Skip to main content

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

Water is the most abundant naturally occurring inorganic liquid, covering approximately two-thirds of the earth’s surface. As a liquid it occupies a position between the highly mobile structureless gases of the air and the highly structured immobile aggregates of the rocks and sediments of the earth’s surface: possessing properties of both motion and structure. Organic life has evolved from this aqueous environment and we need no more direct evidence of this than our dependence on water to carry out the basic molecular processes of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacon, G. E. (1975) Neutron Diffraction, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Baker, E. N., Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Crowfoot Hodgkin, D. M., Hubbard, R. E., Isaacs, N. W., Reynolds, C. D., Sakabe, K., Sakabe, N. and Vijayan, N. M. (1988). The structure of 2Zn pig insulin crystals at 1.5A resolution. Phil. Trans. Roy. Soc. London, 319, 369–456

    Article  Google Scholar 

  • Betzel, C., Saenger, W., Hingerty, B. E. and Brown, G. M. (1984). Circular and flip-flop hydrogen bonding in β-cyclodextrin undecahydrate. J. Am. Chem. Soc., 106, 7545–7557

    Article  Google Scholar 

  • Bouquiere, J. (1990). High resolution neutron studies of solvent networks in vitamin B12 coenzyme at 15 Kelvin. Acta Cryst. IUCr. Abstracts, A46S, C106

    Google Scholar 

  • Bouquiere, J.P., Finney, J.L., Lehmann, M.S., Lindley, P.F. and Savage, H.F.J. (1992). High resolution neutron study of vitamin B12 coenzyme at 15 kelvin: structure analysis and comparison with the structure at 279 kelvin. Acta Cryst. B. (submitted)

    Google Scholar 

  • Chiari, G. and Ferraris, G. (1982). The water molecule in crystalline hydrates studied by neutron diffraction. Acta Cryst., B38, 2331–2341

    Article  Google Scholar 

  • Cooke, R. and Kuntz, I.D. (1974). Properties of water in biological systems. Ann. Rev. Biophys. Bioeng., 3, 95–126

    Article  Google Scholar 

  • Dore, J.C. (1985). Structural studies of water by neutron diffraction. In Water Science Reviews, Vol. 1. Cambridge University Press, Cambridge, pp. 3–92

    Google Scholar 

  • Edsall, J.T. and Mackenzie, H.A. (1978). Water and proteins. I. The significance and structure of water; its interaction with electrolytes and non-electrolytes. Adv. Biophys., 10, 137–207

    Google Scholar 

  • Edsall, J.T. and McKenzie, H.A. (1983). Water and proteins. II. The location and dynamics of water in protein systems and its relation to their stability and properties. Adv. Biophys., 16, 53–183

    Article  Google Scholar 

  • Eisenberg, D. and Kauzmann, W. (1969). Structure and Properties of Water. Oxford University Press, London

    Google Scholar 

  • Engelhardt, H. and Kamb, B. (1981). Structure of ice IV, a metastable high pressure phase. J. Chem. Phys., 75, 5887–5899

    Article  Google Scholar 

  • Ferraris, G. and Franchini-Angela, M. (1972). Survey of the geometry and environment of water molecules in crystalline hydrates studied by neutron diffraction. Acta Cryst., B28, 3572–3583

    Article  Google Scholar 

  • Finney, J.L. (1979). The organization and function of water in protein crystals. In Franks, F. (Ed.), Water: A Comprehensive Treatise, Vol. 6. Plenum Press, New York, pp. 47–122

    Chapter  Google Scholar 

  • Finney, J.L., Goodfellow, J.M. and Poole, P.L. (1982). The structure and dynamics of water in globular proteins. In Davies, D.B., Danyluk, S. and Saenger, W. (Eds), Structural Molecular Biology. Plenum Press, New York, p. 387

    Chapter  Google Scholar 

  • Finney, J.L. and Savage, H.F.J. (1988). Solvation of proteins. In Dogonadze, R.R., Kalman, E., Kornyshev, A.A. and Ulstrup, J. (Eds), The Chemical Physics of Solvation. Elsevier, pp. 603–663

    Google Scholar 

  • Franks, F. (Ed.) (1972–1982). Water: A Comprehensive Treatise, Vols 1–7. Plenum Press, New York

    Google Scholar 

  • Franks, F. (1975). The hydrophobic interaction. In Franks, F. (Ed.), Water: A Comprehensive Treatise, Vol. 4. Plenum Press, New York. pp. 1–94

    Chapter  Google Scholar 

  • Fujiwara, T., Yamazaki, M., Tomizu, Y., Tokuoka, R., Tomita, K.I. and Saenger, W. (1983). J. Chem. Soc. Japan, 2, 181–187

    Google Scholar 

  • Hamilton, W.C. (1968). On hydrogen bonding in inorganic crystals: some generalizations, some recent results, and some new techniques. In Rich, A. and Davidson, N. (Eds), Structural Chemistry and Molecular Biology. Freeman, San Francisco, pp. 466–483

    Google Scholar 

  • Hamilton, W.C., Kamb, B., Laplaca, S.J. and Prakash, A. (1969). Deuteron arrangements in high pressure forms of ice. In Riehl, N., Bullemer, B. and Engelhardt, H. (Eds), Physics of Ice. Plenum Press, New York, pp. 44–58

    Chapter  Google Scholar 

  • Hendrickson, W.A. and Teeter, M.M. (1981). Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature, 290, 107–113

    Article  Google Scholar 

  • Hermansson, K. (1984). In The Electron Distribution in the Bound Water Molecule. PhD Thesis, Acta Universitatis Upsaliensis, p. 9

    Google Scholar 

  • Hobbs, P.V. (1974). Ice Physics. Clarendon Press, Oxford

    Google Scholar 

  • Jeffrey, G.A. (1969). Water structure in organic hydrates. Accounts Chem., 2, 344–352

    Article  Google Scholar 

  • Jeffrey, G.A. and Maluszynska, H. (1990). The stereochemistry of the water molecules in the hydrates of small biological molecules. Acta Crystallogr., B46, 546–549

    Article  Google Scholar 

  • Johari, G.P. and Whalley, E. (1979). Evidence for a very slow transformation in ice VI at low temperatures. J. Chem. Phys., 70, 2094–2097

    Article  Google Scholar 

  • Jorgensen, J.D., Beyerlein, R.A., Watanabe, N. and Worlton, T.G. (1984). Structure of D2O ice VIII from in situ powder neutron diffraction. J. Chem. Phys., 81, 3211–3214

    Article  Google Scholar 

  • Jorgensen, J.D. and Worlton, T.G. (1985). Disordered structure of ice D2O ice VII from in situ neutron powder diffraction. J. Chem. Phys., 83, 329–333

    Article  Google Scholar 

  • Kamb, B. (1964). A proton-ordered form of ice. Act. Cryst., 17, 1437–1449

    Google Scholar 

  • Kamb, B. (1965). Structure of ice VI. Science, 150, 205–209

    Article  Google Scholar 

  • Kamb, B. (1973). Crystallography of ice. In Whalley, E., Jones, S.J. and Gold, L.W. (Eds), Physics and Chemistry of Ice. Royal Society of Canada, Ottawa, Ontario, pp. 28–41

    Google Scholar 

  • Kamb, B. and Davis, B.L. (1964). Ice VII, the densest form o. ice. Proc. Natl Acad. Sci. USA, 52, 1433–1439

    Article  Google Scholar 

  • Kamb, B., Hamilton, W.C., LaPlaca, S.J. and Prakash, A. (1971). Ordered proton configuration in ice II, from single crystal neutron diffraction. J. Chem. Phys., 55, 1934–1945

    Article  Google Scholar 

  • Kamb, B. and Prakash, A. (1968). Structure of ice III. Acta Cryst., B24, 1317–1327

    Article  Google Scholar 

  • Kamb, B., Prakash, A. and Knobler, C. (1967). Structure of ice V. Acta Cryst., 22, 706–715

    Article  Google Scholar 

  • Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chem., 14, 1–63

    Article  Google Scholar 

  • Klar, B., Hingerty, B. and Saenger, W. (1980). Topography of cyclodextrin inclusion complexes. XII. Hydrogen bonding in the crystal structure of a-cyclodextrin hexahydrate: the use of a multicounter detector in neutron diffraction. Acta Cryst., B36, 1154–1165

    Article  Google Scholar 

  • Kuhs, W.F., Finney, J.L., Vettier, C. and Bliss, D.V. (1984). Structure and hydrogen bond ordering in ices VI, VII and VIII by neutron powder diffraction. J. Chem. Phys., 81, 3612–3623

    Article  Google Scholar 

  • Kuhs, W.F. and Lehmann, M.S. (1983). The structure of ice lh by neutron diffraction. J. Phys. Chem., 87, 4312–4313

    Article  Google Scholar 

  • Kuhs, W.F. and Lehmann, M.S. (1986). The structure of ice lh. In Water Science Reviews, Vol. 2. Cambridge University Press, Cambridge, pp. 1–65

    Chapter  Google Scholar 

  • Kuntz, I.D. and Kauzmann, W. (1973). Hydration of proteins and polypeptides. Adv. Protein Chem., 28, 239–345

    Article  Google Scholar 

  • LaPlaca, S.J., Hamilton, W.C., Kamb, B. and Prakash, A. (1973). On a nearly proton ordered structure for ice IX. J. Chem. Phys., 58, 567–580

    Article  Google Scholar 

  • Lenhert, P.G. (1968). The structure of vitamin B12. VII. The X-ray analysis of the vitamin B12 coenzyme. Proc. Roy. Soc. A, 303, 45–84

    Article  Google Scholar 

  • Mason, S.A., Bentley, G.A. and McIntyre, G.J. (1984). Deuterium exchange in lysozyme at 1.4 Ă… resolution. In Schoenborn, B.P. (Ed.), Neutrons in Biology. Plenum Press, New York, pp. 323–334

    Chapter  Google Scholar 

  • Matsuoka, O., Clementi, E. and Yoshimine, M. (1976). CI study of water dimer potential surface. J. Chem. Phys., 64, 1351–1361

    Article  Google Scholar 

  • Mishima, O., Calvert, L.D. and Whalley, E. (1984). ‘Melting ice’ I at 77 K and 10 kbar: A new method of making amorphous solids. Nature, 310, 393–395

    Article  Google Scholar 

  • Narten, A.H., Danford, M.D. and Levy, H.A. (1967). X-ray diffraction study of liquid water in the temperature range 4–200 °C. Discuss. Faraday Soc., 43, 97–107

    Article  Google Scholar 

  • Narten, A.H., Venkatesh, C.G. and Rice, S.A. (1976). Diffraction pattern and structure of amorphous solid water at 10 and 77 K. J. Chem. Phys., 64, 1106–1121

    Article  Google Scholar 

  • Olovsson, I. and Jonsson, P.-G. (1976). X-ray and neutron diffraction studies of hydrogen bonded systems. In Schuster, P., Zundel, G. and Sandorfy, C. (Eds.), The Hydrogen Bond, Vol. 2. North-Holland, Amsterdam, p. 393

    Google Scholar 

  • Palinkas, G., Kalman E. and Kovacs, P. (1977). Liquid water II: Experimental atom pair correlation functions of liquid D20. Mol. Phys., 34, 525–537

    Article  Google Scholar 

  • Pedersen, B. (1974). The geometry of hydrogen bonds from donor water molecules. Acta Crystallogr., B30, 289–291

    Article  Google Scholar 

  • Peterson, S.W. and Levy, H.A. (1957). A single-crystal neutron diffraction study of heavy ice. Acta Cryst., 10, 70–76

    Article  Google Scholar 

  • Polian, A. and Grimsditch, M. (1984). New high-pressure phase of H2O: ice X. Phys. Rev. Lett., 52, 1312–1314

    Article  Google Scholar 

  • Saenger, W. (1987). Structure and dynamics of water surrounding biomolecules. Ann. Rev. Biophys. Biophys. Chem., 16, 93–114

    Article  Google Scholar 

  • Saenger, W., Betzel, Ch., Hingerty, B. and Brown, G.M. (1982). Flip-flop hydrogen bonding in a partially disordered system. Nature, 296, 581–583

    Article  Google Scholar 

  • Savage, H.F.J. (1986a). Water structure in crystalline solids: ices to proteins. Water Science Reviews, Vol. 2. Cambridge University Press, Cambridge, pp. 67–148

    Chapter  Google Scholar 

  • Savage, H.F.J. (1986b). Water structure in vitamin B12 coenzyme crystals. Biophys. J., 50, 947–80

    Article  Google Scholar 

  • Savage, H.F.J. and Finney, J.L. (1986). Repulsive regularities of water structure in ices and crystalline hydrates. Nature, 322, 717–720

    Article  Google Scholar 

  • Savage, H.F.J. and Finney, J.L. (1992). New approaches in studying biomolecule-water interactions. In Gomez-Puyou, A. (Ed.), Biomolecules in Organic Solvents. CRC Press, Boca Raton, Florida, pp. 1–32

    Google Scholar 

  • Savage, H.F.J., Lindley, P.F., Finney, J.L. and Timmins, P.A. (1987). High-resolution neutron and x-ray refinement of vitamin B12 coenzyme, C72H100CoN18O17P.17H2O. Acta. Cryst., B43, 280–295

    Article  Google Scholar 

  • Schweizer, K.S. and Stillinger, F.H. (1984). High pressure phase transitions and hydrogen-bond symmetry in ice polymorphs. J. Chem. Phys., 80, 1230–1240

    Article  Google Scholar 

  • Shimaoka, K. (1960). Electron diffraction study of ice. J. Phys. Soc. Japan, 15, 106–119

    Article  Google Scholar 

  • Steiner, T., Mason, S.A. and Saenger, W. (1990). Cooperative O-H….O hydrogen bonds in β-cyclodextrin-ethanol-octahydrate at 15 K: a neutron diffraction study. J. Am. Chem. Soc., 112, 6184–6190

    Article  Google Scholar 

  • Stout, G.H. and Jensen, L.H. (1968). X-ray Structure Determination. Macmillan, New York

    Google Scholar 

  • Tanford, C. (1980). The Hydrophobic Effect. Wiley, New York

    Google Scholar 

  • Teeter, M.M. (1984). Water structure of a hydrophobic protein at atomic resolution: pentagonal rings of water molecules in crystals of crambin. Proc. Natl Acad. Sci. USA, 81, 6014–6018

    Article  Google Scholar 

  • Teeter, M.M. and Kossiakoff, A.A. (1984). The neutron structure of the hydrophobic plant protein crambin. In Schoenborn, B.P. (Ed.), Neutrons in Biology. Plenum Press, New York, pp. 335–348

    Chapter  Google Scholar 

  • Thanki, N., Thornton, J.M. and Goodfellow, J.M. (1988). Distributions of water around amino acid residues in proteins. J. Mol. Biol., 202, 637–657

    Article  Google Scholar 

  • Thiessen, W.E. and Narten, A.H. (1982). Neutron diffraction study of light and heavy water mixtures at 25°C. J. Chem. Phys., 77, 2625–2662

    Article  Google Scholar 

  • Watenpaugh, K.D., Margulis, T.N., Sieker, L.C. and Jensen, L.H. (1978). Water structure in a protein crystal: rubredoxin at 1.2 Ă… resolution. J. Mol Biol., 122, 175–190

    Article  Google Scholar 

  • Water Science Reviews (1985-). Vols 1–5. Camhridge University Press Camhridge

    Google Scholar 

  • Westhof, E. (1987). Hydration of oligonucleotides in crystals. Int. J. Biol. Macromol., 9, 186–192

    Article  Google Scholar 

  • Whalley, E. (1983). Cubic ice in nature. J. Phys. Chem., 87, 4174–4179

    Article  Google Scholar 

  • Woolfson, M.M. (1970). An Introduction to X-ray Crystallography. Cambridge University Press, Cambridge

    Google Scholar 

  • Zabel, V., Hingerty, B., Mason, S.A. and Saenger, W. (1988). Neutron diffraction study of γ-cyclodextrin.14D20 at 110K. Am. Cryst. Soc. Ann. Meeting, 16, 64

    Google Scholar 

  • Zabel, V., Saenger, W. and Mason, S.A. (1986). Neutron diffraction study of the hydrogen bonding in β-cyclodextrin undecahydrate at 120 K: from dynamic flip-flops to static homodromic chains. J. Am. Chem. Soc., 108, 3664–3673

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1993 The contributors

About this chapter

Cite this chapter

Savage, H.F.J. (1993). Water Structure. In: Westhof, E. (eds) Water and Biological Macromolecules. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12359-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12359-9_1

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12361-2

  • Online ISBN: 978-1-349-12359-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics