Blood—Brain Barrier Permeability to Peptides and Proteins

  • Berislav V. Zloković
  • J. Gordon McComb
  • Malcolm B. Segal
  • Hugh Davson


The neurons, glial cells, brain extracellular fluid and cerebrospinal fluid are separated from the blood by the blood-brain and blood-cerebrospinal fluid barriers (Davson, 1976). The blood-brain barrier is well characterized morphologically as a complete and continuous cellular layer of the endothelial cells which are sealed by tight junctions (Brightman, 1977). Normal cell-to-cell communications between astrocytes, pericytes, endothelial cells and surrounding neuropil are essential for the expression of blood-brain barrier phenomena and its homoeostatic mechanisms (Davson and Oldendorf, 1967; Brightman, 1989). Transport, enzymatic and receptor-mediated functions of the blood-brain barrier and blood-cerebrospinal fluid barrier are highly developed, playing a central role in the regulation of the composition of brain extracellular fluid and cerebrospinal fluid. The free movement of circulating hydrophilic substrates from blood to brain extracellular and cerebrospinal fluids is markedly retarded, and it has been accepted that any molecule, above a limiting size, circulating in the blood may gain access to the brain interstitial space only if there is a specific transport system for that molecule localized in the brain capillary endothelium (Oldendorf, 1987; Betz and Goldstein, 1986; Pardridge, 1988).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Betz, A. L. and Goldstein, G. W. (1986). Specialized properties and solute transport in brain capillaries. Ann. Rev. Physiol., 48, 241–250CrossRefGoogle Scholar
  2. Brightman, M. (1977). Morphology of blood-brain interfaces. Exp. Eye Res., Suppl., 1–25Google Scholar
  3. Brightman, M. W. (1989). The anatomic basis of the blood-brain barrier. In Neuwelt, E. A. (Ed.), Implications of the Blood-Brain Barrier and Its Manipulation. Plenum Press, New York, London, pp. 53–78CrossRefGoogle Scholar
  4. Brightman, M. W. and Reese, T.S. (1969). Junctions between intimately opposed cell membranes in the vertebrate brain. J. Cell Biol., 40, 648–677PubMedCentralCrossRefPubMedGoogle Scholar
  5. Broadwell, R. D., Balin, B. J. and Saloman, M. (1988). Transcytotic pathway for blood-borne protein through the blood-brain barrier. Proc. Natl Acad. Sci. USA, 85, 632–636PubMedCentralCrossRefPubMedGoogle Scholar
  6. Broadwell, R. D., Balin, B. J., Saloman, M. and Kaplan, R. S. (1983). Brain-blood barrier? Yes and no. Proc. Natl Acad. Sci. USA, 80, 7352–7356PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bugge, J. (1974). The cephalic arteries of hystriomorph rodents. Symp. Zool. Soc. Lond., 34, 61–68Google Scholar
  8. Burbach, J. P., Kovasc, G. L. and de Wied, D. (1983). A major metabolite of arginine-vasopressin in the brain is a highly potent neuropeptide. Science, 221, 1310–1312CrossRefPubMedGoogle Scholar
  9. Churchill, L., Bausback, N. H., Gerritsen, M. E. and Ward, P. E. (1987). Metabolism of opioid peptides by cerebrovascular aminopeptidase M. Biochim. Biophys. Acta, 923, 35–41CrossRefPubMedGoogle Scholar
  10. Cornford, E. M., Braun, L. D., Crane, P. D. and Oldendorf, W. H. (1978). Blood-brain barrier restriction of peptides and the low uptake of enkephalins. Endocrinology, 103, 1297–1303CrossRefPubMedGoogle Scholar
  11. Davson, H. (1976). The blood-brain barrier. J. Physiol. (London), 255, 1–28CrossRefGoogle Scholar
  12. Davson, H. and Oldendorf, W. H. (1967). Transport in the central nervous system. Proc. Roy. Soc. Med., 60, 326–328PubMedCentralPubMedGoogle Scholar
  13. Deane, R. and Segal, M. B. (1985). The transport of sugars across the perfused choroid plexus of the sheep. J. Physiol. (London), 328, 245–260CrossRefGoogle Scholar
  14. Johanson, C. E. (1989). Potential for pharmacological manipulation of the blood-cerebrospinal fluid barrier. In Neuwelt, E. A. (Ed.), Implications of the Blood-Brain Barrier and Its Manipulation. Plenum Press, New York, London, pp. 223–261CrossRefGoogle Scholar
  15. Oldendorf, W. H. (1987). The blood-brain barrier. Exp. Eye Res., Suppl., 177–190Google Scholar
  16. Pardridge, W. M. (1986). Receptor-mediated peptide transport through the blood-brain barrier. Endocrinol. Rev., 7, 314–339CrossRefGoogle Scholar
  17. Pardridge, W. M. (1987). Plasma protein-mediated transport of steroid and thyroid hormones. Am. J. Physiol., 252, E157–E164PubMedGoogle Scholar
  18. Pardridge, W. M. (1988). Recent advances in blood-brain barrier transport. Ann. Rev. Pharmacol. Toxicol., 28, 25–39CrossRefGoogle Scholar
  19. Pardridge. W. M. and Mietus, L. J. (1981). Enkephalin and blood-brain barrier: studies of binding and degradation in isolated brain microvessels. Endocrinology, 109, 1138–1143CrossRefPubMedGoogle Scholar
  20. Pardridge, W. M. and Mietus, L. J. (1982). Kinetics of neutral amino acid transport through the blood-brain barrier of the newborn rabbit. J. Neurochem., 38, 955–962CrossRefPubMedGoogle Scholar
  21. Patlak, C. S., Fenstermacher, J. D. and Blasberg, R. G. (1983). Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab., 3, 1–7CrossRefPubMedGoogle Scholar
  22. Reese, T. S. and Karnovsky, M. J. (1967). Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol., 34, 207–217PubMedCentralCrossRefPubMedGoogle Scholar
  23. Segal, B. V. and Zloković, B. V. (1990). The Blood-Brain Barrier, Amino Acids and Peptides. Kluwer, Dordrecht, Boston, LondonGoogle Scholar
  24. Smith, Q. R., Momma, S., Aoyagi, M. and Rapoport, S. I. (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J. Neurochem., 49, 1651–1658CrossRefPubMedGoogle Scholar
  25. Takasato, Y., Rapoport, S. I. and Smith, Q. R. (1984). An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol., 247, H484–H493PubMedGoogle Scholar
  26. Triguero, D. J., Buciak, J. B., Yang, J. and Pardridge, W. M. (1989). Blood-brain barrier transport of cationized immunoglobulin G: enhanced delivery compared to native protein. Proc. Natl Acad. Sci. USA, 86, 4761–4765PubMedCentralCrossRefPubMedGoogle Scholar
  27. Westergaard, E. and Brightman, M. W. (1973). Transport of proteins across normal cerebral arterioles. J. Comp. Neurol., 152, 17–44CrossRefPubMedGoogle Scholar
  28. Zloković, B. V. (1990). In vivo approaches for studying peptide interactions at the blood-brain barrier. J. Control. Rel., 13, 185–202CrossRefGoogle Scholar
  29. Zloković, B. V., Begley, D. J. and Chain, D. G. (1983). Blood-brain permeability to dipeptides and their constituent amino acids. Brain Res., 271, 66–71Google Scholar
  30. Zloković, B. V., Begley, D. J. and Chain-Eliash, D. G. (1985a). Blood-brain barrier permeability to leucine-enkephalin, D-alanine2-D-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res., 336, 125–132CrossRefPubMedGoogle Scholar
  31. Zloković, B. V., Begley, D. J., Djuricić, B. and Mitrović, D. M. (1986). Measurement of solute transport across the blood-brain barrier in the perfused guinea-pig brain: method and application to N-methyl-α-aminoisobutyric acid. J. Neurochem., 46, 1444–1451CrossRefPubMedGoogle Scholar
  32. Zloković, B. V., Hyman, S., McComb, J. G., Lipovac, M. N., Tang, G. and Davson, H. (1990a). Kinetics of arginine-vasopressin uptake at the blood-brain barrier. Biochim. Biophys. Acta, 1025, 191–198CrossRefPubMedGoogle Scholar
  33. Zloković, B. V., Lipovac, M. N., Begley, D. J., Davson, H. and Rakić, Lj. (1987). Transport of leucine-enkephalin across the blood-brain barrier in the perfused guinea pig brain. J. Neurochem., 49, 310–315CrossRefPubMedGoogle Scholar
  34. Zloković, B. V., Lipovac, M. N., Begley, D. J., Davson, H. and Rakić, Lj. (1988a). Slow penetration of thyrotropin-releasing hormone across the blood—brain barrier of an in situ perfused guinea pig brain. J. Neurochem., 51, 252–257CrossRefPubMedGoogle Scholar
  35. Zloković, B. V., McComb, J. G., Hyman, S., Perlmutter, L. and Davson, H. (1990b). Neuroactive Peptides and Amino Acids at the Blood—Brain Barrier: Possible Implications to Drug Abuse. NIDA Research Monographs, Washington D.C. (in press)Google Scholar
  36. Zloković, B. V., Mackić, J. B., Djuricić, B. and Davson, H. (1989a). Kinetic analysis of leucine-enkephalin cellular uptake at the luminal side of the blood-brain barrier of an in situ perfused guinea-pig brain. J. Neurochem., 53, 1333–1340CrossRefPubMedGoogle Scholar
  37. Zloković, B. V., Segal, M. B., Begley, D. J., Davson, H. and Rakić, Lj. (1985b). Permeability of the blood-cerebrospinal fluid and blood-brain barriers to thyrotropin releasing hormone. Brain Res., 358, 191–199CrossRefPubMedGoogle Scholar
  38. Zloković, B. V., Segal, M. B., Davson, H. and Mitrović, D. M. (1988b). Unidirectional uptake of enkephalins at the blood-tissue interface of the blood-cerebrospinal fluid barrier: a saturable mechanism. Regul. Peptides, 20, 33–44CrossRefGoogle Scholar
  39. Zloković, B. V., Segal, M. B., McComb, G. J., Hyman, S., Weiss, M. and Davson, H. (1990c). Kinetics of circulating vasopressin uptake by the choroid plexus. Am. J. Physiol. (Renal, Fluid and Electrolyte Physiology) (in press)Google Scholar
  40. Zloković, B. V., Skundrić, D., Segal, M. B., Lipovac, M. N., Mackić, J. B. and Davson, H. (1990d). A saturable mechanism for transport of immunoglobulin G across the blood-brain barrier of the guinea-pig. Exp. Neurol., 107, 263–270CrossRefPubMedGoogle Scholar
  41. Zloković, B. V., Susić, V., Davson, H., Begley, D. J., Jankov, R. M., Mitrović, D. M. and Lipovac, M. N. (1989b). Saturable mechanism of delta sleep inducing peptide uptake at the blood-brain barrier of vascular perfused guinea-pig brain. Peptides, 10, 249–254CrossRefPubMedGoogle Scholar

Copyright information

© The Editor and Contributors 1992

Authors and Affiliations

  • Berislav V. Zloković
  • J. Gordon McComb
  • Malcolm B. Segal
  • Hugh Davson

There are no affiliations available

Personalised recommendations