Skip to main content

Thermodynamic and Dynamic Properties of Water

  • Chapter

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

Liquid water is the essential biological solvent for all life processes occurring in our planetary system. Human existence and most terrestrial life is confined to pressures around 0.1 MPa (≡ 1 bar). However, a large fraction of the biological production occurs in the oceans and thus at high pressures. The known biosphere on earth extends down into the abyssal depth of the oceanic trenches, where pressures up to 110 MPa at temperatures around 274 K are found.1,2

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jannosch, H.W., Marquis, R.E. and Zimmermann, A.M. (eds) (1987). Current Perspectives in High Pressure Biology. Academic Press, London

    Google Scholar 

  2. Gage, J.D. and Tyler, P.A. (1991). Deep-Sea Biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Bernal, J.D. and Fowler, R.H. (1933). A theory of water and ionic solutions, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys., 1, 515

    Article  Google Scholar 

  4. Rice, S.A. and Sceats, M.G. (1981). A random network model for water. J. Phys. Chem., 85, 1108

    Article  Google Scholar 

  5. Sceats, M.G., Stavola, M. and Rice, S.A. (1980). A random network model calculation of the free energy of liquid water. J. Chem. Phys., 72, 6183

    Article  Google Scholar 

  6. Henn, A.R. and Kauzmann, W. (1989). Equation of state of a random network, continuum model of liquid water. J. Phys. Chem., 93, 3770

    Article  Google Scholar 

  7. Eisenberg, D. and Kauzmann, W. (1969). The Structure and Properties of Water. Oxford University Press, Oxford

    Google Scholar 

  8. Angell, C.A. (1983). Supercooled water. Ann. Rev. Phys. Chem., 34, 593

    Article  Google Scholar 

  9. Angell, C.A. (1982). In Franks, F. (Ed.), Water: A Comprehensive Treatise, Vol.7. Plenum Press, New York, pp. 1

    Google Scholar 

  10. Lang, E.W. and Lüdemann, H.-D. (1982). Anomalies of liquid water. Angew. Chem. Int. Ed. Engl., 21, 315

    Article  Google Scholar 

  11. Franks, F. (1975). The hydrophobic interaction. In Franks, F. (Ed.), Water: A Comprehensive Treatise, Vol. 4. Plenum Press, New York, pp. 1

    Chapter  Google Scholar 

  12. Weingärtner, M. (1982). Self diffusion in liquid water: A reassessment. Zeitschr. Phys. Chem., 132, 129

    Google Scholar 

  13. Prielmeier, F.X., Lang, E.W., Speedy, R.J. and Lüdemann, H.-D. (1988). The pressure dependence of self diffusion in supercooled light and heavy water. Ber. Bunsenges. Phys. Chem., 92, 1111

    Article  Google Scholar 

  14. Lang, E.W., Prielmeier, F.X., Radkowitsch, H. and Ludemann, H.-D. (1987). High pressure NMR study of the molecular dynamics of liquid methylfluoride and deutero-methylfluoride. Ber. Bunsenges. Phys. Chem., 91, 1017

    Article  Google Scholar 

  15. Karger, N., Vardag, T. and Lüdemann, H.-D. (1990). Temperature dependence of self diffusion in compressed monohydric alcohols. J. Chem. Phys., 93, 3437

    Article  Google Scholar 

  16. Kaatze, U. (1989). Complex permittivity of water as function of frequency and temperature. J. Chem. Eng. Data, 34, 371

    Article  Google Scholar 

  17. Lang, E.W. and Lüdemann, H.-D. (1981). High pressure O-17 longitudinal relaxation time studies in supercooled HZO and D2O. Ber. Bunsenges. Phys. Chem., 85, 603

    Article  Google Scholar 

  18. Lang, E.W., Lüdemann, H.-D. and Piculell, L. (1984). Nuclear-magnetic relaxation rate dispersion in supercooled heavy water under high pressure. J. Chem. Phys., 81, 3820

    Article  Google Scholar 

  19. Lang, E.W., Girlich, D., Lüdemann, H.-D., Piculell, L. and Müller, D. (1990). Proton spin-lattice relaxation rate in supercooled H2O and H <inline-eqation> O under high pressure. J. Chem. Phys., 93, 4796

    Article  Google Scholar 

  20. Montrose, G.J., Bacaro, J.A., Marshall-Coaldey, J. and Litowitz, T.A. (1974). Depolarized Rayleigh scattering and hydrogen bonding in liquid water. J. Chem. Phys., 60, 5025

    Article  Google Scholar 

  21. Danninger, W. and Zundel, G. (1981). Intense depolarized Rayleigh scattering in Raman spectra caused by large proton polarisibility of hydrogen bonds. J. Chem. Phys., 74, 2769

    Article  Google Scholar 

  22. Conde, G. and Teixeira, J. (1983). Hydrogen bond dynamics studied by depolarized Rayleigh scattering. J. Phys. (Paris)., 44, 525

    Article  Google Scholar 

  23. Debye, P. (1929). Polar Molecules. Chemical Catalogue. New York

    Google Scholar 

  24. Spiess, H.W. (1978). Rotation of molecules and nuclear spin relaxation. In Diehl, P., Fluck, E. and Kosfeld, R. (Eds), NMR-Basic Principles and Progress, Vol. 15. Springer, Berlin, Heidelberg. New York. pp. 55 ff

    Google Scholar 

  25. Lang, E.W. and Lüdemann, H.-D. (1991). High pressure NMR studies on water and aqueous solutions. In Diehl, P., Fluck, E. and Kosfeld, R. (Eds), NMR-Basic Principles and Progress, Vol. 24. Springer, Berlin, Heidelberg, New York, pp. 129 ff

    Google Scholar 

  26. Kraus, P. (1977). Liquids and Solutions. Marcel Dekker, New York, Basel, p. 131

    Google Scholar 

  27. Chen, S.H. (1991). Quasi-elastic and inelastic neutron scattering and molecular dynamics of water at supercooled temperatures. In Dore, J.C. and Teixera, J. (Eds), Hydrogen Bonded Liquids. Kluwer, Dordrecht, Boston, London, pp. 289 ff

    Chapter  Google Scholar 

  28. Harlow, A. (1967). Further Investigation into the Effect of High Pressure on the Viscosity of Liquids. PhD Thesis. University of London

    Google Scholar 

  29. De Fries, T. and Jonas, J. (1977). Molecular motions in compressed liquid heavy water at low temneratures J. Chem Phys., 66, 5393

    Article  Google Scholar 

  30. Pottel, R., Asselborn, E., Eck, R. and Tresp, V. (1989). Dielectric relaxation rate and static dielectric permittivity of water and aqueous solutions at high pressures. Ber. Bunsenges. Phys. Chem., 93. 676

    Article  Google Scholar 

  31. Franks, F., (Ed.) (1972–1982). Water: A Comprehensive Treatise, Vols 1–7. Plenum Press, New York

    Google Scholar 

  32. Franks, F., (Ed.) (1985–1991). Water Science Reviews, Vols 1–5. Cambridge University Press, Cambridge

    Google Scholar 

  33. Woznyj, M. (1985). Hochdruck Kernresonanzuntersuchungen zur molekularen Dynamik und Struktur des binären Systems t-Butanol/D2 O. Dissertation, Universität Regensburg

    Google Scholar 

  34. Has, M. (1991). Kernresonanzuntersuchungen an einem Modellsystem zur Untersuchung der hydrophoben Wechselwirkung bei hohen Drücken. Dissertation, Universität Regensburg. S. Roderer Verlag, Regensburg

    Google Scholar 

  35. Lüdemann, H.-D. (1987). Water and aqueous solutions under pressure. In Jannosch, H.W., Marquis, R.E. and Zimmermann, A.M. (Eds). Current Perspectives in High Pressure Biology. Academic Press, London, pp. 273 ff

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1993 The contributors

About this chapter

Cite this chapter

Lüdemann, H.D. (1993). Thermodynamic and Dynamic Properties of Water. In: Westhof, E. (eds) Water and Biological Macromolecules. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12359-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12359-9_2

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12361-2

  • Online ISBN: 978-1-349-12359-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics