Skip to main content

Hydration of Amino Acids in Protein Crystals

  • Chapter

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

The interactions of water molecules with proteins have been of interest for a long time. This stems from the role of water in protein folding, during which apolar side-chains tend to be buried in the centre of the protein (thus reducing their contact with aqueous solvent). On folding, intramolecular hydrogen bonds are formed at the expense of protein—solvent hydrogen bonds. The fully folded protein retains many interactions with its aqueous media, since not all polar main chain or side-chain groups are involved in intramolecular hydrogen bonds, leaving unfilled potential hydrogen bond donor and acceptor atoms. Many apolar groups are also found on the surface in contact with water molecules.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlstrom, P., Teleman, O. and Jonsson, B. (1988). Molecular dynamics simulations of interfacial water structure and dynamics in a parvalbumin solution. J. Am. Chem. Soc., 110, 4198–4203

    Article  Google Scholar 

  • Artymuik, P.J. and Blake, C.C.F. (1981). Refinement of human lysozyme at 1.5 Å resolution. J. Mol. Biol., 152, 737–762

    Article  Google Scholar 

  • Baker, E.N. (1980). Structure of Actinidin, after refinement at 1.7 Å resolution. J. Mol. Biol., 141, 441–484

    Article  Google Scholar 

  • Baker, E.N., Dodson, E., Dodson, G., Hodgkin, D. and Hubbard, R.E. (1985). The water structure in 2 Zn insulin crystals. In Moras, D., Drenth, J., Strandberg, B., Suck, D. and Wilson, K. (Eds), Crystallography of Molecular Biology. Plenum Press, New York, pp. 179–192

    Google Scholar 

  • Baker, E.N. and Hubbard, R.E. (1984). Hydrogen bonding in globular proteins. Prog. Biophys., Mol. Biol., 44, 97–179

    Article  Google Scholar 

  • Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977). The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol., 112, 535–542

    Article  Google Scholar 

  • Betzel, C., Pal, G.P. and Saenger, W. (1988). Synchrotron X-ray data collection and restrained least squares refinement of the crystal structure of proteinase K at 1.5 Å resolution. Acta Cryst., B44, 163–172

    Article  Google Scholar 

  • Blundell, T.L., Jenkins, J.A., Sewell, B.T., Pearl, L.H., Cooper, J.B., Tickle, I.J., Veerapandian, B. and Wood, S.P. (1990). X-ray analyses of aspartic proteinases. J. Mol. Biol., 211, 919–941

    Article  Google Scholar 

  • Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J. (1982). Crystal structures of E. coli and L. casei dihydrofolate reductase at 1.7 Å. resolution. J. Biol. Chem., 257, 13650–13662

    Google Scholar 

  • Borkakoti, N., Moss, D.S. and Palmer, R.A. (1982). Ribonuclease A: Least squares refinement of the structure at 1.45 Å resolution. Acta Cryst., B38, 2210–2217

    Article  Google Scholar 

  • Dijkstra, B.W., Kalk, K.H., Hol, W.G.J. and Drenth, J. (1981). Structure of bovine pancreatic phospholipase A2 at 1.7 Å resolution. J. Mol. Biol., 147, 97–123

    Article  Google Scholar 

  • Dixon, A.D. and Lipscomb, W.N. (1986). Electronic structure and bonding of amino acids containing first row atoms. J. Biol. Chem., 251, 5992–6000

    Google Scholar 

  • Faerman, C.H. and Price, S.A. (1990). A transferable distributed multipole model for the electrostatic interactions of peptides and amides. J. Am. Chem. Soc., 112, 4915–4926

    Article  Google Scholar 

  • Finney, J.L. (1979). The organization and function of water in protein crystals. In Franks, F. (Ed.), Water: A Comprehensive Treatise, Vol. 6. Plenum Press, New York, pp. 47–122

    Chapter  Google Scholar 

  • Finzel, B.C., Poulos, T.L. and Kraut, J. (1984). Crystal structure of yeast cytochrom C peroxidase refined at 1.7 Å resolution. J. Biol. Chem., 259, 13027–13036

    Google Scholar 

  • Furey, W., Wang, B.C., Yoo, C.S. and Sax, M. (1983). Structure of a novel Bence-Jones protein (Rhe) fragment at 1.6 Å resolution. J. Mol. Biol., 167, 661–692

    Article  Google Scholar 

  • Goodfellow, J.M., Jones, D.M., Laskowski, R.A., Moss, D.S., Saqi, M., Thanki, N. and Westlake, R. (1990). Use of parallel processing in the study of protein-ligand binding. J. Comp. Chem., 11, 314–325

    Article  Google Scholar 

  • Goodfellow, J.M., Thanki, N. and Thornton, J.M. (1989). Preliminary analysis of water molecule distributions in proteins. Mol. Simulation, 3, 167–182

    Article  Google Scholar 

  • Goodfellow, J.M. and Vovelle, F. (1989). Biomolecular energy calculations using transputer technology. Eur. Biophys. J., 17, 167–172

    Article  Google Scholar 

  • Gray, T.M. and Matthews, B.W. (1984). Intrahelical hydrogen bonding of serine, threonine and cysteine residues within a-helices and its relevance to membrane bound proteins. J. Mol. Biol., 175, 75–81

    Article  Google Scholar 

  • Guss, J.M. and Freeman, H.C. (1983). Structure of oxidized poplar plastocyanin at 1.6 Å resolution. J. Mol. Biol., 169, 521–563

    Article  Google Scholar 

  • Holmes, M.A. and Matthews, B.W. (1982). Structure of thermolysin refined at 1.6 Å resolution. J. Mo!. Bio!., 160, 623–639

    Article  Google Scholar 

  • Jones, T.A. (1978). A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr., 11, 268–272

    Article  Google Scholar 

  • Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure pattern recognition of hydrogen bonded and geometrical features. Biopolymers, 22, 2577–2637

    Article  Google Scholar 

  • Levitt, M. (1983). Molecular dynamics of native protein. I. Computer simulation of trajectories. J. Mol. Biol., 168, 595–620

    Article  Google Scholar 

  • McGregor, M.J., Islam, S.A. and Sternberg, M. (1987). Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J. Mol. Biol., 198, 295–310

    Article  Google Scholar 

  • Momany, F.A., McGuire, R.F., Burgess, A.W. and Scheraga, H.A. (1975). Energy parameters in polypeptides VII. J. Phys. Chem., 79, 2361–2381

    Article  Google Scholar 

  • Najmudin, S. and Slingsby, C. (1989). Personal communication

    Google Scholar 

  • Ochi, H., Hata, J.H., Tanaka, N., Kakuda, M., Sakurai, T., Aihara, S. and Morita, Y. (1983). Structure of rice ferricytochrome C at 2.0 Å resolution. J. Mol. Biol., 166, 407–418

    Article  Google Scholar 

  • Phillips, S.E.V. (1980). Structure and refinement of oxymyoglobin at 1.6 Å resolution. J. Mol. Biol., 142, 531–554

    Article  Google Scholar 

  • Pitt, W. and Goodfellow, J.M. (1991). Modelling of solvent positions around polar side-chains in proteins. Protein Engng, 4, 531–537

    Article  Google Scholar 

  • Poulos, T.L., Finzel, B.C. and Howard, A.J. (1987). High resolution crystal structure of cytochrome P450cam. J. Mol. Biol., 195, 687–700

    Article  Google Scholar 

  • Rees, D.C., Lewis, M. and Lipscomb, W.N. (1983). Refined crystal structure of carboxypeptidase A at 1.54 Å resolution. J. Mol. Biol., 168, 367–387

    Article  Google Scholar 

  • Singh, J. and Thornton, J.M. (1990). SIRIUS. An automated method for the analysis of the preferred packing arrangements between protein groups. J. Mol. Biol., 211, 595–615

    Article  Google Scholar 

  • Smith, J.L., Corfield, P.W.R., Hendrickson, W.A. and Low, B.W. (1988). Refinement at 1.4 Å resolution of a model of erabutoxin: treatment of ordered solvent and discrete disorder. Acta Cryst., A44, 357–368

    Article  Google Scholar 

  • Steigemann, W. and Weber, E. (1979). Structure of erythrocruorin in different ligand states at 1.4 Å resolution. J. Mol. Biol., 127, 309–338

    Article  Google Scholar 

  • Sundaralingam, M. and Sekhurudu, Y.C. (1989). Water inserted in a-helical segments implicate reverse turns as folding intermediates. Science, 244, 1333–1337

    Article  Google Scholar 

  • Takano, T. and Dickerson, R.E. (1980). Redox conformation changes in refined tuna cytochrome C. Proc. Natl Acad. Sci. USA, 77, 6371–6375

    Article  Google Scholar 

  • Thanki, N., Thornton, J.M. and Goodfellow, J.M. (1988). Distribution of water around amino acids in proteins. J. Mo!. Bio!., 202, 637–657

    Article  Google Scholar 

  • Thanki, N., Thornton, J.M. and Goodfellow, J.M. (1990). Influence of secondary structure on the hydration of serine, threonine and tyrosine residues in proteins. Protein Engng, 3, 495–508

    Article  Google Scholar 

  • Thanki, N., Umrania, Y., Thornton, J.M. and Goodfellow, J.M. (1992). Analysis of protein main chain hydration. J. Mol. Biol., 221, 669–691

    Article  Google Scholar 

  • Thomas, K.A., Smith, G.M., Thomas, T.B. and Feldmann, R.J. (1982). Electronic distributions within protein phenylalanine aromatic rings are reflected by the three dimensional oxygen atom environments. Proc. Natl Acad. Sci. USA, 79, 4843–4847

    Article  Google Scholar 

  • Van Gunsteren, W.F. and Berendsen, H. (1984). Computer simulation as a tool for tracing the conformational differences between proteins in solution and in the crystalline state. J. Mol. Biol., 176, 559–564

    Article  Google Scholar 

  • Walshaw, J. and Goodfellow, J. (1993). Distribution of solvent molecules around apolar side-chains in protein crystals. J. Mol. Biol., submitted

    Google Scholar 

  • Walter, J., Steigemann, W., Singh, T.P., Bartunik, H., Bode, W. and Huber, R. (1982). On the disordered activation domain in trypsinogen. Acta Cryst., B38, 1462–1472

    Article  Google Scholar 

  • Watenpaugh, K.D., Sieker, L.C. and Jensen, L.H. (1980). Crystallographic refinement of rubredoxin at 1.2 Å resolution. J. Mol. Biol., 138, 615–633

    Article  Google Scholar 

  • Wlodawer, A., Walter, J., Huber, R. and Sjolin, L. (1984). Structure of bovine pancreatic trypsin inhibitor. J. Mol. Biol., 180, 301–329

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1993 The contributors

About this chapter

Cite this chapter

Goodfellow, J.M., Thanki, N., Thornton, J.M. (1993). Hydration of Amino Acids in Protein Crystals. In: Westhof, E. (eds) Water and Biological Macromolecules. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12359-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12359-9_3

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12361-2

  • Online ISBN: 978-1-349-12359-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics