Light Scattering Spectroscopy Studies of the Water Molecules in DNA

  • N. J. Tao
Part of the Topics in Molecular and Structural Biology book series (TMSB)


The water molecules surrounding DNA are usually described in terms of a primary hydration shell and a secondary hydration shell (Saenger, 1984; Texter, 1978). Various experiments indicate that the primary hydration contains 20–25 water molecules per nucleotide pair. The size of the secondary hydration shell is less clear (Saenger, 1984; Texter, 1978). To understand the roles water plays in DNA properties at a microscopic level, it is essential to know the structure of the DNA hydration shells. There have been many studies of the structure of the DNA hydration shells, although a complete understanding of the structure is still lacking. The most direct method is probably X-ray crystallography, and it has been used to locate the water molecules in DNA single crystals. For example, Kopka et al. (1983) and Kennard et al. (1986) studied water structure in various oligonucleotide single crystals using high-resolution X-ray diffraction. Various water bridges that depend on DNA conformation have been observed in DNA. However, this method can only locate a small fraction of the water molecules in the hydration shells, since most water molecules diffuse too rapidly, and it is also limited to DNA single crystals. Infrared spectroscopy has been used by many workers (e.g. Blinska and Wilczk, 1976; Falk et al., 1970; Pilet et al., 1975). Falk et al. (1970) studied the infrared spectrum of DNA and water in the region of 400–4000 cm−1 (1 cm−1 = 30 GHz) as a function of relative humidity (r.h.).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, A.S. and Hopfield, J.J. (1964). Coupled optical phonon mode theory of infrared dispersion in BaTiO3, SrTiO3 and KTaO3. Phys. Rev., 135, 1732–1737CrossRefGoogle Scholar
  2. Berne, B.J. and Percora, R. (1976). Dynamic Light Scattering. Wiley, New YorkGoogle Scholar
  3. Bertolini, D., Cassettari, M. and Salvetti, G. (1982). The dielectric relaxation time of supercooled water. J. Chem. Phys., 76, 3285–3290CrossRefGoogle Scholar
  4. Blinska, B. and Wilczk, T. (1976). IR hydration studies of DNA salts. Stud. Biophys., 55, 81–86Google Scholar
  5. Blumberg, R., Stanley, H.E., Geiger, A. and Mausbach, P. (1984). Connectivity of hydrogen bonds in liquid water. J. Chem. Phys., 80, 5230–5241CrossRefGoogle Scholar
  6. Brody, E.M. and Cummins, H.Z. (1968). Brillouin scattering study of ferroelectric transition in KH2PO4. Phys. Rev. Lett., 21, 1263–1266CrossRefGoogle Scholar
  7. Brunauer, S., Emmett, P.H. and Teller, E. (1938). Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60, 309–319CrossRefGoogle Scholar
  8. Conway, B.E. (1981). Ionic Hydration in Chemistry and Biophysics. Elsevier, New YorkGoogle Scholar
  9. Corongiu, G. and Clementi, E. (1981). Simulation of the solvent structure for macromolecules: Structure of water solvation Na+ B-DNA at 300 K and a model for conformational transition induced by solvent variation. Biopolymers, 20, 2427–2483CrossRefGoogle Scholar
  10. Cross, T.E. and Pethig, R. (1983). Microwave studies of the interaction of DNA and water in the temperature range of 90–300 K. Int. J. Quant. Chem. Quant. Biol. Symp., 10, 143–152Google Scholar
  11. DeMarco, C., Lindsay, S.M., Pokorny, M., Powell, J. and Rupprecht, A. (1986). Interhelical effects on the low-frequency modes and phase transitions of Li-and Na-DNA. Biopolymers, 24, 2035–2040CrossRefGoogle Scholar
  12. Eyster, J.M. and Prohofsky, E.W. (1974). Lattice vibrational modes of poly(rU) and poly(rA). Biopolymers, 13, 2505–2526CrossRefGoogle Scholar
  13. Falk, M. (1966). A gravimetric study of hydration of polynucleotides. Can. J. Chem., 44, 1107–1111CrossRefGoogle Scholar
  14. Falk, M., Hartman K.A., Jr., and Lord, R.C. (1963). Deoxyribonucleic acid, a gravimetric study. J. Am. Chem. Soc., 84, 3843–3846CrossRefGoogle Scholar
  15. Falk, M., Poole, A.G. and Goymour, C.G. (1970). Infrared study of the state of water in the hydration shell of DNA. Can. J. Chem., 48, 1536–1542CrossRefGoogle Scholar
  16. Green, J.L., Lacey, A.R. and Sceats, M.G. (1986). Spectroscopic evidence for spatial correlations of hydrogen bonds in liquid water. J. Phys. Chem., 90, 3958–3964CrossRefGoogle Scholar
  17. Green, J.L., Lacey, A.R. and Sceats, M.G. (1987a). Collective proton motions in H2O/H2O2 mixtures — evidence for defects and network reconstruction. J. Chem. Phys., 86, 1841–1847CrossRefGoogle Scholar
  18. Green, J.L., Lacey, A.R. and Sceats, M.G. (1987b). Determination of the total hydration number of a LiCl cation anion pair via collective proton motions. J. Chem. Phys. Lett., 134, 385–391CrossRefGoogle Scholar
  19. Green, J.L., Lacey, A.R. and Sceats, M.G. (1987c). Collective small amplitude proton motions in hydration shells of aqueous alcohol solutions. J. Chem. Phys. Lett., 137, 537–542CrossRefGoogle Scholar
  20. Grimm, H., Stiller, H., Majkrzak, C.F., Rupprecht, A. and Dahlborg, U. (1987). Observation of acoustic umklamp phonons in water stabilized DNA by neutron scattering. Phys. Rev. Lett., 59, 1780–1783CrossRefGoogle Scholar
  21. Hakim, M.B., Lindsay, S.M. and Powell, J.W. (1984). The speed of sound in DNA. Biopolymers, 23, 1185–1192CrossRefGoogle Scholar
  22. Hasted, J.B. (1972). In Frank, F. (Ed.), Water: A Comprehensive Treatise, Vol. 1. Plenum Press, New YorkGoogle Scholar
  23. Hearst, J.E. (1965). Determination of dominant factions which influence net hydration of native sodium deoxyribonuclates. Biopolymers, 3, 57–68CrossRefGoogle Scholar
  24. Hearst, J.E. and Vinograd, J. (1961). Net hydration deoxyribonucleic acid. Proc. Natl Acad. Sci. USA, 47, 825, 999, 1005–1014Google Scholar
  25. Kennard, O., Cruse, W.B.T., Nachman, J., Prange, T., Shakked, Z. and Rabinovich, D. (1986). Ordered water structure in an A-DNA octamer at 1.7 Å resolution. J. Biomol. Struct. Dyn., 3, 623–647CrossRefGoogle Scholar
  26. Klug, D.D., Mishima, O and Whally, E. (1987). High density amorphous ice, Raman spectrum of the uncoupled O-H and O-D oscillators. J. Chem. Phys., 86, 5323–5331CrossRefGoogle Scholar
  27. Klug, D.D. and Whally, E. (1984). The uncoupled OH stretch in ice, the infrared frequency and integrated intensity up to 189 kbar. J. Chem. Phys., 81, 1220–1228CrossRefGoogle Scholar
  28. Kopka, M.L., Fratini, A.V., Drew, H.R. and Dickerson, R.E. (1983). Ordered water structure around a B-DNA dodecamer, a quantitative study. J. Mol. Biol., 163, 129–146CrossRefGoogle Scholar
  29. Kubo, R. (1966). Fluctuation dissipation theorem. Rep. Prog. Phys., 29, 255–284CrossRefGoogle Scholar
  30. Kuntz, I.D., Brassfield, T.S., Law, G.D. and Purcell, G.V. (1969). Hydration of macromolecules. Science, 163, 1329–1331CrossRefGoogle Scholar
  31. Lee, S.A., Lindsay, S.M., Powell, J.W., Weidlich, T., Tao, N.J., Lewen, G.D. and Rupprecht, A. (1988). A Brillouin study of the hydration of Li-and NaDNA films. Biopolymers, 26, 1637–1665CrossRefGoogle Scholar
  32. Lewin, S.J. (1967). Some aspects and stability of native state of DNA. Theoret. Biol., 17, 181–212CrossRefGoogle Scholar
  33. Lindsay, S.M., Anderson, M.W. and Sanderscock, J.R. (1981). Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer. Rev. Sci. Instrum., 52, 1478–1486CrossRefGoogle Scholar
  34. Lindsay, S.M., Lee, S., Powell, J.W., Weidlich, T., DeMarco, C., Lewen, G.D., Tao, N.J. and Rupprecht, A. (1988). The origin of A to B transition in DNA fibers an. films. Biopolymers, 27, 1015–1043CrossRefGoogle Scholar
  35. Lindsay, S.M., Powell, J., Prohofsky, E.W. and Devi-Prasad, K.V. (1985). Lattice modes and local modes in double helical DNA. In Clementi, E., Corogiu, G., Sarma, M.H. and Sarma, R.H. (Eds), Structure and Motion in Membranes, Nucleic Acids and Proteins. Adenine Press, Schenectady, N.Y., pp. 531–551Google Scholar
  36. Lindsay, S.M. and Tao, N.J. (1988). The active role water in DNA. In Sarma, R.H. and Sarma, M.H. (Eds), Structure and Expression, Vol. 2: DNA and Its Drug Complexes. Adenine Press, Schenectady, N.Y., pp. 217–218Google Scholar
  37. Nimtz, G. (1986). Magic number of water molecules bounds between lipid bilayers. Phys. Scripta, T13, 172–177CrossRefGoogle Scholar
  38. Pilet, J., Blicharski, J. and Brahms, J. (1975). Conformation and structure transition in polydeoxynucleic acids. Biochemistry, 14, 1869CrossRefGoogle Scholar
  39. Prescott, B., Steinmetz, W. and Thomas, G.J. (1984). Raman spectral studies of nucleic acids, characterization of DNA structures by laser Raman spectroscopy. Biopolymers, 23, 235–256CrossRefGoogle Scholar
  40. Rupprecht, A. and Forslind, B. (1970). Variation of electrolyte content in wetspun lithium and sodium DNA. Biochem. Biophys. Acta, 204, 304–316Google Scholar
  41. Saenger, W. (1984). Principles of Nucleic Acid Structure. Springer-Verlag, BerlinCrossRefGoogle Scholar
  42. Sandercock, J.R. (1982). Trends in Brillouin scattering — studies of opaque materials, supported films and central modes. J. Appl. Phys., 51, 173–206CrossRefGoogle Scholar
  43. Sceats, M.G. and Rice, S.A. (1983). In Frank, F. (Ed.), Water: A Comprehensive Treatise, Vol. 7. Plenum Press, New YorkGoogle Scholar
  44. Schreiner, L.J., Pintar, M.M., Dianoux, A.J., Volino, F. and Rupprecht, A. (1987). Hydration of Na-DNA by neutron quasi-elastic neutron scattering. Biophys. J., 53, 119–122CrossRefGoogle Scholar
  45. Singh, G.P., Parak, F., Hunklinger, S. and Dransfield, K. (1981). Role of adsorbed water in the dynamics of metmyoglobin. Phys. Rev. Lett., 47, 685–688CrossRefGoogle Scholar
  46. Sokoloff, J.B. (1988). Bull. Am. Phys. Soc., 33, 556–586Google Scholar
  47. Swamy, K.N. and Clementi, E. (1987). In Clementi, E. and Chin, S. (Eds), Structure and Dynamics of Nucleic Acids, Proteins and Membranes. Plenum Press, New York, pp. 219–238Google Scholar
  48. Tao, N.J. (1988). Structure and Dynamics of Hydrated DNA Studied by Laser Spectroscopy. PhD Dissertation, Arizona State UniversityGoogle Scholar
  49. Tao, N.J., Lindsay, S.M. and Rupprecht, A. (1987). Dynamics of DNA hydration shells at GHz frequencies studied by Brillouin scattering. Biopolymers, 26, 171–186CrossRefGoogle Scholar
  50. Tao, N.J., Lindsay, S.M. and Rupprecht, A. (1988). Dynamic coupling of DNA and its primary hydration shell. Biopolymers, 27, 1655–1671CrossRefGoogle Scholar
  51. Tao, N.J., Lindsay, S.M. and Rupprecht, A. (1989). Structure of DNA hydration shell studied by Raman scattering. Biopolymers, 28, 1019–1030CrossRefGoogle Scholar
  52. Texter, J. (1978). Nucleic acid-water interaction. Prog. Biophys. Mol. Biol., 33, 83–97CrossRefGoogle Scholar
  53. Tominaga, Y., Shida, M., Kubota, K., Urabe, H., Nishimura, Y. and Tsuoi, M. (1985). Coupled dynamics between DNA double helix and hydration water by low frequency Raman spectroscopy. J. Chem. Phys., 83, 5972–5975CrossRefGoogle Scholar
  54. Tunis, M.J.B. and Hearst, J.E. (1968). On hydration of DNA. 1. Preferential hydration and stability of DNA in concentrated trifluoroacetate solution. Biopolymers, 6, 1325–1344CrossRefGoogle Scholar
  55. Van Zandt, L.L. (1986). Resonant microwave absorption by dissolved DNA. Phys. Rev. Lett., 57, 2085–2088CrossRefGoogle Scholar
  56. Van Zandt, L.L. and Davis, M.E. (1986). Theory of the anomalous resonant absorption of DNA at microwave frequencies. J. Biomol. Struct. Dyn., 3, 1045–1053CrossRefGoogle Scholar
  57. Walrafen, E. (1964). Raman spectral studies of water structure. J. Chem. Phys., 40, 3249–3256CrossRefGoogle Scholar
  58. Walrafen, E. (1971). In Frank, F. (Ed.), Water: A Comprehensive Treatise, Vol. 1. Plenum Press, New YorkGoogle Scholar
  59. Wang, J.H. (1955). The hydration of deoxyribonucleic acid. J. Am. Chem. Soc., 77, 258–260CrossRefGoogle Scholar
  60. Weiss, W., Enders, A. and Nimtz, G. (1986). Connectivity of hydrogen bond in water between lecithin bilayers. Phys. Rev., A33, 2137–2139CrossRefGoogle Scholar
  61. Whally, E. (1977). Detailed assignment of O-H stretching bands of ice I. Can. J. Chem., 55, 3429–3441CrossRefGoogle Scholar
  62. Wittlin, A., Genzel, L., Kremer, F., Haseler, S. and Poglitsch, A. (1986). Far infrared spectroscopy on oriented films of dry and hydrated DNA. Phys. Rev., A34, 493–500CrossRefGoogle Scholar
  63. Wong, P.T.T. and Whally, E. (1977). Optical spectra of orientationally disordered crystal, Raman spectrum of ice I in range of 4000–350 cm−1. J. Chem. Phys., 62, 2418–2425CrossRefGoogle Scholar

Copyright information

© The contributors 1993

Authors and Affiliations

  • N. J. Tao

There are no affiliations available

Personalised recommendations