Skip to main content

Molecular Basis of Neocarzinostatin Action: Roles of DNA Microstructure and Thiol in the Mechanism of Bistranded Oxidative Damage

  • Chapter
Molecular Aspects of Anticancer Drug-DNA Interactions

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

Antitumour antibiotics that interact with DNA appear to do so by seeking out specific structures and/or functional groups on the DNA. This was first shown for actinomycin D (Goldberg and Rabinowitz, 1962; Goldberg et al. 1962) and then for other agents (Ward et al. 1965; Goldberg and Friedman, 1971) that formed either physical or covalent complexes with DNA. Several of these agents demonstrate a sequence preference in their interaction with DNA (see Pullman and Jortner, 1990), and the structure of the complex formed is generally of a single type, such as that resulting from the alkylation of the N3 of adenine by the drug CC-1065 (Hurley et al. 1988), lying in the DNA minor groove.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adjadj, E., Mispelter, J., Quiniou, E., Dimicoli, J.-L., Favaudon, V. and Lhoste, J.-M. (1990). Proton NMR studies of apo-neocarzinostatin from Streptomyces carzinostaticus. Sequence-specific assignment and secondary structure. Eur. J. Biochem., 190, 263–271

    Article  PubMed  CAS  Google Scholar 

  • Albers-Schonberg, G., Dewey, R. S., Hensens, O. D., Liesch, J. M., Napier, M. A. and Goldberg, I. H. (1980). Neocarzinostatin: chemical characterization and partial structure of the nonprotein chromophore. Biochem. Biophys. Res. Commun., 95, 1351–1356

    Article  PubMed  CAS  Google Scholar 

  • Au, W. W., O’ Neill, J. P., Wang, W., Luippold, H. E. and Preston, R. J. (1984). Induction of chromosome aberrations and specific locus mutation but not sister chromatid exchanges in Chinese hamster ovary cells by neocarzinostatin. Teratogenesis, Carcinogenesis and Mutagenesis, 4, 515–522

    Article  CAS  Google Scholar 

  • Beerman, T. A. and Goldberg, I. H. (1974). DNA strand scission by the antitumor protein, neocarzinostatin. Biochem. Biophys. Res. Commun., 59, 1254–1261

    Article  PubMed  CAS  Google Scholar 

  • Bergman, R. G. (1973). Reactive 1,4-dehydroaromatics. Acc. Chem. Res., 6, 25–31

    Article  CAS  Google Scholar 

  • Charnas, R. L. and Goldberg, I. H. (1984). NCS abstracts hydrogen during formation of nucleotide 5’-aldehyde on DNA. Biochem. Biophys. Res. Commun., 122, 642–648

    Article  PubMed  CAS  Google Scholar 

  • Chin, D.-H., Carr, S. A. and Goldberg, I. H. (1984). Incorporation of 1802 into thymidine 5’-aldehyde in neocarzinostatin chromophore-damaged DNA. J. Biol. Chem., 259, 9975–9978

    PubMed  CAS  Google Scholar 

  • Chin, D.-H. and Goldberg, I. H. (1986). Generation of superoxide free radical by neocarzinostatin and its possible role in DNA damage. Biochemistry, 25, 1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Chin, D.-H. and Goldberg, I. H. (1992). Internal hydrogen abstraction by activated neocarzinostatin: Quenching of the radical at C2 by hydrogen atom transfer from the X carbon of the adducted thiol. J. Amer. Chem. Soc., 114, 1914–1915

    Article  CAS  Google Scholar 

  • Chin, D.-H., Kappen. L. S. and Goldberg, I. H. (1987). 3’-Formyl phosphate-ended DNA: high energy intermediate in antibiotic-induced DNA sugar damage. Proc. Natl Acad. Sci. USA, 84, 7070–7074

    Google Scholar 

  • Chin, D.-H., Zeng, C.-H., Costello, C. E. and Goldberg, I. H. (1988). Sites in the diyne-ene bicyclic core of neocarzinostatin chromophore responsible for hydrogen abstraction from DNA. Biochemistry, 27, 8106–8114

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta, D., Auld, D. S. and Goldberg, I. H. (1985). Cryospectrokinetic evidence for the mode of reversible binding of neocarzinostatin chromophore to poly(deoxyadenylic-deoxythymidylic acid). Biochemistry, 24, 7049–7054

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta, D. and Goldberg, I. H. (1985). Mode of reversible binding of neocarzinostatin chromophore to DNA: evidence for binding via the minor groove. Biochemistry, 24, 6913–6920

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta, D. and Goldberg, I. H. (1986). Mode of reversible binding of neocarzinostatin chromophore to DNA: base sequence dependency of binding. Nucleic Acids Res., 14, 1089–1105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dedon, P. C. and Goldberg, I. H. (1990). Sequence-specific double-strand breakage of DNA by neocarzinostatin within a staggered cleavage site. J. Biol. Chem., 265, 14713–14716.

    PubMed  CAS  Google Scholar 

  • Dedon, P. C. and Goldberg, I. H. (1992). Influence of thiol structure on neocarzinostatin activation and expression of DNA damage. Biochemistry, 31, 1909–1917

    Article  PubMed  CAS  Google Scholar 

  • Dedon, P. C., Jiang, Z.-W. and Goldberg, I. H. (1992). Neocarzinostatinmediated DNA damage in a model AGT.ACT site: mechanistic studies of thiol-sensitive partitioning of C-4’ DNA damage products. Biochemistry, 31, 1917–1927

    Article  PubMed  CAS  Google Scholar 

  • DeGraff, W. G. (1984). Mutagenicity of neocarzinostatin in Neurospora crassa. Mutation Res., 128, 127–135

    Article  PubMed  CAS  Google Scholar 

  • DeGraff, W. G. and Mitchell, J. B. (1985a). Glutathione dependence of neocarzinostatin cytotoxicity and mutagenicity in Chinese hamster V-79 cells. Cancer Res., 45, 4760–4762

    PubMed  CAS  Google Scholar 

  • DeGraff, W. G., Russo, A. and Mitchell, J. B. (1985b). Glutathione depletion greatly reduces neocarzinostatin cytotoxicity in Chinese hamster V-79 cells. J. Biol. Chem., 260, 8312–8315

    PubMed  CAS  Google Scholar 

  • Edo, K., Akiyama, Y., Saito, K., Mizugaki, M., Koide, Y. and Ishida, N. (1986). Absolute configuration of the amino sugar moiety of the neocarzinostatin chromophore. J. Antibiot., 39, 1615–1619.

    Article  PubMed  CAS  Google Scholar 

  • Edo, K., Katamine, S., Kitame, F., Ishida, N., Koide, Y., Kusano, G. and Nozoe, S. (1980). Naphthalenecarboxylic acid from neocarzinostatin (NCS). J. Antibiot., 33, 347–351

    Article  PubMed  CAS  Google Scholar 

  • Edo, K., Mizugaki, M., Koide, Y., Seto, H., Furihata, K., Otake, N. and Ishida, N. (1985). The structure of neocarzinostatin chromophore possessing a novel bicyclo [7, 3, 0] dodecadiyne system. Tetrahedron Lett., 26, 331–334

    Article  CAS  Google Scholar 

  • Eisenstadt, E., Wolf, M. and Goldberg, I. H. (1980). Mutagenesis by neocarzinostatin in Escherichia coli and Salmonella typhimurium: requirement for umuC’ or plasmid pKM101. J. Bacteriol., 144, 656–660

    PubMed  CAS  PubMed Central  Google Scholar 

  • Favaudon, V., Charnas, R. L. and Goldberg, I. H. (1985). Polydeoxyadenylicdeoxythymidylic acid damage by radiolytically activated neocarzostatin. Biochemistry, 24, 250–259

    Article  PubMed  CAS  Google Scholar 

  • Foster, P. L. and Eisenstadt, E. (1983). Distribution and specificity of mutations induced by neocarzinostatin in the lac! gene of Escherichia coli. J. Bacteriol., 153, 379–383

    PubMed  CAS  Google Scholar 

  • Frank, B. L., Worth, L. Jr., Christner, D. F. J., Kozarich J. W., Stubbe, J., Kappen, L. S. and Goldberg, I. H. (1991). Sequence-specific isotope effects on the cleavage of DNA by neocarzinostatin: kinetic partitioning between 4’ and 5’-hydrogen abstraction at unique thymidine sites. J. Am. Chem. Soc., 113, 2271–2275

    Article  CAS  Google Scholar 

  • Galat, A. and Goldberg, I. H. (1990). Molecular models of neocarzinostatin damage of DNA: analysis of sequence dependence in 5’GAGCG:5’CGCTC. Nucleic Acids Res., 18, 2093–2099

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gao, X. and Burkhardt, W. (1991). Two- and three-dimensional proton NMR studies of apo-neocarzinostatin. Biochemistry, 30, 7730–7739

    Article  PubMed  CAS  Google Scholar 

  • Giloni, L., Takeshita, M., Johnson, F., Iden, C. and Grollman, A. P. (1981). Bleomycin-induced strand-scission of DNA. J. Biol. Chem., 256, 8608–8615

    PubMed  CAS  Google Scholar 

  • Gochin, M. and James, T. L. (1990). Solution structure studies of d(AC),.d(GT), via restrained molecular dynamics simulations with NMR constraints derived from two-dimensional NOE and double-quantum-filtered COSY experiments. Biochemistry, 29, 11172–11180

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, I. H. (1991). Mechanism of neocarzinostatin action: role of DNA microstructure in determination of chemistry of bistranded oxidative damage. Acc. Chem. Res., 24, 191–198

    Article  CAS  Google Scholar 

  • Goldberg, I. H. and Friedman, P. A. (1971). Antibiotics and nucleic acids. Ann. Rev. Biochem., 40, 775–810

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, I. H. and Rabinowitz, M. (1962). Actinomycin D inhibition of deoxyribonucleic acid-dependent synthesis of ribonucleic acid. Science, 136, 315–316

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, I. H., Rabinowitz, M. and Reich, E. (1962). Basis of actinomycin action. I. DNA binding and inhibition of RNA-polymerase synthetic reactions by actinomycin. Proc. Natl Acad. Sci. USA, 48, 2094–2101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Golik, J., Clardy, J., Dubay, G., Groenewald, G., Kawaguchi, H., Konishi, M., Krishnan, B., Ohkuma, H., Saitoh, K.-I. and Doyle, T. W. (1987a). Esperamicins, a novel class of potent antitumor antibiotics. 2. Structure of esperamicin X. J. Am. Chem. Soc., 109, 3461–3462

    Article  CAS  Google Scholar 

  • Golik, J., Dubay, G., Groenewald, G., Kawaguchi, H., Konishi, M., Krishnan, B., Ohkuma, H., Saitoh, K.-I. and Doyle, T. W. (1987b). Esperamicins, a novel class of potent antitumor antibiotics. III. Structures of Esperamicins Al, A2, Alb. J. Am. Chem. Soc., 109, 3462–3464

    Article  CAS  Google Scholar 

  • Hatayama, T. and Goldberg, I. H. (1979). DNA damage and repair in relation to cell killing in neocarzinostatin-treated HeLa cells. Biochim. Biophys. Acta, 563, 59–71

    Article  PubMed  CAS  Google Scholar 

  • Hatayama, T. and Goldberg, I. H. (1980). Deoxyribonucleic acid sugar damage in the action of neocarzinostatin. Biochemistry, 19, 5890–5898

    Article  PubMed  CAS  Google Scholar 

  • Hatayama, T., Goldberg, I. H., Takeshita, M. and Grollman, A. P. (1978). Nucleotide specificity in DNA scission by neocarzinostatin. Proc. Natl Acad. Sci. USA, 75, 3603–3607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hensens, O. D., Dewey, R. S., Liesch, T. M., Napier, M. A., Reamer, R. A., Smith, J. L., Albers-Schonberg, G. and Goldberg, I. H. (1983). Neocarzinostatin chromophore: Presence of a highly strained ether ring and its reaction with mercaptan and sodium borohydride. Biochem. Biophys. Res. Commun., 113, 538–547

    Article  PubMed  CAS  Google Scholar 

  • Hensens, O. D., Giner, J.-L. and Goldberg, I. H. (1989). Biosynthesis of NCS Chrom A, the chromophore of the antitumor antibiotic neocarzinostatin. J. Am. Chem. Soc., 111, 3295–3299

    Article  CAS  Google Scholar 

  • Hensens, O. D. and Goldberg, I. H. (1989). Mechanisms of activation of the antitumor antibiotic neocarzinostatin by mercaptan and sodium borohydride. J. Antibiot., 42, 761–768

    Article  PubMed  CAS  Google Scholar 

  • Hurley, L. H., Lee, C.-S., McGovren, J. P., Warpehoski, M. A., Mitchell, M. A., Kelly, R. C. and Aristoff, P. A. (1988). Molecular basis for sequence-specific DNA alkylation by CC-1065. Biochemistry, 27, 3886–3892

    Article  PubMed  CAS  Google Scholar 

  • Ishida, N., Miyazaki, K., Kumagai, K. and Rikimaru, M. (1965). Neocarzinosta- tin, an antitumor antibiotic of high molecular weight. J. Antibiot., 18, 68–76

    PubMed  CAS  Google Scholar 

  • Jagannadham, V. and Steenken, S. (1984). One-electron reduction of nitrobenzenes by a-hydroxyalkyl radicals via addition/elimination. An example of an organic inner-sphere electron-transfer reaction. J. Am. Chem. Soc., 106, 6542–6551

    Article  CAS  Google Scholar 

  • Jung, G. and Kohnlein, W. (1981). Neocarzinostatin controlled release of chromophore and its interaction with DNA. Biochem. Biophys. Res. Commun., 98, 176–183

    Article  PubMed  CAS  Google Scholar 

  • Kappen, L. S., Chen, S.-Q. and Goldberg, I. H. (1988). Atypical abasic sites generated by neocarzinostatin at sequence-specific cytidylate residues in oligodeoxynucleotides. Biochemistry, 27, 4331–4340

    Article  PubMed  CAS  Google Scholar 

  • Kappen, L. S., Ellenberger, T. E. and Goldberg, I. H. (1987). Mechanism and base specificity of DNA breakage in intact cells by neocarzinostatin. Biochemistry, 26, 384–390

    Article  PubMed  CAS  Google Scholar 

  • Kappen, L. S. and Goldberg, I. H. (1978). Activation and inactivation of neocarzinostatin-induced cleavage of DNA. Nucleic. Acids Res., 5, 2959–2967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kappen, L. S. and Goldberg, I. H. (1980). Stabilization of neocarzinostatin nonprotein chromophore activity by interaction with apoprotein and with HeLa cells. Biochemistry, 19, 4786–4790

    Article  PubMed  CAS  Google Scholar 

  • Kappen, L. S. and Goldberg, I. H. (1983). Deoxyribonucleic acid damage by neocarzinostatin chromophore: strand breaks generated by selective oxidation of C-5’ of deoxyribose. Biochemistry, 22, 4872–4878

    Article  PubMed  CAS  Google Scholar 

  • Kappen, L. S. and Goldberg, I. H. (1984). Nitroaromatic radiation sensitizers substitute for oxygen in NCS-induced DNA damage. Proc. Nat! Acad. Sci. USA, 81, 3312–3316

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kappen, L. S. and Goldberg, I. H. (1985). Activation of neocarzinostatin chromophore and formation of nascent DNA damage do not require molecular oxygen. Nucleic Acids Res., 13, 1637–1648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kappen, L. S. and Goldberg, I. H. (1989). Identification of 2-deoxyribonolactone at the site of neocarzinostatin-induced cytosine release in the sequence d(AGC). Biochemistry, 28, 1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Kappen, L. S. and Goldberg, I. H. (1992a). Neocarzinostatin acts as a sensitive probe of DNA microheterogeneity: switching of chemistry from C-1’ to C-4’ by a G•T mismatch 5’ to the site of DNA damage. Proc. Natl Acad. Sci. USA, 89, 6706–6710

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kappen, L. S. and Goldberg, I. H. (1992b). Mismatch-induced switch of neocarzi- nostatin attack sites in the DNA minor groove. Biochemistry, 31, 9081–9089

    Article  PubMed  CAS  Google Scholar 

  • Kappen, L. S., Goldberg, I. H., Frank, B. L., Worth, L. J., Christner, D. F., Kozarich, J. W. and Stubbe, J. (1991). Neocarzinostatin-induced hydrogen atom abstraction from C-4’ and C-5’ of the T residue at a d(GT) step in oligonucleotides: shuttling between deoxyribose attack sites based on isotope selection effects. Biochemistry, 30, 2034–2042

    Article  PubMed  CAS  Google Scholar 

  • Kappen, L. S., Goldberg, I. H. and Liesch, J. M. (1982). Identification of thymidine 5’-aldehyde at DNA strand breaks induced by neocarzinostatin chromophore. Proc. Natl Acad. Sci. USA, 79, 744–748

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kappen, L. S., Goldberg, I. H. and Samy, T. S. (1979). Contrasts in the actions of protein antibiotics on DNA structure and function. Biochemistry, 18, 5123–5127

    Article  PubMed  CAS  Google Scholar 

  • Kappen, L. S., Goldberg, I. H., Wu, S. H., Stubbe, J., Worth, L. and Kozarich, J. W. (1990). Isotope effects on the sequence-specific cleavage of dC in d(AGC) sequences by neocarzinostatin: elucidation of chemistry of minor lesions. J. Am. Chem. Soc., 112, 2797–2798

    Article  CAS  Google Scholar 

  • Kappen, L. S., Lee, T. R., Yang, C.-C. and Goldberg, I. H. (1989). Oxygen transfer from the nitro group of a nitroaromatic radiosensitizer to a DNA sugar damage product. Biochemistry, 28, 4540–4542

    Article  PubMed  CAS  Google Scholar 

  • Kappen, L. S., Napier, M. A. and Goldberg, I. H. (1980a). Roles of chromophore and apoprotein in neocarzinostatin action. Proc. Nad Acad. Sci. USA, 77, 1970–1974

    Article  CAS  Google Scholar 

  • Kappen, L. S., Napier, M. A., Goldberg, I. H. and Samy, T. S. A. (1980b). Requirement for reducing agents in deoxyribonucleic acid strand scission by the purified chromophore of auromomycin. Biochemistry, 19, 4780–4785

    Article  PubMed  CAS  Google Scholar 

  • Kawabata, H., Takeshita, H., Fujiwara, T., Sugiyama, H., Matsuura, T. and Saito, I. (1989). Chemistry of neocarzinostatin-mediated degradation of d(GCATGC). Mechanism of spontaneous thymine release. Tetrahedron Lett., 30, 4263–4266

    Article  CAS  Google Scholar 

  • Lee, M. D., Dunne, T. S., Chang, C. C., Ellestad, G. A., Siegel, M. M., Morton, G. O., McGahren, W. J. and Borders, D. B. (1987a). Calicheamicins, a novel family of antitumor antibiotics. 2. Chemistry and structure of calicheamicin Ï’1I J. Am. Chem. Soc., 109, 3466–3468

    Article  CAS  Google Scholar 

  • Lee, M. D., Dunne, T. S., Marshall, M. S., Chang, C. C., Morton, G. O. and Borders, D. B. (1987b). Calicheamicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calicheamicin Ï’1I. J. Am. Chem. Soc., 109, 3464–3466

    Article  CAS  Google Scholar 

  • Lee, M. D., Ellestad, G. A. and Borders, D. B. (1991). Calicheamicins: discovery, structure, chemistry, and interaction with DNA. Acc. Chem. Res., 24, 235–243

    Article  CAS  Google Scholar 

  • Lee, S. H. and Goldberg, I. H. (1988). Role of epoxide in NCS chromophore stability and action. Mol. Pharmacol., 33, 396–401

    PubMed  CAS  Google Scholar 

  • Lee, S. H. and Goldberg, I. H. (1989). Sequence-specific, strand-selective, and directional bindings of neocarzinostatin chromophore to oligodeoxyribonucleotides. Biochemistry, 28, 1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Loeb, L. A. (1985). Apurinic sites as mutagenic intermediates. Cell, 40, 483–484

    Article  PubMed  CAS  Google Scholar 

  • Meienhofer, J., Maeda, H., Glaser, C. B., Czombos, J. and Kuromizu, K. (1972). Primary structure of neocarzinostatin, an antitumor protein. Science, 178, 875–876

    Article  PubMed  CAS  Google Scholar 

  • Meschwitz, S. M. and Goldberg, I. H. (1991). Selective abstraction of 2H from C-5’ of thymidylate in an oligodeoxynucleotide by the radical center at C-6 of the diradical species of neocarzinostatin: chemical evidence for the structure of the activated drug-DNA complex. Proc. Nad Acad. Sci. USA, 88, 3047–3051

    Article  CAS  Google Scholar 

  • Meschwitz, S. M., Schultz, R. G., Ashley, G. W. and Goldberg, I. H. (1992). Selective abstraction of 2H from C-1 of the C residue in AGC•ICT by the radical center at C-2 of activated neocarzinostatin chromophore. Structure of the drug DNA complex responsible for bistranded lesion formation. Biochemistry, 31, 9117–9121

    Article  PubMed  CAS  Google Scholar 

  • Mousstacchi, E. and Favaudon, V. (1982). Cytotoxic and mutagenic effects of neocarzinostatin in wild-type and repair-deficient yeasts. Mutation Res., 104, 87–94

    PubMed  CAS  Google Scholar 

  • Myers, A. G. (1987). Proposed structure of the neocarzinostatin chromophore-methyl thioglycolate adduct: a mechanism for the nucleophile activation of neocarzinostatin. Tetrahedron Lett., 28, 4493–4496

    Article  CAS  Google Scholar 

  • Myers, A. G., Kuo, E. Y. and Finney, N. S. (1989). Thermal generation of a,3-dehydrotoluene from (Z)-1,2,4-heptatriene-6-yne. J. Am. Chem. Soc., 111, 8057–8059

    Article  CAS  Google Scholar 

  • Myers, A. G. and Proteau, P. J. (1989). Evidence for spontaneous, low-temperature biradical formation from a highly reactive neocarzinostatin chromophore-thiol conjugate. J. Am. Chem. Soc., 111, 1146–1147

    Article  CAS  Google Scholar 

  • Myers, A. G., Proteau, P. J. and Handel, T. M. (1988). Stereochemical assignment of neocarzinostatin chromophore-methyl thioglycolate adducts. J. Am. Chem. Soc., 110, 7212–7214

    Article  CAS  Google Scholar 

  • Nagata, R., Yamanaka, H., Murahashi, E. and Saito, I. (1990). DNA cleavage by acyclic eneyne-allene systems related to neocarzinostatin and esperamicincalicheamicin. Tetrahedron Lett., 31, 2907–2910

    Article  CAS  Google Scholar 

  • Nagata, R., Yamanaka, H., Okazaki, E. and Saito, I. (1989). Biradical formation from acyclic conjugated eneyne-allene system related to neocarzinostatin and esperamicin-calicheamicin. Tetrahedron Lett., 30, 4995–4998

    Article  CAS  Google Scholar 

  • Nakatani, K., Arai, K., Hirayama, N., Matsuda, F. and Terashima, S. (1990). Synthesis and cytotoxicity of the acyclic (E)- and (Z)-dienediyne systems related to neocarzinostatin chromophore. Tetrahedron Lett., 31, 2323–2326

    Article  CAS  Google Scholar 

  • Napier, M. A. and Goldberg, I. H. (1983). Neocarzinostatin chromophore: assignment of spectral properties and structural requirements for binding to DNA. Mol. Pharm., 23, 500–510

    CAS  Google Scholar 

  • Napier, M. A., Goldberg, I. H., Hensens, O. D., Dewey, T. R. S., Liesch, J. M. and Albers-Schonberg, G. (1981a). Neocarzinostatin chromophore: presence of a cyclic carbonate subunit and its modification in the structure of other biologically active forms. Biochem. Biophys. Res. Commun., 100, 1703–1712

    Article  PubMed  CAS  Google Scholar 

  • Napier, M. A., Holmquist, B., Strydom, D. J. and Goldberg, I. H. (1979). Neocarzinostatin: Spectral characterization and separation of a non-protein chromophore. Biochem. Biophys. Res. Commun., 89, 635–642

    Article  PubMed  CAS  Google Scholar 

  • Napier, M. A., Holmquist, B., Strydom, D. J. and Goldberg, I. H. (1981b). Neocarzinostatin chromophore: Purification of the major active form and characterization of its spectral and biological properties. Biochemistry, 20, 5602–5608

    Article  PubMed  CAS  Google Scholar 

  • Ono, Y., Watanabe, Y. and Ishida, N. (1966). Mode of action of neocarzinostatin: inhibition of DNA synthesis and degradation of DNA in Sarcina lutea. Biochim. Biophys. Acta, 119, 46–58

    Article  PubMed  CAS  Google Scholar 

  • Perkins, M. J. and Roberts, P. B. (1974). A probe for homolytic reactions in solution. Part VIII. An electron spin resonance study of the rates of fragmentation and spin trapping of t-butoxycarbonyl radicals and acyl radicals. J. Chem. Soc. Perkin II, 297–304

    Google Scholar 

  • Pletnev, V. Z., Kuzin, A. P., Trakhanov, S. D. and Kostetsky, P. V. (1982). Three-dimensional structure of actinoxanthin. Biopolymers, 21, 287–300

    Article  CAS  Google Scholar 

  • Poon, R., Beerman, T. A. and Goldberg, I. H. (1977). Characterization of DNA strand breakage in vitro by the antitumor protein neocarzinostatin. Biochemistry, 16, 486–493

    Article  PubMed  CAS  Google Scholar 

  • Povirk, L. F., Dattagupta, N., Warf, B. C. and Goldberg, I. H. (1981). Neocarzinostatin chromophore binds to deoxyribonucleic acid by intercalation. Biochemistry, 20, 4007–4014

    Article  PubMed  CAS  Google Scholar 

  • Povirk, L. F., and Goldberg, I. H. (1980). Binding of the nonprotein chromophore of neocarzinostatin to deoxyribonucleic acid. Biochemistry, 19, 4773–4780

    Article  PubMed  CAS  Google Scholar 

  • Povirk, L. F. and Goldberg, I. H. (1982). Inhibition of mammalian deoxyribonucleic acid synthesis by neocarzinostatin: selective effect of replicon initiation in CHO cells and resistant synthesis in ataxia telangiectasia fibroblasts. Biochemistry, 21, 5857–5862

    Article  PubMed  CAS  Google Scholar 

  • Povirk, L. F. and Goldberg, I. H. (1983). Stoichiometric uptake of molecular oxygen and consumption of sulfhydryls by neocarzinostatin chromophore bound to DNA. J. Biol. Chem., 258, 11763–11767

    PubMed  CAS  Google Scholar 

  • Povirk, L. F. and Goldberg, I. H. (1984). Competition between anaerobic covalent linkage of NCS chromophore to deoxyribose in DNA and oxygen-dependent strand breakage and base release. Biochemistry, 23, 6304–6311

    Article  PubMed  CAS  Google Scholar 

  • Povirk, L. F. and Goldberg, I. H. (1985a). Detection of neocarzinostatin chromophore-deoxyribose adducts as exonuclease-resistant sites in defined sequence DNA. Biochemistry, 24, 4035–4040

    Article  PubMed  CAS  Google Scholar 

  • Povirk, L. F. and Goldberg, I. H. (1985b). Endonuclease-resistant apyrimidinic sites formed by neocarzinostatin at cytosine residues in DNA: evidence for a possible role in mutagenesis. Proc. Natl Acad. Sci. USA, 82, 3182–3186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Povirk, L. F. and Goldberg, I. H. (1986). Base substitution mutation induced in the cI gene of lambda phage by neocarzinostatin chromophore: correlation with depyrimidination hotspots at the sequence AGC. Nucleic Acids Res., 14, 1417–1426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Povirk, L. F. and Goldberg, I. H. (1987). A role for oxidative DNA sugar damage in mutagenesis by neocarzinostatin and bleomycin. Biochimie, 69, 815–823

    Article  PubMed  CAS  Google Scholar 

  • Povirk, L. F., Houlgrave, C. W. and Han, Y.-H. (1988). Neocarzinostatin-induced DNA base release accompanied by staggered oxidative cleavage of the complementary strand. J. Biol. Chem., 263, 19263–19266

    PubMed  CAS  Google Scholar 

  • Pullman, B. and Jortner, J. (1990). Molecular Basis of Specificity in Nucleic Acid-Drug Interactions. Kluwer, Dordrecht, Boston, London

    Book  Google Scholar 

  • Rabow, L. E., McGall, G. H., Stubbe, J. and Kozarich, J. W. (1990). Identification of the source of oxygen in the alkaline-labile product accompanying cytosine release during bleomycin-mediated oxidative degradation of d(CGCGCG). J. Am. Chem. Soc., 112, 3203–3208

    Article  CAS  Google Scholar 

  • Remerowski, M. L., Glaser, S. J., Sieker, L. C., Samy, T. S. A. and Drobny, G. P. (1990). Sequential 1H NMR assignments and secondary structure of aponeocarzinostatin in solution. Biochemistry, 29, 8401–8409

    Article  PubMed  CAS  Google Scholar 

  • Saito, I., Kawabata, H., Fujiwara, T., Sugiyama, H. and Matsuura, T. (1989a). A novel ribose C-4’ hydroxylation pathway in neocarzinostatin-mediated degradation of oligonucleotides. J. Am. Chem. Soc., 111, 8302–8303

    Article  CAS  Google Scholar 

  • Saito, K., Sato, Y., Edo, K., Akiyama, M., Koide, Y. Y., Ishida, N. and Mizugaki, M. (1989b). Characterization of secondary structure of neocarzinostatin apoprotein. Chem. Pharm. Bull., 37, 3078–3082

    Article  PubMed  CAS  Google Scholar 

  • Samy, T. S. A., Hahm, K.-S., Modest, E. J., Lampman, G. W., Keutmann, H. T., Umezawa, H., Herlihy, W. C., Gibson, B. W., Carr, S. A. and Biemann, K. (1983). Primary structure of macromycin, an antitumor antibiotic.

    Google Scholar 

  • Shibuya, M., Toyooka, K. and Kubota, S. (1984). Synthesis of the naphthalene-carboxylic acid derivative obtained from neocarzinostatin (NCS): A structure revision. Tetrahedon Lett., 25, 1171–1174

    Article  CAS  Google Scholar 

  • Steenken, S. and Jagannadham, V. (1985). Reaction by 6-yl radicals of uracil, thymine, and cytosine and their nucleosides and nucleotides with nitrobenzenes via addition to give nitroxide radicals. OH--catalyzed nitroxide heterolysis. J. Am. Chem. Soc., 107, 6818–6826

    Article  CAS  Google Scholar 

  • Stubbe, J. and Kozarich, J. W. (1987). Mechanisms of bleomycin-induced DNA degradation. Chem. Rev., 87, 1107–1136

    Article  CAS  Google Scholar 

  • Sugimoto, Y., Otani, T., Oie, S., Wierzba, K. and Yamada, Y. (1990). Mechanism of action of a new macromolecular antitumor antibiotic, C-1027. J. Antibiot., 43, 417–421

    Article  PubMed  CAS  Google Scholar 

  • Takeshita, M., Kappen, L. S., Grollman, A. P., Eisenberg, M. and Goldberg, I. H. (1981). Strand scission of deoxyribonucleic acid by neocarzinostatin, auromomycin, and bleomycin: studies on base release and nucleotide sequence specificity. Biochemistry, 20, 7599–7506

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, T., Fujwara, K. and Hirama, M. (1990). Oxidative triggering for aroma- tization of the neocarzinostatin chromophore. Tetrahedron Lett., 31, 5947–5950

    Article  CAS  Google Scholar 

  • Urdal, D. L. and Hakomori, S. (1980). Tumor-associated ganglio-N-triosylceramide. J. Biol. Chem., 255, 10509–10516

    PubMed  CAS  Google Scholar 

  • Van Roey, P. and Beerman, T. A. (1989). Crystal structure analysis of auromycin apoprotein (macromycin) shows importance of protein side chains to chromophore binding selectivity. Proc. Natl Acad. Sci. USA, 86, 6587–6591

    Article  PubMed  PubMed Central  Google Scholar 

  • von Sonntag, C. (1987). Peroxyl radicals. In The Chemical Basis of Radiation Biology. Taylor and Francis, New York, pp. 57–93

    Google Scholar 

  • von Sonntag, C. and Schuchmann, H.-P. (1986). The radiolysis of pyrimidines in aqueous solutions: an updating review. Int. J. Radiat. Biol., 49, 1–34

    Article  CAS  Google Scholar 

  • Ward, D., Reich, E. and Goldberg, I. H. (1965). Base specificity in the interaction of polynucleotides with antibiotic drugs. Science, 149, 1259–1263

    Article  PubMed  CAS  Google Scholar 

  • Wender, P. A., Harmata, M., Jeffrey, D., Mukai, C. and Suffert, J. (1988). Studies on DNA-active agents: the synthesis of the parent carbocyclic subunit of neocarzinostatin chromophore A. Tetrahedron Lett., 29, 909–912

    Article  CAS  Google Scholar 

  • Wender, P. A., McKinney, J. A. and Mukai, C. (1990). General methodology for the synthesis of neocarzinostatin chromophore analogues: intramolecular chromium-mediated closures for strained-ring systems. J. Am. Chem. Soc., 112, 5369–5370

    Article  CAS  Google Scholar 

  • Wender, P. A. and Tebbe, M. J. (1991). Studies on DNA cleaving agents: synthesis and chemically induced cycloaromatization of a monocyclic neocarzinostatin chromophore analogue. Tetrahedron Lett., 32, 4863–4866

    Article  CAS  Google Scholar 

  • Williams, L. D. and Goldberg, I. H. (1988). Selective strand scission by intercalating drugs at DNA bulges. Biochemistry, 27, 3004–3011

    Article  PubMed  CAS  Google Scholar 

  • Zein, N., Sinha, A. M., McGahren, W. J. and Ellestad, G. A. (1988). Calicheamicin yl’: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science, 240, 1198–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhen, Y.-S., Ming, X.-Y., Yu, B., Otani, T., Saito, H. and Yamada, Y. (1989). A new macromolecular antitumor antibiotic, C-1027. III. Antitumor activity. J. Antibiot., 42, 1294–1298

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1993 The contributors

About this chapter

Cite this chapter

Goldberg, I.H. (1993). Molecular Basis of Neocarzinostatin Action: Roles of DNA Microstructure and Thiol in the Mechanism of Bistranded Oxidative Damage. In: Neidle, S., Waring, M.J. (eds) Molecular Aspects of Anticancer Drug-DNA Interactions. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12356-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12356-8_8

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12358-2

  • Online ISBN: 978-1-349-12356-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics