  Google Scholar 

  • El-Maraghi, N. and Genton, E. (1980). The relevance of platelet and fibrin thrombosis of the coronary microcirculation with special reference to sudden cardiac death. Circulation, 62, 936–944

    Article  PubMed  CAS  Google Scholar 

  • Evers, A. S., Murphree, S., Saffitz, J. E., Jakshaki, B. A. and Needleman, P. (1985). Effects of endogenously produced leukotrienes, thromboxane and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J. Clin. Invest., 75, 992–999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farber, N. E. and Gross, G. J. (1990). Prostaglandin redirection by thromboxane synthetase inhibition-Attenuation of myocardial stunning in canine heart. Circulation, 81, 369–380

    Article  PubMed  CAS  Google Scholar 

  • Flores, N. A. and Sheridan, D. J. (1990). Electrophysiological and arrhythmogenic effects of platelet activating factor during normal perfusion, myocardial ischaemia and reperfusion in the guinea-pig. Br. J. Pharmacol., 101, 734–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fontalivan, F., Guillan, J. M., Koltai, M. and Braquet, P. (1989). Reduction of infarct size by ginkgolide B (BN 52021) in coronary artery ligated rats. In Braquet, P. (Ed.), Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives, Vol. 2. J. R. Prous, Barcelona, pp. 405–411

    Google Scholar 

  • Grover, G. J. and Schumacher, W. A. (1988). Effects of the thromboxane receptor antagonist SQ29,548 on myocardial infarct size in dogs. J. Cardiovasc. Pharmac., 11, 29–35

    Article  CAS  Google Scholar 

  • Grover, G. J. and Schumacher, W. A. (1989). Effect of the thromboxane A2 receptor antagonist SQ30,741 on ultimate myocardial infarct size, reperfusion injury and coronary flow reserve. J. Pharmacol. Exp. Ther., 248, 484–491

    PubMed  CAS  Google Scholar 

  • Gross, G. J., Maruyama, M., Vercellotti, G. M., Jacob, H. S. and Christensen, P. (1989). Effect of the PAF antagonist, BN 52021, on myocardial infarct size in dogs. In Braquet, P. (Ed.), Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives, Vol. 2. J. R. Prous, Barcelona, pp. 421–425

    Google Scholar 

  • Haerem, J. W. (1972). Platelet aggregates in intramyocardial vessels of patients dying suddenly and unexpectedly of coronary artery disease. Atherosclerosis, 15, 189–198

    Article  Google Scholar 

  • Hock, C. E. and Lefer, A. M. (1986). CGS-12970, a thromboxane synthetase inhibitor, limits ischaemic damage following coronary artery occlusion. Res. Comm. Chem. Pathol. Pharmacol., 52, 285–294

    CAS  Google Scholar 

  • Imamato, T., Terashita, Z., Tanaba, M., Nishikawa, K. and Hirata, M. (1986). Protective effect of a novel thromboxane synthetase inhibitor CV-1451, on myocardial damage due to coronary occlusion and reperfusion in the hearts of anaesthetized dogs. J. Cardiovasc. Pharmacol., 8, 832–839

    Google Scholar 

  • Ingermann-Wojenski, C., Silver, M. J., Smith, J. B. and Macarak, E. (1981). Bovine endothelial cells in culture produce thromboxane as well as prostacyclin. J. Clin. Invest., 67,1292–1296

    Article  Google Scholar 

  • Jugdutt, B. I., Hutchins, G. M., Bulkley, B.H., Pitt, B. and Becker, L. C. (1979). Effect of indomethacin on collateral blood flow and infarct size in the conscious dog. Circulation, 59, 734–743

    Article  PubMed  CAS  Google Scholar 

  • Kahn, N. N., Mueller, H. S. and Sinha, A. K. (1990). Impaired prostaglandin-E1/I2 receptor activity of human blood platelets in acute ischaemic heart disease. Circ. Res., 66, 932–940

    Article  PubMed  CAS  Google Scholar 

  • Kenzora, J. L., Perez, J. E., Bergmann, S. R. and Lange, L. G. (1984). Effects of acetylglyceryl ether of phosphorylcholine (platelet activating factor) on ventricular preload, afterload and contractility in dogs. J. Clin. Invest., 74, 1193–1203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koltai, M., Tosaki, A., Hosford, D. and Braquet, P. (1989). Gingkolide B protects isolated hearts against arrhythmias induced by ischaemia but not reperfusion. Eur. J. Pharmacol., (in press)

    Google Scholar 

  • Laws, K. H., Clanton, J. A., Starnes, V. A., Lupinetti, F. M., Collins, J. C., Oates, J. A. and Hammon, J. W. (1983). Kinetics and imaging of indium-111-labelled autologous platelets in experimental myocardial infarction. Circulation, 67, 110–116

    Article  PubMed  CAS  Google Scholar 

  • Lepran, I. and Lefer, A. M. (1985). Ischaemia aggravating effects of platelet activating factor in acute myocardial ischaemia. Basic Res. Cardiol., 80, 135–141

    Article  PubMed  CAS  Google Scholar 

  • Levi, R., Burke, J., Guo, Z. G., Hattori, Y., Hoppens, C., McManus, L., Hanahan, D. and Pinckard, R. (1984). Acetyl glyceryl ether phosphorylcholine (AGEPC). A putative mediator of cardiac anaphylaxis in the guinea-pig. Circ. Res., 54, 117–124

    PubMed  CAS  Google Scholar 

  • Lewy, R. I., Smith, J. B., Silver, M. J., Saia, J. A., Walinsky, P. and Wienre, L. (1979). Detection of thromboxane B2 (TxB2) in peripheral blood of patients with Prinzmetals angina. Clin. Res., 27, 462A

    Google Scholar 

  • Lucchesi, B. R., Mickelsen, J. K., Homeister, J. W. and Jackson, C. L. (1987). Interaction of the formed elements of the blood with the coronary vasculature in vivo. Fed. Proc., 46, 63–72

    PubMed  CAS  Google Scholar 

  • Mais, D. E., De Holl, D., Sightler, H. and Halushka, P. V. (1988). Different pharmacological activities for 13-aza pinane thromboxane A2 analogs in platelets and blood vessels. Eur. J. Pharmacol., 148, 309–315

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, M., Vercelotti, G., Jacob, H., Gross, G. and Christensen, C. (1989). Inhibition of platelet activating factor reduces myocardial infarct size. J. Mol. Cell. Cardiol., 21 (Suppl. II), S114

    Google Scholar 

  • Mehta, J., Nichols, W., Mehta, P. and Conti, C. R. (1982). Thromboxane and prostacyclin in systemic and coronary vascular beds following endoperoxide analogue infusion. Am. J. Cardiol., 49, 1014

    Article  Google Scholar 

  • Mehta, J. L., Nichols, W. W., Schofield, R., Donnelly, W. H. and Chanda, V. K. (1990). TxA2 inhibition and ischaemia-induced loss of myocardial function and reactive hyperemia. Am. J. Physiol., 258, H1402–H1408

    PubMed  CAS  Google Scholar 

  • Mickelson, J. K., Simpson, P. J. and Lucchesi, B. R. (1988). Myocardial dysfunction and coronary vasoconstriction induced by platelet activating factor in the post-infarcted rabbit isolated heart. J. Mol. Cell. Cardiol., 20, 547–561

    Article  PubMed  CAS  Google Scholar 

  • Montrucchio, G., Alloatti, G., De Detta, C., Luc, R., Saunders, R. N., Emanuelli, G. and Camussi, G. (1989). Release of platelet activating factor from ischaemic-reperfused rabbit heart. Am. J. Physiol., 256, H1236–H1246

    PubMed  CAS  Google Scholar 

  • Montrucchio, G., Camussi, G., Tetta, C., Emanuelli, G., Orzan, F., Libero, L. and Brusca, A. (1986). Intravascular release of platelet activating factor during atrial pacing. Lancet, ii, 293

    Google Scholar 

  • Mullane, K. (1989). Neutrophil-platelet interactions and post-ischaemic myocardial injury. In Schror, K. and Sinzinger, H. (Eds), Prostaglandins in Clinical Research. Alan R. Liss, New York, pp. 39–51

    Google Scholar 

  • Mullane, K. M. and Fornabaio, D. (1988). Thromboxane synthetase inhibitors reduce infarct size by a platelet dependent, aspirin sensitive mechanism. Circ. Res., 62, 668–678

    Article  PubMed  CAS  Google Scholar 

  • Mullane, K. M. and McGiff, J. C. (1985). Platelet depletion and infarct size in an occlusion-reperfusion model of myocardial ischaemia in anaesthetised dogs. J. Cardiovasc. Pharmacol., 7, 733–738

    Article  PubMed  CAS  Google Scholar 

  • Mullane, K. M., Westlin, W. and Kraemer, R. (1988). Activated neutrophils release mediators that may contribute to myocardial injury and dysfunction associated with ischaemia and reperfusion. In Levi, R. and Krell, R. D. (Eds), Biology of the Leukotrienes. Ann. NYAcad. Sci., Vol. 524, pp. 103–121

    CAS  Google Scholar 

  • O'Flaherty, P., Wykle, J. T., Miller, R. L., Lewis, C. H., Waite, J. C., Bass, M. McCall, A. and De Chatelet, C. E. (1981). 1-0-alkyl-sn-glyceryl-3-phosphorylcholine: A novel class of neutrophil stimulation. Am. J. Pathol., 103, 70–79

    PubMed  PubMed Central  Google Scholar 

  • Ogawa, T., Hieda, N., Sugiyama, S., Toki, Y., Ito, T., Ogawa, K., Satake, T. and Ozawa, T. (1988). Effect of a novel thromboxane A2 synthetase inhibitor on ischaemia-induced mitochondrial dysfunction in canine hearts. Arzneim, Forsch.lDrug Res., 38, 228–230

    CAS  Google Scholar 

  • Osborne, J. A. and Lefer, A. M. (1988). Cardioprotective actions of thromboxane receptor antagonism in ischaemic atherosclerotic rabbits. Am. J. Physiol., 255, H318–H324

    PubMed  CAS  Google Scholar 

  • Parratt, J. R. and Wainwright, C. L. (1986). Ventricular arrhythmias induced by local injections of vasoconstrictors following coronary artery occlusion. Br. J. Pharmacol., 88, 397P

    Google Scholar 

  • Reilly, I. A. and Fitzgerald, G. A. (1987). Inhibition of thromboxane formation in vivo and ex vivo: implications for therapy with platelet inhibitory drugs. Blood, 69, 180–186

    PubMed  CAS  Google Scholar 

  • Ruf, W., McNamara, H., Suehiro, A., Suehiro, A. and Wickline, S. (1980). Platelet trapping in myocardial infarct in baboons: Therapeutic effect of aspirin. Am. J. Cardiol., 46, 405–412

    Article  PubMed  CAS  Google Scholar 

  • Saniabadi, A. R., Lowe, G. D. O., Madhok, R., Spowart, K., Shaw, B., Barbenel, J. C. and Forbes, C. D. (1986). A critical investigation into the existence of circulating platelet aggregates. Thromb. Haemostas., 56, 45–49

    CAS  Google Scholar 

  • Schror, K. (1990). Thromboxane A2 and platelets as mediators of coronary arterial vasoconstriction in myocardial ischaemia. Eur. Heart J., 11 (Suppl. B), 27–34

    Article  PubMed  Google Scholar 

  • Schumacher, W. A., and Grover, G. J. (1990). The thromboxane receptor antagonist SQ-30,471 reduces myocardial infarct size in monkeys when given during reperfusion at a threshold dose for improving reflow during thrombolysis. J. Am. Coll. Cardiol., 15, 790–800

    Article  Google Scholar 

  • Schumacher, W. A., Heran, C. L., Goldenberg, H. J., Harris, D. N. and Ogletree, M. J. (1989). Magnitude of thromboxane receptor antagonism necessary for antithrombotic activity in monkeys. Am. J. Physiol., 256, H726–H734

    PubMed  CAS  Google Scholar 

  • Shaw, J. O., Pinchard, R. N., Ferrigni, K. S., McManus, L. M. and Hanahan, D. J. (1981). Activation of human neutrophils with 1-0-alkyl-sn-glyceryl-3-phosphorylcholine (platelet activating factor). J. Immunol., 127, 1250–1255

    PubMed  CAS  Google Scholar 

  • Sipka, S., Dinya, Z., Koltai, M., Bojan, F., Kovacs, A. and Szegedi, G. (1989). Inhibition of neutrophil capillary migration by platelet activating factor. In Braquet, P. (Ed.), Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives, Vol. 2. J. R. Prous, Barcelona, pp. 97–103

    Google Scholar 

  • Sisson, J. H., Prescott, S. M., McIntyre, T. M. and Zimmerman, G. A. (1987). Production of platelet activating factor by stimulated human polymorphonuclear leukocytes. J. Immunol., 138, 3918–3926

    PubMed  CAS  Google Scholar 

  • Smith, E. F., Griswold, D. E., Egan, J. W., Hillegass, L. M. and Dimartino, M. J. (1989). Reduction of myocardial damage and polymorphonuclear leukocyte accumulation following coronary artery occlusion and reperfusion by the thromboxane receptor antagonist BM 13,505. J. Cardiovasc. Pharmacol., 13, 715–722

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. F., Lefer, A. M. and Nicolau, K. C. (1981). Mechanism of coronary vasoconstriction by carbocyclic thromboxane A2. Am. J. Physiol., 240, H493–H497

    PubMed  CAS  Google Scholar 

  • Smith, E. F., Rucker, W. and SchrOr, K. (1983). RCS from human platelets: is it only thromboxane? Eur. J. Pharmacol., 95, 121–124

    Article  PubMed  CAS  Google Scholar 

  • Spagnuolo, P. J., Ellner, J. J., Hassid, A. and Dunn, M. J. (1980). Thromboxane A2 mediates augmented polymorphonuclear leukocyte adhesiveness. J. Clin. Invest., 66, 406–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stahl, G. L., Terashita, Z.-I. and Lefer, A. M. (1988). Role of platelet activating factor (PAF) in the propagation of myocardial ischaemic damage in the rat. J. Pharm. Exp. Ther., 244, 898–904

    CAS  Google Scholar 

  • Swayne, G. T. G., Maguire, J., Dolan, J., Raval, P., Dane, G., Greener, M. and Owen, D. A. A. (1988). Evidence for heterogeneity of thromboxane A2 receptor using structurally different antagonists. Eur. J. Pharmacol., 152, 311–319

    Article  PubMed  CAS  Google Scholar 

  • Thievant, P., Guillan, J. M. and Koltai, M. (1989). Effect of ginkgolide B (BN52021) on ischaemia-reperfusion-induced arrhythmias in mongrel dogs. In Braquet, P. (Ed.) Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives, Vol. 2. J. R. Prous, Barcelona, pp. 413–420

    Google Scholar 

  • Trip, M. D., Cats, V. M., Vancapelle, F. J. L. and Vreeken, J. (1990). Platelet hyperreactivity and prognosis in survivors of myocardial infarction. New Engl. J. Med., 322, 1549–1554

    Article  PubMed  CAS  Google Scholar 

  • Wahler, G. M., Coyle, D. E. and Sperelakis, N. (1990). Effects of platelet activating factor on single potassium channel currents in guinea-pig ventricular myocytes. Mol. Cell. Biochem., 93, 69–76

    Article  PubMed  CAS  Google Scholar 

  • Wainwright, C. L., Parratt, J. R. and Bigaud, M. (1989a). The effects of PAF antagonists on arrhythmias and platelets during acute myocardial ischaemia and reperfusion. Eur. Heart J., 10, 235–243

    PubMed  CAS  Google Scholar 

  • Wainwright, C. L., Parratt, J. R., Bigaud, M., Tweddel, A. and Martin, W. (1989b). Platelet, blood flow and electrocardiographic changes during acute myocardial ischaemia. J. Mol. Cell. Cardiol., 21 (Suppl. II), S113

    Article  Google Scholar 

  • Wargovich, T. J., Mehta, J., Nichols, W. W., Ward, M. B., Lawson, D., Franzini, D. and Conti, C. R. (1987). Reduction in myocardial neutrophil accumulation and infarct size following administration of thromboxane inhibitor U-63,557A. Am. Heart J., 114, 1078–1085

    Article  PubMed  CAS  Google Scholar 

  • Zahavi, J., Zahavi, J., Schafer, R., Firsteter, E. and Laniado, S. (1989). Abnormal typical pattern of platelet function and thromboxane generation in unstable angina. Thromb. Haemostas., 62, 840–845

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1992 Macmillan Publishers Limited

About this chapter

Cite this chapter

Wainwright, C.L., Parratt, J.R. (1992). Platelet-derived Substances in Acute Myocardial Injury. In: Parratt, J.R. (eds) Myocardial Response to Acute Injury. Palgrave, London. https://doi.org/10.1007/978-1-349-12522-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12522-7_9

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12524-1

  • Online ISBN: 978-1-349-12522-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics