Skip to main content

Probes, Allele Mutations, and Restriction Enzymes

  • Chapter
DNA Fingerprinting
  • 370 Accesses

Abstract

Positive identification is the ultimate objective of forensic analysis of blood and other tissue specimens. Nucleotide probes can be very effective tools for detecting genetic markers in this identification process. The genetic markers should be highly polymorphic; allelic variants should be easily andreadily detectable; if amplification is required, the alleles should be efficiently amplified using PCR technology; and a statistically sound estimate of the population allele and genotype frequencies should be available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali S, Muller CR, and Epplen JT. 1986. DNA fingerprinting by oligonucleotide probes specific for simple repeats. Hum. Genet. 74:239–243.

    Article  Google Scholar 

  • Avise JC, Bowen BW, and Lamb T. 1989. DNA fingerprints from hypervariable mitochondrial genotypes. Mol. Biol. and Evol. 6:258–269.

    Google Scholar 

  • Budowle B, Wave JS, Shutler GG, and Baechtel FS. 1990. Hae III—A suitable restriction fragment length polymorphism analysis of biological evidence samples. J. Forensic Sci. (in press).

    Google Scholar 

  • Chandley AC and Mitchell AR. 1988. Hypervariable minisatellite regions are sites for crossing-over at meiosis in man. Cytogenet. Cell Genet. 48:152–155.

    Article  Google Scholar 

  • Fourney RM, Shutler GG, Monteith N, Bishop L, Gaudette B, and Waye JS. 1989. DNA typing in the Royal Canadian Mounted Police. In Proceedings DNA Symposium. International Symposium on the Forensic Aspects of DNA Analysis. Government Printing Office, Washington, D.C. (in press).

    Google Scholar 

  • Fowler SJ, Gill P, Werrett DJ, and Higgs DR. 1988. Individual specific DNA fingerprints from a hypervariable region probe: Alpha-globin 3′ HVR. Hum. Genet. 79:142–146.

    Article  Google Scholar 

  • Georges M, Cochaux P, Lequarre AS, Young MW, and Vassart G. 1987. DNA fingerprinting in man using a mouse probe related to part of the Drosophilia ‘lPer’ gene. Nucleic Acids Res. 15:7193.

    Article  Google Scholar 

  • Higgs DR, Wainscoat JS, Hint J, Hill AVS, Thein SL, Nicholls RD, Teal H, Ayyub H, Peto TEA, Falusi AG, Jarman AP, Clegg JB, and Weatherall DJ. 1986. Analysis of the human α-globin gene cluster reveals a highly informative genetic locus. Proc. Natl. Acad. Sci. USA 83:5165–5169.

    Article  Google Scholar 

  • Jarman AP, Nichols RD, Weatherall DJ, Clegg JB, and Higgs DR. 1986. Molecular characterization of a hypervariable region downstream of the human a-globin gene cluster. EMBO J. 5:1857–1863.

    Google Scholar 

  • Jeffreys AJ. 1987. Highly variable minisatellites and DNA fingerprints. Biochem. Soc. Trans. 15:309–317.

    Article  Google Scholar 

  • Jeffreys AJ, Royle NJ, Wilson V, and Wong Z. 1988. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332:278–281.

    Article  Google Scholar 

  • Longmire JL, Kraemer PM, Brown NC, Hardekopf LC, and Deaven LL. 1990. A new multi-locus DNA fingerprinting probe: pV47-2. Nucleic Acids Res. (in press).

    Google Scholar 

  • Medeiros AC, Macedo AM, and Pena SDJ. 1988. A simple non-isotopic method for DNA fingerprinting with M13 phage. Nucleic Acids Res. 16:10394.

    Article  Google Scholar 

  • Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, and White R. 1987. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235:1616–1622.

    Article  Google Scholar 

  • Royle NJ, Clarkson RE, Wong Z, and Jeffreys A. 1988. Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3:352–360.

    Article  Google Scholar 

  • Schafer R, Zischler H, and Epplen JT. 1988. (CAC)5, a very informative oligonucleotide probe for DNA fingerprinting. Nucleic Acids Res. 16:5196.

    Article  Google Scholar 

  • Schafer R, Zischler H, Birsner U, Becker A, and Epplen JT. 1988a. Optimized oligonucleotide probes for DNA fingerprinting. Electrophoresis 9:369–374.

    Article  Google Scholar 

  • Vassart G, Georges M, Monsieur R, Brocas H, Lequarre AS, and Christophe D. 1987. A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235:683–684.

    Article  Google Scholar 

  • von Beroldingen CH, Blake ET, Higuchi R, Sensabaugh GF, and Erlich E. 1989. Applications of PCR to the analysis of biological evidence. In PCR Technology Principles and Applications for DNA Amplification, 209–223. Erlich HA, ed. Stockton Press, New York.

    Google Scholar 

  • Westneat DF, Noon WA, Reeve HK, and Aquadro DF. 1988. Improved hybridization conditions for DNA ‘fingerprints’ probed with M13. Nucleic Acids Res. 16:4161.

    Article  Google Scholar 

  • Wong Z, Wilson V, Jeffreys AJ, and Thein SL. 1986. Cloning a selected fragment from a human DNA fingerprint: Isolation of an extremely polymorphic minisatellite. Nucleic Acids Res. 14:4605–4616.

    Article  Google Scholar 

  • Wong Z, Wilson V, Patel I, Povey S, and Jeffreys AJ. 1987. Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann. Hum. Genet. 51:269–288.

    Article  Google Scholar 

Download references

Authors

Copyright information

© 1990 Stockton Press

About this chapter

Cite this chapter

Kirby, L.T. (1990). Probes, Allele Mutations, and Restriction Enzymes. In: DNA Fingerprinting. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-12040-6_7

Download citation

Publish with us

Policies and ethics