Skip to main content

Polysaccharide Interactions with Water

  • Chapter

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

Carbohydrates are among the most abundant organic molecules in living nature. Carbohydrate molecules are distinguished by a long history of involvement in the fundamental process of life (Marchessault, 1984). They are also ubiquitous in Nature, where they play an essential role in promoting structure and texture or establishing storage. Their implications in biological recognition through carbohydrate-mediated information transfer have also been established. The primary structures of polysaccharides vary in composition, sequence, molecular weight, anomeric configuration, linkage position and charge density. As a consequence, an almost infinite array of chemical structures and conformations can be generated for polysaccharides. Additional variability may arise from environmental changes such as ionic strength and degree of hydration. More information about polysaccharides can be found in an excellent monograph by Yalpani (1988).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnott,. (1980). 30 years hard labor as a fiber diffractionist. In French, A.D. and Gardner, K.H. (Eds), Fiber-Diffraction Methods. American Chemical Society, Washington, D.C., pp. 1–30

    Chapter  Google Scholar 

  • Arnott, S., Fulmer, A., Scott, W.E., Dea, I.C.M., Moorhouse, R. and Rees, D.A. (1974a). The agarose double-helix and its function in agarose gel structure. J. Mol. Biol., 90, 269–284

    Article  Google Scholar 

  • Arnott, S. and Mitra, A.K. (1984). In Arnott, S., Rees, D.A. and Morris, E.R. (Eds), Molecular Biophysics of the Extracellular Matrix. Humana Press, Clifton, N.J., pp. 41–67

    Chapter  Google Scholar 

  • Arnott, S., Scott, W.E., Rees, D.A. and McNab, G.C.A. (1974b). i-Carrageenan. Molecular structure and packing of polysaccharide double helices in oriented fibers of divalent cation salts. J. Mol. Biol., 90, 253–267

    Article  Google Scholar 

  • Atkins, E.D.T., Farnell, S., Mackie W. and Scheldrick, B. (1988). Crystalline structure and packing of mannan I. Biopolymers, 27, 1097–1105

    Article  Google Scholar 

  • Bluhm, T., Deslandes, Y., Marchessault, R.H. and Sundarajan, P.R. (1980). New insights into the crystal structure hydration of polysaccharides. In Water in Polymers. ACS Symposium Series, pp. 253–272

    Chapter  Google Scholar 

  • Brisse, F. (1991). Electron diffraction of polymer single crystal. In Fryer, J.R. and Dorset, D.C. (Eds), Electron Crystallography of Organic Molecules. Kluwer, Dordrecht, pp. 63–75

    Chapter  Google Scholar 

  • Chandrasekaran, R., Millane, R.P., Arnott, S. and Atkins, E.D.T. (1988a). The crystal structure of gellan. Carbohydr. Res., 175, 1–15

    Article  Google Scholar 

  • Chandrasekaran, R., Puigjaner, L.C., Joyce, K.L. and Arnott, S. (1988b). Cation interactions in gellan: An X-ray study of the potassium salt. Carbohydr. Res., 181, 23–40

    Article  Google Scholar 

  • Chandrasekaran, R. and Tailambal, V.G. (1990). A new generation of gel-forming polysaccharides: an x-ray study. In French, A.D. and Brady, J.W. (Eds), Computer Modelling of Carbohydrate Molecules. American Chemical Society, Washington, D.C., pp. 300–314

    Chapter  Google Scholar 

  • Chanzy, H., Excoffier, G. and Guizard, C. (1981). Single crystals of dextran: High temperature polymorph. Carbohydr. Polym., 1, 67–77

    Article  Google Scholar 

  • Chanzy, H., Guizard, C. and Sarko, A. (1980). Single crystals of dextran: Low temperature polymorph. Int. J. Biol. Macromol., 2, 149–153

    Article  Google Scholar 

  • Chanzy, H.D., Pérez, S., Miller, D.P., Paradossi, G. and Winter, W.T. (1987). An electron diffraction study of the mannan I crystal and molecular structure. Macromolecules, 20, 2407–2413

    Article  Google Scholar 

  • Chanzy, H., Roche, E. and Vuong, R. (1971). Electron diffraction of cellulose triacetate single crystals. Kolloid Z.Z. Polym., 198, 1034–1035

    Article  Google Scholar 

  • Chanzy, H. and Vuong, R. (1985). Ultrastructure and morphology of crystalline polysaccharide. In Atkins, E.D.T. (Ed.), Polysaccharides—Topics in Structure and Morphology. Macmillan Press, London, pp. 41–71

    Google Scholar 

  • Chien, Y.Y. and Winter, W.T. (1985). Accurate lattice constants for tara gum. Macromolecules, 18, 1357–1359

    Article  Google Scholar 

  • Clementi, E. and Corongiu, G. (1981). In Sarma, R.H. (Ed.), Biomolecular Stereodynamics. Adenine Press, Schenectady, N.Y., pp. 209–259

    Google Scholar 

  • Corongiu, G., Fornili, S.L. and Clementi, E. (1983). Hydration of agarose double helix: A Monte Carlo simulation. Int. J. Quantum Chem., 10, 277–291

    Google Scholar 

  • Foord, S.A. and Atkins, E.D.T. (1989). New X-ray diffraction results from agarose: Extended single helix structures and implications for gelation mechanism. Biopolymers, 28, 1345–1365

    Article  Google Scholar 

  • Gardner, K.H. and Blackwell, J. (1974). Structure of native cellulose. Biopolymers, 13, 1975–2001

    Article  Google Scholar 

  • Gidley, M. (1987). Factors affecting the crystalline type (A-C) of native starches and model compounds: A rationalization of observed effects in terms of polymorphic structures. Carbohydr. Res., 161, 301–304

    Article  Google Scholar 

  • Guizard, C. (1980). PhD Dissertation Thesis, University of Grenoble, France

    Google Scholar 

  • Guizard, C., Chanzy, H. and Sarko, A. (1984). Molecular and crystal structure of dextrans: A combined electron and X-ray diffraction study. I. The anhydrous high-temperature polymorph. Macromolecules, 17, 100–107

    Article  Google Scholar 

  • Guizard, C., Chanzy, H. and Sarko, A. (1985). Molecular and crystal structure of dextrans: A combined electron and X-ray diffraction study. II. A low temperature, hydrated polymorph. J. Mol. Biol., 183, 397–408

    Article  Google Scholar 

  • Hui, S.W. and Parsons, D.F. (1974). Electron diffraction of wet biological membranes. Science, 184, 77–78

    Article  Google Scholar 

  • Imberty, A., Buléon, A., Tran, V. and Perez, S. (1991). Recent advances in knowledge of starch structure. Starch/Starke, 43, 375–384

    Article  Google Scholar 

  • Imberty, A., Chanzy, H., Pérez, S., Buléon, A. and Tran, V. (1988). The double helical structure of A-starch. J. Mol. Biol., 201, 365–378

    Article  Google Scholar 

  • Imberty, A. and Pérez, S. (1988). A revisit to the three-dimensional structure of B-amylose. Biopolymers, 27, 1205–1221

    Article  Google Scholar 

  • Jeffrey, G.A. and Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  • Jimenez-Barbero, J., Bouffar-Roupe, C., Rochas, C. and Pérez, S. (1989). Modeling studies of solvent effects on the conformational stability of small relatives of agarose. Int. J. Biol. Macromol., 11, 265–272

    Article  Google Scholar 

  • Kolpak, F.J. and Blackwell, J. (1976). Determination of the structure of cellulose II. Macromolecules, 9, 273–278

    Article  Google Scholar 

  • Lechert, H.T. (1981). Water binding in starch: NMR studies on native and gelatinized starch. In Rockland, L.B. and Stewart, G.F. (Eds), Water Activity: Infiuences on Food Quality. Academic Press, London, pp. 223–245

    Chapter  Google Scholar 

  • Marchessault, R.H. (1984). Carbohydrate polymers: Nature’s high performance materials. In Vadenberg, E.J. (Ed.), Contemporary Topics in Polymer Sciences, Vol. 5. Plenum Publishing Corporation, York, pp. 15–53

    Chapter  Google Scholar 

  • Marchessault, R.H., Buléon, A., Deslandes, Y. and Goto, Y. (1979). Comparison of x-ray diffraction data of galactomannans. Colloid Interface Sci., 71, 375–382

    Article  Google Scholar 

  • Matricardi, U.R., Moretz, R.C. and Parsons, D.F. (1972). Electron diffraction of wet proteins. Catalase. Science, 177, 278–280

    Article  Google Scholar 

  • Millane, R.P., Chandrasekaran, R., Arnott, S. and Dea, I.C.M. (1988). The molecular structure of kappa-carrageenan and comparison with iotacarrageenan. Carbohydr. Res., 182, 1–17

    Article  Google Scholar 

  • Millane, R.P., Mitra, A.K. and Arnott, S. (1983). Chondroitin 4-sulfate: Comparison of the structures of the K+ and Na+ salts. J. Mol. Biol., 169, 903–920

    Article  Google Scholar 

  • Nishimura, H., Okano, T. and Sarko, A. (1991). Mercerization of cellulose. 5. Crystal and molecular structure of Na-cellulose I. Macromolecules, 24, 759–770

    Article  Google Scholar 

  • Nishimura, H. and Sarko, A. (1991). Mercerization of cellulose. 6. Crystal and molecular structure of Na-cellulose IV. Macromolecules, 24, 771–778

    Article  Google Scholar 

  • Okano, T. and Sarko, A. (1984). Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J. Appl. Polymer Sci., 29, 4175–4182

    Article  Google Scholar 

  • Okano, T. and Sarko, A. (1985). Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerizatio. mechanism. J. Appl. Polymer Sci., 30, 325–332

    Article  Google Scholar 

  • Pérez, S. (1991). Molecular modelling and electron diffraction of polysaccharides. In Langone, J. (Ed.), Methods in Enzymology: Molecular Design and Modeling: Concepts and Application. Academic Press, San Diego

    Google Scholar 

  • Perez, S. and Chanzy, H. (1989). Electron crystallography of linear polysaccharides. J. Electron Microsc. Techn., 11, 280–285

    Article  Google Scholar 

  • Perez, S., Imberty, A. and Scaringe, R.P. (1990). Modeling of the interactions of polysaccharide chains: Application to the crystalline polymorphism of starch granule. In French, A.D. and Brady, J.W. (Eds), Computer Modeling for Carbohydrate Molecules. ACS Symposium Series, 430, American Chemical Society, Washington, D.C., pp. 281–299

    Chapter  Google Scholar 

  • Sarko, A. and Muggli, R. (1974). Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecules, 7, 486–494

    Article  Google Scholar 

  • Sidebotham, R.L. (1974). Dextrans. In Tipson, R.S. and Horton, D. (Eds), Advances in Carbohydrate Chemistry and Biochemistry, Vol. 30. Academic Press, San Francisco, pp. 371–444

    Google Scholar 

  • Smith, P.J.C. and Arnott, S. (1978). LALS: A linked-atom least-squares reciprocal space refinement system incorporating stereochemical restraints to supplement sparse diffraction data. Acta Cryst., A34, 3–11

    Article  Google Scholar 

  • Song, B.K., Winter, W.T. and Taravel, F.R. (1989). Crystallography of highly substituted galactomannans: Fenugreek and lucerne gums. Macromolecules, 22, 2641–2644

    Article  Google Scholar 

  • Stipanovic, A.J. and Sarko, A. (1976). Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules, 9, 851–857

    Article  Google Scholar 

  • Taylor, K.A. and Glaeser, R.M. (1974). Electron diffraction of frozen, hydrated protein crystals. Science, 186, 1036–1037

    Article  Google Scholar 

  • Taylor, K.J., Chanzy, H. and Marchessault, R.H. (1975). Electron diffraction for hydrated crystalline biopolymers: Nigeran. J. Mol. Biol., 92, 165–167

    Article  Google Scholar 

  • Tran, V. and Buléon, A. (1987). Diffraction peak shapes: A profile refinement method for badly resolved powder diagrams. J. Appl. Crystallogr., 20, 430–436

    Article  Google Scholar 

  • Whistler, R.L. and Smart, C.L. (1953). Polysaccharide Chemistry. Academic Press, New York

    Google Scholar 

  • Williams, D.E. (1969). A method of calculating molecular crystal structures. Acta Cryst., A25, 464–470

    Article  Google Scholar 

  • Woodcock, C. and Sarko, A. (1980). Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of ramie cellulose. Macromolecules, 13, 1183–1187

    Article  Google Scholar 

  • Wu, H.C.H. and Sarko, A. (1978a). The double-helical molecular structure of crystalline B-amylose. Carbohydr. Res., 61, 7–25

    Article  Google Scholar 

  • Wu, H.C.H. and Sarko, A. (1978b). The double-helical molecular structure of crystalline A-amylose. Carbohydr. Res., 61, 27–40

    Article  Google Scholar 

  • Yalpani, M. (1988). Polysaccharides: Syntheses, Modifications and Structurel Property Relations. Elsevier, Amsterdam

    Google Scholar 

  • Yui, T., Ogawa, K. and Sarko, A. (1992). Molecular and crystal structure of the regenerated form of (1–3)-α-D-mannan. Carbohydr. Res., 229, 41–55

    Article  Google Scholar 

  • Zugenmaier, P. and Sarko, A. (1980). The variable virtual bond modelling techniques for solving polymer crystal structures. In Gardner, K. and French, A.D. (Eds), Fiber Diffraction Methods. ACS Symposium Series, 141, American Chemical Society, Washington, D.C., pp. 225–237

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1993 The contributors

About this chapter

Cite this chapter

Pérez, S. (1993). Polysaccharide Interactions with Water. In: Westhof, E. (eds) Water and Biological Macromolecules. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12359-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12359-9_10

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12361-2

  • Online ISBN: 978-1-349-12359-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics