Selective Ligands for Benzodiazepine Receptors: Recent Developments

  • David Nutt


We are all familiar with the term benzodiazepine, as are a significant proportion of the general public. In the public domain it is a term synonymous with diazepam that connotes dependence and withdrawal. The scientific community also has its misconceptions about the term benzodiazepine, which is perhaps not surprising given the speed of evolution of our knowledge about these drugs, their receptors and the uniqueness of their pharmacology. In no other field of CNS pharmacology has such a short time elapsed between the discovery of a receptor and its cloning and expression. It is at times hard to believe that the first report of brain-specific benzodiazepine receptors was made only 12 years ago (Squires and Braestrup, 1977; Mohler and Okada, 1978). Not surprisingly, some of the more recent and novel aspects of benzodiazepine pharmacology have not yet been fully assimilated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adinoff, B., Majchrowicz, E., Martin, P. R. and Linnoila, M. (1986). The benzodiazepine antagonist Ro 15-1788 does not antagonize the ethanol withdrawal syndrome. Biol. Psychiat., 21, 643–649PubMedCrossRefGoogle Scholar
  2. Ahlquist, R. P. (1948). A study of adrenotropic receptors. Am. J. Physiol., 153, 586–600PubMedGoogle Scholar
  3. Airaksinen, M. M. and Kari, I. (1981). Beta-carbolines, psychoactive compounds in the mammalian body. Med. Biol., 59, 21–34PubMedGoogle Scholar
  4. Allan, A. M. and Harris, R. A. (1986). Anesthetic and convulsant barbiturates alter gamma-aminobutyric acid-stimulated chloride flux across brain membranes. J. Pharmacol. Exp. Ther., 238, 763–768PubMedGoogle Scholar
  5. Alon, E., Baitella, L. and Hossli, G. (1987). Double blind study of the reversal of midazolam-supplemented general anaesthesia with Ro 15-1788. Br. J. Anaes., 59, 455–458CrossRefGoogle Scholar
  6. Arbilla, S., Depoortere, H., George, P. and Langer, S. Z. (1985). Pharmacological profile of the Imidazopyridine Zolpidem at benzodiazepine receptors and electrocorticogram in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol., 330, 248–251CrossRefGoogle Scholar
  7. Atterwill, C. K. and Nutt, D. J. (1983). Thyroid hormones do not alter rat brain benzodiazepine receptor function in vivo. J. Pharm. Pharmacol., 35, 767–768PubMedCrossRefGoogle Scholar
  8. Baraldi, M., Zeneroli, M. L., Ventura, E., Penne, A., Pinelli, G., Ricci, P. and Santi, M. (1984). Supersensitivity of benzodiazepine receptors in hepatic encephalography due to fulminant hepatic failure in the rat: reversal by a benzodiazepine antagonist. Clinical Science, 67, 167–175PubMedCrossRefGoogle Scholar
  9. Barbaccia, M. C., Costa, E., Ferrero, P., Guidotti, A., Roy, A., Sunderland, T., Pickar, D., Paul, S. M. and Goodwin, F. K. (1986). Diazepam binding inhibitor. Arch. Gen. Psychiat., 43, 1143–1147PubMedCrossRefGoogle Scholar
  10. Bennett, D. A. (1987). Pharmacology of the pyrazolo-type compounds: agonist, antagonist and inverse agonist actions. Physiol Behav., 41, 241–245PubMedCrossRefGoogle Scholar
  11. Bernard, P. S., Bennett, D. A., Pastor, G., Yokoyoma, N. and Liebman, J. M. (1985). CGS 9896: agonist-antagonist benzodiazepine receptor activity revealed by anxiolytic, anticonvulsant and muscle relaxation assessment in rodents. J. Pharmacol. Exp. Ther., 235, 98–105PubMedGoogle Scholar
  12. Bhattacharya, S. K., Glover, V., Sandler, M., Clow, A., Topham, A., Bernadt, M. and Murray, R. (1982). Raised endogenous monoamine oxidase inhibitor output in post withdrawal alcoholics: effects of L-dopa and ethanol. Biol. Psychiat., 17, 687–694Google Scholar
  13. Bieck, P. R., Antonin, K. H., Britzelmeier, C., Cremer, C., Gleiter, C., Nilsson, E. and Schoenleber, W. (1984). Human pharmacology of CGS 8216, a benzodiazepine antagonist. Clinical Neuropharmacol., 7, 674–675CrossRefGoogle Scholar
  14. Biggio, G., Concas, A., Corda, M. G. and Serra, M. (1989). Enhancement of GABAergic transmission by Zolpidem, an Imidazopyridine with preferential affinity for type 1 benzodiazepine receptors. Eur. J. Pharmacol., 161, 173–180PubMedCrossRefGoogle Scholar
  15. Billard, W., Crosby, G., Iorio, L., Chipkin, R. and Barnett, A. (1988). Selective affinity of the benzodiazepine quazepam and 2-oxo-quazepam for BZ1 binding site and demonstration of 3H-2-oxo-quazepam as a BZ1 selective radioligand. Life Sci., 42, 179–187PubMedCrossRefGoogle Scholar
  16. Biscoe, T. J., Duchen, M. R., Fry, J. P. and Rickets, C. (1989). Purification and action of endogenous benzodiazepine-like immuno-reactivity isolated from the brain of the mouse. Proc. Physiol. Soc., U.C.L. Meeting, April, 53 (abstract)Google Scholar
  17. Biziere, K., Bourguignon, J. J., Chambon, J. P., Heaulme, M., Perio, A., Tebib, S. and Wermuth, C. G. (1987). A 7-phenyl substituted triazolopyridazine has inverse agonist activity at the benzodiazepine receptor site. Br. J. Pharmacol., 90, 183–190PubMedPubMedCentralCrossRefGoogle Scholar
  18. Blair, L. A. C., Levitan, E. S., Marshall, J., Dionne, V. E. and Barnard, E. A. (1988). Single subunits of the GABAA receptor form ion channels with properties of the native receptor. Science, 242, 577–579PubMedCrossRefGoogle Scholar
  19. Bonetti, E. P., Burkard, W. P., Gabl, M., Hunkeler, W., Lorez, H.-P., Martin, J. R., Moehler, H., Osterrieder, W., Pieri, L., Polc, P., Richards, J. G., Schaffner, R., Scherschlicht, R., Schoch, P. and Haefely, W. E. (1989). Ro 15-4513: partial inverse agonism at the BZR and interaction with ethanol. Pharmacol. Biochem. Behav., 31, 733–749CrossRefGoogle Scholar
  20. Bonetti, E. P., Pieri, L., Cumin, R., Schaffner, R., Pieri, M., Gamzu, E. R., Muller, R. K. M. and Haefely, W. (1982). Benzodiazepine antagonist Ro 15-1788: neurological and behavioral effects. Psychopharmacology, 78, 8–18PubMedCrossRefGoogle Scholar
  21. Braestrup, C. and Nielsen, M. (1980). Searching for endogenous benzodiazepine receptor ligands. TIPS, November, 424–427Google Scholar
  22. Braestrup, C., Nielsen, M., Honore, T., Jensen, L. H. and Petersen, E. N. (1983). Benzodiazepine receptor ligands with positive and negative efficacy. Neuropharmacology, 22, 1451–1457PubMedCrossRefGoogle Scholar
  23. Braestrup, C., Nielsen, M. and Olsen, C. E. (1980). Urinary and brain b-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proc. Natl Acad. Sci. USA, 77, 2288–2292PubMedPubMedCentralCrossRefGoogle Scholar
  24. Brain Research Bulletin—Meeting Report (1987). Bidirectional effects of β-carbolines in behavioral pharmacology. Brain Res. Bull., 19, 291-endCrossRefGoogle Scholar
  25. Brogden, R. N. and Goa, K. L. (1988). Flumazenil. A preliminary review of its benzodiazepine antagonist properties, intrinsic activity and therapeutic use. Drugs, 35, 448–467PubMedCrossRefGoogle Scholar
  26. Brown, C. L. and Martin, I. L. (1983). Photoaffinity labelling of the benzodiazepine receptor cannot be used to predict ligand efficacy. Neurosci. Lett., 35, 37–40PubMedCrossRefGoogle Scholar
  27. Burch, T. P. and Ticku, M. K. (1981). Histidine modification with diethyl pyrocarbonate shows heterogeneity of benzodiazepine receptors. Proc. Natl Acad. Sci. USA, 78, 3945–3949PubMedPubMedCentralCrossRefGoogle Scholar
  28. Burkard, W. P., Bonetti, E. P. and Haefely, W. (1985). The benzodiazepine antagonist Ro 15-1788 reverses the effect of methyl-beta-carboline-3-carboxylate but not of harmaline on cerebellar cGMP and motor performance in mice. Eur. J. Pharmacol., 109, 241–247PubMedCrossRefGoogle Scholar
  29. Burr, W., Sandham, P. and Judd, A. (1989). Death after flumazenil. BMJ, 298, letters, 1713Google Scholar
  30. Clow, A., Glover, V., Armando, I. and Sandler, M. (1983). New endogenous benzodiazepine receptor ligand in human urine: identity with endogenous monoamine oxidase inhibitor? Life Sci., 33, 735–741PubMedGoogle Scholar
  31. Clow, A., Glover, V., Sandler, M. and Tiller, J. (1988). Increased urinary tribulin output in generalised anxiety disorder. Psychopharmacol., 95, 378–380CrossRefGoogle Scholar
  32. Codding, P. W. and Muir, A. K. S. (1985). Molecular structure of Ro 15-1788 and a model for the binding of benzodiazepine receptor ligands. Mol. Pharmacol., 28, 178–184PubMedGoogle Scholar
  33. Concas, A., Serra, M., Crisponi, G., Nurchi, V., Corda, M. G. and Biggio, G. (1985). Changes in the characteristics of low affinity GABA binding sites elicited by Ro 15-1788. Life Sci., 36, 329–337PubMedCrossRefGoogle Scholar
  34. Corda, M. G., Giorgi, O., Longoni, B., Ongini, E., Montaldo, S. and Biggio, G. (1988). Preferential affinity of 3H-2-oxo-quazepam for type 1 benzodiazepine recognition sites in the human brain. Life Sci., 42, 189–197PubMedCrossRefGoogle Scholar
  35. Cowen, P. J., Green, A. R., Martin, I. L. and Nutt, D. J. (1981). Ethyl-b-carboline carboxylate lowers seizure threshold and antagonizes flurazepam-induced sedation in rats. Nature, 290, 54–55PubMedCrossRefGoogle Scholar
  36. Cumin, R., Bonetti, E. P., Scherschlicht, R. and Haefely, W. E. (1982). Use of the specific benzodiazepine antagonist, Ro 15-1788, in studies of physiological dependence on benzodiazepines. Experientia, 38, 833–834PubMedCrossRefGoogle Scholar
  37. Czernik, A. J., Petrack, B., Kalinsky, H. J., Psychoyos, S., Cash, W. D., Tsai, C., Rinehart, R. K., Granat, F. R., Lovell, R. A., Brundish, D. E. and Wade, R. (1982). CGS 8216: receptor binding characteristics of a potent benzodiazepine antagonist. Life Sci., 30, 363–372PubMedCrossRefGoogle Scholar
  38. Davidson, J., Glover, V., Clow, A., Kudler, H., Meador, K. and Sandler, M. (1988). Tribulin in post-traumatic stress disorder. Psychol. Med., 4, 833–836CrossRefGoogle Scholar
  39. Davis, L. G. and Cohen, R. K. (1980). Identification of an endogenous peptide-ligand for the benzodiazepine receptor. Biochem. Biophys. Res. Commun., 92, 141–148PubMedCrossRefGoogle Scholar
  40. De Blas, A. L. (1988). Diazepam and N-desmethyldiazepam in plant food and in brain. Tins, 11, 489–490PubMedGoogle Scholar
  41. De Deyn, P. P. and Macdonald, R. L. (1987). CGS 9896 and ZK 91296, but not CGS 8216 and RO 15-1788, are pure benzodiazepine receptor antagonists on mouse neurons in culture. J. Pharmacol. Exp. Ther., 2421, 48–55Google Scholar
  42. Deckert, J., Kuhn, W. and Przuntek, H. (1984). Endogenous benzodiazepine ligands in human cerebrospinal fluid. Peptides, 5, 641–644PubMedCrossRefGoogle Scholar
  43. Deckert, J., Estall, L. B., Marangos, P. J. and Cooper, S. J. (1987). CGS 8216 treatment decreases central-type benzodiazepine receptors in rat brain. Eur. J. Pharmacol., 142, 457–460PubMedCrossRefGoogle Scholar
  44. Dellouve-Courillon, C., Lambolez, B., Potier, P. and Dodd, R. H. (1989). The use of a β-carboline as photoaffinity label for the benzodiazepine receptor. Eur. J. Pharmacol., 166, 557–562PubMedCrossRefGoogle Scholar
  45. Dodd, R. H., Ouannes, C., Prado de Carvalho, L., Valin, A., Venault, P., Chapouthier, G., Rossier, J. and Potier, P. (1985). 3-amino-β-carboline derivatives and the benzodiazepine receptor. Synthesis of selective antagonist of the sedative action of diazepam. J. Med. Chem., 28, 824PubMedCrossRefGoogle Scholar
  46. Dorow, R., Horowski, R., Paschelke, G., Amin, M. and Braestrup, C. (1983). Severe anxiety induced by FG 7142, a b-carboline ligand for benzodiazepine receptors. Lancet, 2, 98–99PubMedCrossRefGoogle Scholar
  47. Dorow, R., Duka, T., Sauerbrey, N. and Holler, L. (1987). (beta)-carbolines: new insights into the clinical pharmacology of benzodiazepine receptor ligands. In Clinical Pharmacology in Psychiatry (ed. S. G. Dahl, L. F. Gram, S. M. Paul and W. Z. Potter), Springer, Berlin-Heidelberg, pp. 37–51Google Scholar
  48. Duka, T., Goerke, D., Dorow, R., Holler, L. and Fichte, K. (1988). Human studies on the benzodiazepine receptor antagonist β-carboline ZK 93-426. Psychopharmacology, 95, 463–471PubMedCrossRefGoogle Scholar
  49. Ehlert, F. J., Roeske, W. R. and Yamamura, H. I. (1981). Multiple benzodiazepine receptors and their regulation by (gamma)-aminobutyric acid. Life Sci., 29, 235–248PubMedCrossRefGoogle Scholar
  50. Ennis, C. and Minchin, M. C. W. (1988). Modulation of the GABA autoreceptor by benzodiazepine receptor ligands. Neuropharmacol., 27, 1003–1006CrossRefGoogle Scholar
  51. Evoniuk, G. and Skolnick, P. (1988). Anion regulation of agonist and inverse agonist binding to benzodiazepine receptors. J. Neurochem., 51, 1169–1175PubMedCrossRefGoogle Scholar
  52. Farb, D. H., Borden, L. A., Chan, C. T., Czajkowski, C. M., Gibbs, T. T. and Schiller, G. D. (1984). Modulation of neuronal function through benzodiazepine receptors: biochemical and electrophysiological studies of neurons in primary monolayer cell culture. Ann. N.Y. Acad. Sci., 435, 1–31PubMedCrossRefGoogle Scholar
  53. Feely, M., Boyland, P., Picardo, A., Cox, A. and Paul Gent, J. (1989). Lack of anticonvulsant tolerance with RU 32698 and Ro 17-1812. Eur. J. Pharmacol., 164, 377–380PubMedCrossRefGoogle Scholar
  54. Ferrarese, C., Alho, H., Guidotti, A. and Costa, E. (1987). Co-localization and co-release of GABA and putative allosteric modulators of GABA receptor. Neuropharmacology, 6621, 1011–1088CrossRefGoogle Scholar
  55. Ferrero, P., Guidotti, A., Conti-Tronconi, B. and Costa, E. (1984). A brain octadecaneuropeptide generated by tryptic digestion of DBI (diazepam binding inhibitor) functions as a proconflict ligand of benzodiazepine recognition sites. Neuropharmacol., 23, 1359–1362CrossRefGoogle Scholar
  56. Ferrero, P., Santi, M., Canti-Tronconi, B., Costa, E. and Guidotti, A. (1986). Study of an octadecaneuropeptide derived from DBI: biological activity and presence in rat brain. Proc. Natl Acad. Sci., USA, 83, 827–831PubMedPubMedCentralCrossRefGoogle Scholar
  57. File, S. E. (1982). Recovery from lorazepam tolerance and the effects of a benzodiazepine antagonist (RO 15-1788) on the development of tolerance. Psychopharmacology, 77, 284–288PubMedCrossRefGoogle Scholar
  58. File, S. E. (1983). Proconvulsant action of CGS 8216. Neurosci. Lett., 35, 317–320PubMedCrossRefGoogle Scholar
  59. File, S. E. and Pellow, S. (1986). Intrinsic actions of the benzodiazepine receptor antagonist Ro 15-1788. Psychopharmacology, 88, 1–11PubMedCrossRefGoogle Scholar
  60. File, S. E., Lister, R. G. and Nutt, D. J. (1982a). The anxiogenic action of benzodiazepine antagonists. Neuropharmacology, 21, 1022–1037Google Scholar
  61. File, S. E., Lister, R. G. and Nutt, D. J. (1982b). Intrinsic action of benzodiazepine antagonists. Neurosci. Lett., 32, 165–168PubMedCrossRefGoogle Scholar
  62. File, S. E. and Pellow, S. (1988). Low and high doses of benzodiazepine receptor inverse agonists respectively improve and impair performance in passive avoidance but do not affect habituation. Behav. Brain Res., 293, 57–68Google Scholar
  63. Friedl, W., Hebebrand, J., Rabe, S. and Propping, P. (1988). Phylogenetic conservation of the benzodiazepine binding sites: pharmacological evidence. Neuropharmacol., 27, 163–170CrossRefGoogle Scholar
  64. Gallager, D. W., Heninger, K. and Heninger, G. (1986). Periodic benzodiazepine antagonist administration prevents benzodiazepine withdrawal symptoms in primates. Eur. J. Pharmacol., 132, 31–38PubMedCrossRefGoogle Scholar
  65. Gallaher, E. J., Hollister, L. E., Gionet, S. E. and Crabbe, J. C. (1987). Mouse Unes selected for genetic differences in diazepam sensitivity. Psychopharmacol., 93, 25–30CrossRefGoogle Scholar
  66. Gardner, C. R. (1988). Functional in vivo correlates of the benzodiazepine agonist-inverse agonist continuum. Prog. Neurobio., 31, 425–476CrossRefGoogle Scholar
  67. Gardner, C. R., Deacon, R., James, V., Parker, F. and Budhram, P. (1987). Agonist and antagonist activities at benzodiazepine receptors of a novel series of quinoline derivatives. Eur. J. Pharmacol., 142, 285–295PubMedCrossRefGoogle Scholar
  68. Gath, I., Weidenfeld, J., Collins, G. I. and Hadad, H. (1984). Electrophysiological aspects of benzodiazepine antagonists, Ro 15-1788 and Ro 15-3505. Br. J. Clin. Pharmacol., 18, 541–547PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gee, K. W., Ehlert, F. J. and Yamamura, H. I. (1982). The influence of temperature and gamma-aminobutyric acid on benzodiazepine receptor subtypes in the hippocampus of the rat. Biochem. Biophysic. Research Commun., 106, 1134–1140CrossRefGoogle Scholar
  70. George, D. T., Adinoff, B., Ravitz, B., Nutt, D. J., De Jong, J., Berettini, W., Mefford, I. N., Costa, E. and Linnoila, M. (1989). A CSF study examining the pathophysiology associated with the comorbidity of panic disorder and alcoholism. Acta Psych. Scand., in pressGoogle Scholar
  71. Giorgi, O., Corda, M. G., Fernandez, A. and Biggio, G. (1988). The abstinence syndrome in diazepam-dependent cats is precipitated by Ro 15-1788 and Ro 15-4513 but not by the benzodiazepine receptor antagonist ZK 93426. Nurosci. Lett., 88, 206–210CrossRefGoogle Scholar
  72. Glover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. and Sandler, M. (1988). Isatin: identity with the purified endogenous monoamine oxidase inhibitor tribulin. J. Neurochem., 51, 656–659PubMedCrossRefGoogle Scholar
  73. Green, A. R., Nutt, D. J. and Cowen, P. C. (1982). Using Ro 15-1788 to investigate the benzodiazepine receptor in-vivo: Studies on the anticonvulsant and sedative effect of melatonin and the convulsant effect of the benzodiazepine Ro 05-3663. Psychopharmacology, 78, 293–295PubMedCrossRefGoogle Scholar
  74. Grimm, G., Ferenci, P., Katzenschlager, R., Madl, C., Schneeweiss, B., Laggner, A. N., Lenz, K. and Gangl, A. (1988). Improvement of hepatic encephalopathy treated with flumazenil. Lancet, ii, 1392–1394CrossRefGoogle Scholar
  75. Guidotti, A., Forchetti, C. M., Corda, M. G., Konkel, D., Bennett, C. D. and Costa, E. (1983). Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc. Natl Acad. Sci. USA, 80, 3531–3535PubMedPubMedCentralCrossRefGoogle Scholar
  76. Haefely, W. (1988a). The preclinical pharmacology of flumazenil. Eur. Journal of Anaesthesiol., 2, 25–36Google Scholar
  77. Haefely, W. (1988b). Partial agonists of the benzodiazepine receptor: from animal data to results in patients. In Chloride Channels and Their Modulation by Neurotransmitters and Drugs (ed. G. Biggio and E. Costa), Raven Press, New York, pp. 275–292Google Scholar
  78. Haefely, W. (1988c). Endogenous ligands of the benzodiazepine receptor. Pharmacopsychiat., 21, 43–46CrossRefGoogle Scholar
  79. Haefely, W. and Hunkeler, W. (1988). The story of flumazenil. Eur. Journal of Anaesthesiol., 2, 3–14Google Scholar
  80. Haefely, W., Kyburz, E., Gerecke, M. and Mohler, H. (1985). Recent advances in the molecular pharmacology of benzodiazepine receptors and in the structure activity relationships of their agonists and antagonists. Adv. Drug Res., 14, 165–322Google Scholar
  81. Haefely, W. E. (1989). Pharmacology of the allosteric modulation of GABAa receptors by benzodiazepine receptor ligands. In Allosteric Modulation of Amino Acid Receptors: Therapeutic Implications (ed. E. A. Barnard and E. Costa), Raven Press, New York, pp. 47–69Google Scholar
  82. Haigh, J. R. M. and Feely, M. (1988). RO 16-6028, a benzodiazepine receptor partial agonist, does not exhibit anticonvulsant tolerance in mice. Eur. J. Pharmacol., 147, 283–285PubMedCrossRefGoogle Scholar
  83. Horton, R. W., Lowther, S., Chivers, J., Jenner, P., Marsden, C. D. and Testa, B. (1988). The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro. Br. J. Pharmacol., 94, 1234–1240PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hunkeler, W., Mohler, H., Pieri, L., Polc, P., Bonetti, E. P., Cumin, R., Schaffner, R. and Haefely, W. (1981). Selective antagonists of benzodiazepines. Nature, 290, 514–516PubMedCrossRefGoogle Scholar
  85. Jackson, H. C., Dickinson, S. D. and Nutt, D. J. (1989). Differential effects of benzodiazepine inverse agonists on electroshock seizure threshold. BPS, Manchester (abstr.)Google Scholar
  86. Jensen, L. H., Petersen, E. N. and Braestrup, C. (1983). Audiogenic seizures in DBA/2 mice discriminate sensitively between low efficacy benzodiazepine receptor agonists and inverse agonists. Life Sci., 33, 393–399PubMedCrossRefGoogle Scholar
  87. Jensen, L. H., Petersen, E. N., Braestrup, C., Honore, T., Kehr, W., Stephens, D. N., Schneider, H., Seidelmann, D. and Schmiechen, R. (1984). Evaluation of the β-carboline ZK 93 426 as a benzodiazepine receptor antagonist. Psychopharmacology, 83, 249–256PubMedCrossRefGoogle Scholar
  88. Julou, L., Blanchard, J. C. and Dreyfus, J. F. (1985). Pharmacological and clinical studies of cyclopyrrolones: zopiclone and suriclone. Pharmacol. Biochem. Behavior, 23, 653–659CrossRefGoogle Scholar
  89. Karobath, M., Supavilai, P. and Borea, P. A. (1983). Distinction of benzodiazepine receptor agonists and inverse agonists by binding studies in vitro. In Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology (ed. G. Biggio and E. Costa), Raven Press, New York, pp. 37–45Google Scholar
  90. Keane, P. E., Bachy, A., Morre, M. and Biziere, K. (1988b). Tetrazepam: a benzodiazepine which dissociates sedation from other benzodiazepine activities. II. In vitro and in vivo interactions with benzodiazepine binding sites. J. Pharmacol. Ex. Thera., 245, 699–705Google Scholar
  91. Keane, P. E., Simiand, J., Morre, M. and Biziere, K. (1988a). Tetrazepam: a benzodiazepine which dissociates sedation from other benzodiazepine activities. I. Psychopharmacological profile in rodents. J. Pharmacol. Exp. Thera., 245, 692–698Google Scholar
  92. Kemp, J. A., Marshall, G. R., Wong, E. H. F. and Woodruff, G. N. (1987). The affinities, potencies and efficacies of some benzodiazepine-receptor agonists, antagonists and inverse-agonists at rat hippocampal GABA(A)-receptors. Br. J. Pharmacol., 91, 601–608PubMedPubMedCentralCrossRefGoogle Scholar
  93. Klepner, C. A., Lippa, A. S., Benson, D. I., Sano, M. C. and Beer, B. (1979). Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol. Biochem. Behavior, 11, 457–462CrossRefGoogle Scholar
  94. Klockgether, T., Schwarz, M., Turski, L. and Sontag, K.-H. (1985). ZK 91296, an anticonvulsant (beta)-carboline which lacks muscle relaxant properties. Eur. J. Pharmacol., 110, 309–315PubMedCrossRefGoogle Scholar
  95. Kumar, B. A., Forster, M. J. and Lal, H. (1988). CGS 8216, a benzodiazepine receptor antagonist, enhances learning and memory in mice. Brain Research, 460, 195–198PubMedCrossRefGoogle Scholar
  96. Langer, S. Z. and Arbilla, S. (1988). Imidazopyridines as a tool for the characterization of benzodiazepine receptors: a proposal for a pharmacological classification as omega receptor subtypes. Pharmacol. Biochem. Behavior, 29, 763–766CrossRefGoogle Scholar
  97. Le Fur, G., Mizoule, J., Burgevin, M. C., Ferris, O., Heaulme, M., Gauthier, A., Gueremy, C. and Uzan, A. (1981). Multiple benzodiazepine receptors: evidence of a dissociation between anticonflict and anticonvulsant properties by PK 9084 (two quinoline derivatives). Life Sci., 28, 1439–1448PubMedCrossRefGoogle Scholar
  98. Le Fur, G., Perrier, M. L., Vaucher, N., Imbault, F., Flamier, A., Benavides, J., Uzan, A., Renault, C., Dubroeucq, M. C. and Gueremy, C. (1983). Peripheral benzodiazepine binding sites: effect of PK11195, 1-(2-chlorophenyl)-N-methyl-N-(l-methylpropyl)-3-isoquinoline-carboxamide. I. In vitro studies. Life. Sci., 32, 1839–1847PubMedCrossRefGoogle Scholar
  99. Levi de Stein, M., Medina, J. H. and De Robertis, E. (1989) In vivo and in vitro modulation of central type benzodiazepine receptors by phosphotidylserine. Brain Res. Mol. Brain Res., 5, 9–15CrossRefGoogle Scholar
  100. Levitan, E. S., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W., Kohler, M., Fujita, N., Rodriguez, H. F., Stephenson, A., Darlison, M. G., Barnard, E. A. and Seeburg, P. H. (1988). Structural and functional basis for GABAa receptor heterogeneity. Nature, 335, 76–79PubMedCrossRefGoogle Scholar
  101. Lippa, A. S., Coupet, J., Greenblatt, E. N., Klepner, C. A. and Beer, B. (1979). A synthetic non-benzodiazepine ligand for benzodiazepine receptors: a probe for investigating neuronal substrates of anxiety. Pharmacol. Biochem. Behavior, 11, 99–106CrossRefGoogle Scholar
  102. Lister, R. G. and Karanian, J. (1987). Ro 15-4513 induces seizures in DBA/2 mice undergoing alcohol withdrawal. Alcohol, 4, 409–411PubMedCrossRefGoogle Scholar
  103. Lister, R. G. (1988). Interactions of three benzodiazepine receptor inverse agonists with ethanol in a plus-maze test of anxiety. Pharmacol. Biochem. Behavior, 30, 701–706CrossRefGoogle Scholar
  104. Lister, R. G. and Nutt, D. J. (1986). Mice and rats are sensitised to the proconvulsant actions of a benzodiazepine-receptor inverse agonist (FG 7142) following a single dose of lorazepam. Brain Res., 379, 364–366PubMedCrossRefGoogle Scholar
  105. Lister, R. G. and Nutt, D. J. (1987). Is Ro 15-4513 a specific alcohol antagonist? Trends Neurosci., 10, 223–225CrossRefGoogle Scholar
  106. Little, H. J. and Bichard, A. R. (1984). Differential effects of the benzodiazepine antagonist Ro 15-1788 after ‘general anaesthetic’ doses of benzodiazepines in mice. Br. J. Anaes., 56, 1153–1160CrossRefGoogle Scholar
  107. Little, H. J. and Nutt, D. J. (1984). Benzodiazepine contragonists cause kindling. Br. J. Pharmac., 81, 28 (abstr.)Google Scholar
  108. Little, H. J., Gale, R., Sellars, N., Nutt, D. J. and Taylor, S. C. (1988). Chronic benzodiazepine treatment increases the effects of the inverse agonist FG 7142. Neuropharmacology, 27, 383–389PubMedCrossRefGoogle Scholar
  109. Little, H. J., Nutt, D. J. and Taylor, S. C. (1984). Acute and chronic effects of the benzodiazepine receptor ligand FG7 7142: proconvulsant properties and kindling. Br. J. Pharmacol., 83, 951–958PubMedPubMedCentralCrossRefGoogle Scholar
  110. Little, H. J., Nutt, D. J. and Taylor, S. C. (1987). Kindling and withdrawal changes at the benzodiazepine receptor. J. Psychopharmacol., 1, 35–46PubMedCrossRefGoogle Scholar
  111. Little, H. J., Taylor, S. C. and Nutt, D. J. (1985). The benzodiazepine antagonist Ro 15-1788 does not decrease ethanol withdrawal convulsions in rats. Eur. J. Pharmacol., 107, 375–377PubMedCrossRefGoogle Scholar
  112. Lo, M. M. S., Niehoff, D. L., Kuhar, M. J. and Snyder, S. H. (1983). Differential localization of type I and type II benzodiazepine binding sites in substantia nigra. Nature, 306, 57–60PubMedCrossRefGoogle Scholar
  113. Lo, M. M. S., Strittmatter, S. M. and Snyder, S. H. (1982). Physical separation and characterization of two types of benzodiazepine receptors. Proc. Natl Acad. Sci. USA, 79, 680–684PubMedPubMedCentralCrossRefGoogle Scholar
  114. Lukas, S. E. and Griffiths, R. R. (1984). Precipitated diazepam withdrawal in baboons: effects of dose and duration of diazepam exposure. Eur. J. Pharmacol., 100, 163–171PubMedCrossRefGoogle Scholar
  115. Marley, R. J., Stinchcomb, A. and Wehner, J. M. (1988). Further characterization of benzodiazepine receptor differences in long-sleep and short-sleep mice. Life Sci., 43, 1223–1231PubMedCrossRefGoogle Scholar
  116. Martin, I. L. and Doble, A. (1983). The benzodiazepine receptor in the rat brain and its interaction with ethyl (beta)-carboline-3-carboxylate. J. Neurochem., 40, 1613–1619PubMedCrossRefGoogle Scholar
  117. Martin, J. R., Pieri, L., Bonetti, E. P., Schaffner, R., Burkard, W. P., Cumin, R. and Haefely, W. E. (1988a). Ro 16-6028: a novel anxiolytic acting as a partial agonist at the benzodiazepine receptor. Pharmacopsychiat., 21, 360–362CrossRefGoogle Scholar
  118. Martin, J. R., Schaffner, R., Pieri, L., Bonetti, E. P., Scherschlicht, R., Polc, P., Cumin, R. and Haefely, W. E. (1988b). Behavioral and electrophysiological effects of the thieno-quinolizinone putative anxiolytic Ro 19-5686. Eur. J. Neurosci., 18, 17 (abstr.)Google Scholar
  119. Mathers, D. A. and Yoshida, H. (1987). The benzodiazepine triazolam: direct and GABA depressant effects on cultured mouse spinal cord neurons. Eur. J. Pharmacol., 139, 53–60PubMedCrossRefGoogle Scholar
  120. Matsushita, A., Kawasaki, K., Matsubara, K., Eigyo, M., Shindo, H. and Takada, S. (1988). Activation of brain function by S-135, a benzodiazepine receptor inverse agonist. Prog. Neuropsychopharmacol. Biol Psychi., 12, 951–966CrossRefGoogle Scholar
  121. McLean, M. J. and Macdonald, R. L. (1988). Benzodiazepines, but not beta carbolines, limit high frequency repetitive firing of action potentials of spinal cord neurons in cell culture. J. Pharmacol. Exp. Thera., 244, 789–795Google Scholar
  122. McNicholas, L. F. and Martin, W. R. (1982). The effect of a benzodiazepine antagonist, Ro 15-1788, in diazepam dependent rats. Life Sci., 31, 731–737PubMedCrossRefGoogle Scholar
  123. Medina, J. H., Levi de Stein, M. and De Robertis, E. (1989). n-[3H]-Butyl-β-carboline-3-carboxylate, a putative endogenous ligand, binds preferentially to subtype 1 of central benzodiazepine receptors. J. Neurochem., 52, 665–670PubMedCrossRefGoogle Scholar
  124. Mehta, A. K. and Ticku, M. J. (1989). Benzodiazepine and beta-carboline interactions with GABAA receptor-gated chloride channels in mammalian cultured spinal cord neurons. J. Pharmacol. Exp. Thera., 249, 418–423Google Scholar
  125. Melchior, C. L., Garrett, K. M. and Tabakoff, B. (1984). A benzodiazepine antagonist action of CL 218,872. Life Sci., 34, 2201–2206PubMedCrossRefGoogle Scholar
  126. Miller, L. G., Greenblatt, D. J., Barnhill, J. G., Deutsch, S. I,, Shader, R. I. and Paul, S. M. (1987). Benzodiazepine receptor binding of triazolobenzodiazepine in vivo: increased receptor number with low-dose alprazolam. J. Neurochem., 49, 1595–1601PubMedCrossRefGoogle Scholar
  127. Minchin, M. C. W. and Nutt, D. J. (1983). Studies on [3H]-diazepam and [3H]-ethyl-β-carboxylate binding to rat brain in vivo. I. Regional variations in displacement. J. Neurochem., 41, 1507–1512PubMedCrossRefGoogle Scholar
  128. Mitchell, P. R. and Martin, I. L. (1978). Is GAB A release modulated by presynaptic receptors? Nature, 274, 904–905PubMedCrossRefGoogle Scholar
  129. Mohler, H. and Okada, T. (1978). The benzodiazepine receptor in normal and pathological human brain. Br. J. Psychiat., 133, 261–268CrossRefGoogle Scholar
  130. Mohler, H. (1981). Benzodiazepine receptors: are there endogenous ligands in the brain? TIPS, 2, 116–119Google Scholar
  131. Mohler, H., Malherbe, P., Sequier, J. M., Bannwarth, W., Schoch, P. and Richards, J. G. (1989). Location, structure, and sites of synthesis of the GABAa receptor in the central nervous system. In Allosteric Modulation of Amino Acid Receptors: Therapeutic Implications (ed. E. A. Barnard and E. Costa), Raven Press, New York, pp. 31–46Google Scholar
  132. Nagy, A. and Lajtha, A. (1983). Thyroid hormones and derivatives inhibit flunitrazepam binding. J. Neurochem., 40, 414–417PubMedCrossRefGoogle Scholar
  133. Nicholson, A. N. and Pascoe, D. A. (1986). Hypnotic activity of an imidazo-pyridine (Zolpidem). Br. J. Clin. Pharmacol., 21, 205–211PubMedPubMedCentralCrossRefGoogle Scholar
  134. Niddam, R., Dubois, A., Scatton, B., Arbilla, S. and Langer, S. Z. (1987). Autoradiographic localization of [3H]-zolpidem binding sites in the rat CNS: comparison with the distribution of [3H]flunitrazepam binding sites. J. Neurochem., 49, 890–899PubMedCrossRefGoogle Scholar
  135. Nielsen, E. B., Jepsen, S. A., Nielsen, M. and Braestrup, C. (1985). Discriminative stimulus properties of methyl 6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM) an inverse agonist at benzodiazepine receptors. Life Sci., 36, 15–23PubMedCrossRefGoogle Scholar
  136. Nielsen, M. and Braestrup, C. (1980). Ethyl-β-carboline-3-carboxylate shows differential benzodiazepine receptor interaction. Nature, 286, 606–607PubMedCrossRefGoogle Scholar
  137. Nielsen, M., Braestrup, C. and Squires, R. F. (1978). Evidence for a late evolutionary appearance of brain-specific benzodiazepine receptors: an investigation of 18 vertebrate and 5 invertebrate species. Brain Research, 141, 342–346PubMedCrossRefGoogle Scholar
  138. Nielsen, M., Frokjaer, S. and Braestrup, C. (1988a). High affinity of the naturally-occurring biflavonoid, amentoflavon, to brain benzodiazepine receptors in vitro. Biochem. Pharmacol., 37, 3285–3287PubMedCrossRefGoogle Scholar
  139. Nielsen, M., Gredal, O. and Braestrup, C. (1979). Some properties of 3H-diazepam-reversing effects of ethyl-β-carboline-3-carboxylate. Life Sci., 25, 679–686PubMedCrossRefGoogle Scholar
  140. Nielsen, M., Witt, M. R. and Thogersen, H. (1988b). [3H]diazepam specific binding to rat cortex in vitro is enhanced by oleic, arachidonic and docosahexenoic acid isolated from pig brain. Eur. J. Pharmacol., 146, 349–353PubMedCrossRefGoogle Scholar
  141. Ninan, P. T., Insel, T. M., Cohen, R. M., Cook, J. M., Skolnick, P. and Paul, S. M. (1982). Benzodiazepine receptor-mediated experimental ‘anxiety’ in primates. Science, 218, 1332–1334PubMedCrossRefGoogle Scholar
  142. Nutt, D. J. (1983). Pharmacological and behavioural studies on benzodiazepine antagonists and contragonists. In Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology (ed. G. Biggio and E. Costa), Raven Press, New York, pp. 153–173Google Scholar
  143. Nutt, D. J. (1986). Benzodiazepine dependence in the clinic: reason for anxiety. Trends Pharmacol. Sci., 7, 457–460CrossRefGoogle Scholar
  144. Nutt, D. J. (1988a). Benzodiazepine terminology. TIPS, 9, 86 (letter)PubMedGoogle Scholar
  145. Nutt, D. J. (1988b). Benzodiazepine receptor ligands. Neurotransmissions, 4, no. 2Google Scholar
  146. Nutt, D. J. (1990). The pharmacology of human anxiety. Pharmacol. Ther., in pressGoogle Scholar
  147. Nutt, D. J. and Costello, M. (1988). Rapid induction of lorazepam dependence and its reversal with flumazenil. Life Sci., 43, 1045–1053PubMedCrossRefGoogle Scholar
  148. Nutt, D. J., Cowen, P. C. and Little, H. J. (1982). Unusual interactions of benzodiazepine receptor antagonists. Nature, 295, 436–438PubMedCrossRefGoogle Scholar
  149. Nutt, D. J. and Lister, R. G. (1987). The effect of the imidazodiazepine Ro 15-4513 on the anticonvulsant effects of diazepam, sodium pentobarbitol and ethanol. Brain Res., 413, 193–196PubMedCrossRefGoogle Scholar
  150. Nutt, D. J. and Lister, R. G. (1988). Strain differences in the response to the benzodiazepine receptor inverse agonist (FG 7142) in mice. Psychopharmacology, 94, 435–436CrossRefGoogle Scholar
  151. Nutt, D. J. and Lister, R. G. (1989a). 3-(methoxycarbonyl)-amino-β-carboline reduces both the sedative and anticonvulsant effects of diazepam. Eur. J. Pharmacol., 165, 135–138PubMedCrossRefGoogle Scholar
  152. Nutt, D. J. and Lister, R. G. (1989b). Antagonizing the anticonvulsant effect of ethanol using drugs that act at the benzodiazepine/GABA receptor complex. Pharmacol. Biochem. Behavior, 31, 751–755CrossRefGoogle Scholar
  153. Nutt, D. J. and Little, H. J. (1986). Benzodiazepine-receptor mediated convulsions in infant rats: effects of beta-carbolines. Pharmacol. Biochem. Behavior, 24, 841–844CrossRefGoogle Scholar
  154. Nutt, D. J., Little, H. J., Taylor, S. C. and Minchin, M. C. W. (1984). Investigating benzodiazepine receptor function in vivo using an intravenous infusion of DMCM. Eur. J. Pharmacol., 103, 359–362PubMedCrossRefGoogle Scholar
  155. Nutt, D. J. and Glue, P. (1989). Clinical pharmacology of anxiolytics and antidepressants: a psychopharmacological perspective. Pharm. Ther., 44, 309–334CrossRefGoogle Scholar
  156. Nutt, D. J., Glue, P. and Lawson, C. L. (1989). The neurochemistry of anxiety: an update. Prog. Neuro-Psychopharmacol. Biol Psychiat., in pressGoogle Scholar
  157. Nutt, D. J. and Minchin, M. C. W. (1983). Studies on [3H]-diazepam and [3H]-ethyl-β-carboxylate binding to rat brain in vivo. II. Effects of electroconvulsive shock. J. Neurochem., 41, 1513–1517PubMedCrossRefGoogle Scholar
  158. Oakley, N. R. and Jones, B. J. (1980). The proconvulsant and diazepam-reversing effects of ethyl-β-carboline-3-carboxylate. Eur. J. Pharmacol., 68, 381–382PubMedCrossRefGoogle Scholar
  159. Oakley, N. R. and Jones, B. J. (1982). Differential pharmacological effects of β-carboline-3-carboxylic acid esters. Neuropharmacology, 21, 587–589PubMedCrossRefGoogle Scholar
  160. Oakley, N. R., Jones, B. J. and Straughan, D. W. (1984). The benzodiazepine receptor ligand CL 218,872 has both anxiolytic and sedative properties in rodents. Neuropharmacol., 23, 797–802CrossRefGoogle Scholar
  161. Obata, T. and Yamamura, H. I. (1988). Modulation of GABA-stimulated chloride influx into membrane vesicles from rat cerebral cortex by triazolobenzodiazepines. Life Sci., 42, 659–665PubMedCrossRefGoogle Scholar
  162. Olasma, M., Guidotti, A., Costa, E., Rothstein, J. D., Goldman, M. E., Weber, R. J. and Paul, S. M. (1989). Endogenous benzodiazepine in hepatic encephalopathy. Lancet, i, 491–492CrossRefGoogle Scholar
  163. Olsen, R. W. (1981). GABA-benzodiazepine-barbiturate receptor interactions. J. Neurochem., 37, 1–13PubMedCrossRefGoogle Scholar
  164. Perrault, G., Morel, E., Sanger, D. J. and Zivkovic, B. (1988). The interaction between Zolpidem and beta-CMC: a clue to the identification of receptor sites involved in the sedative effect of Zolpidem. Eur. J. Pharmacol., 156, 189–196PubMedCrossRefGoogle Scholar
  165. Persson, A., Pauli, S., Swahn, C. G., Halldin, C. and Sedvall, G. (1989). Cerebral uptake of [11C]-Ro 15-1788 and its acid metabolite [11C]-Ro 15-3890; PET study in healthy volunteers. Human Psychopharm., 4, 215–220CrossRefGoogle Scholar
  166. Petersen, E. N., Jensen, L. H., Honore, T. and Braestrup, C. (1983). Differential pharmacological effects of benzodiazepine receptor inverse agonists. In Benzodiazepine Recognition Site Ligands: Biochemistry and Pharmacology (ed. G. Biggio and E. Costa), Raven Press, New York, pp. 57–64Google Scholar
  167. Petersen, E. N. (1987). Benzodiazepine receptor pharmacology: new vistas. Drugs Fut., 12, 1043–1053Google Scholar
  168. Petersen, E. N. and Jensen, L. H. (1987). Lorazepam and FG 7142 induce tolerance to the DMCM antagonistic effect of benzodiazepine receptor ligands. Brain Res. Bull., 19, 387–391PubMedCrossRefGoogle Scholar
  169. Petursson, H., Bhattacharya, S. K., Glover, V., Sandler, M. and Lader, M. H. (1982). Urinary monoamine oxidase inhibitor and benzodiazepine withdrawal. Br. J. Psychiat., 140, 7–10CrossRefGoogle Scholar
  170. Pieri, L. (1988). Ro 19-4603: a benzodiazepine receptor partial inverse agonist with prolonged proconvulsant action in rodents. Br. J. Pharmacol., 95, 477 (abstr.)Google Scholar
  171. Pieri, L., Biry, P. and Wdonwicki, G. (1985). Proconvulsant action of Ro 15-3505, the 7-chloro analogue of Ro 15-1788, on isoniazid convulsions in rats. Br. J. Pharmacol, 86, 592Google Scholar
  172. Polc, P., Bonetti, E. P., Schaffner, R. and Haefely, W. (1982). A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist Ro 15-1788, benzodiazepine tranquillizers, β-carbolines, and phenobarbitone. Naunyn-Schmiedeberg’s Arch. Pharmacol., 321, 260–264CrossRefGoogle Scholar
  173. Potier, M. C., Prado de Carvalho, L., Dodd, R. H., Besselievre, R. and Rossier, J. (1988a). In vivo binding of β-carbolines in mice: regional differences and correlation of occupancy to pharmacological effects. Mol. Pharmacol., 34, 124–128PubMedGoogle Scholar
  174. Potier, M. C., Prado de Carvalho, L., Venault, P., Chapouthier, G. and Rossier, J. (1988b). Demonstration of the partial agonist profiles of Ro 16-6028 and Ro 17-1812 in mice in vivo. Eur. J. Pharmacol., 156, 169–172PubMedCrossRefGoogle Scholar
  175. Potier, M. C., Prado de Carvalho, L., Dodd, R. H., Brown, C. L. and Rossier, J. (1988c). In vivo binding of [3H]Ro 15-1788 in mice: comparison with the in vivo binding of [3H]flunitazepam. Life Sci., 43, 1287–1296PubMedCrossRefGoogle Scholar
  176. Prado de Carvalho, L., Venault, P., Potier, M. C., Dodd, R. H., Brown, C. L., Chapouthier, G. and Rossier, J. (1986). 3-(methoxycarbonyl)-amino-β-carboline, a selective antagonist of the sedative effects of benzodiazepines. Eur. J. Pharmacol., 129, 323–332CrossRefGoogle Scholar
  177. Pratt, J. A., Brett, R. R. and Laurie, D. J. (1989). Local cerebral glucose utilization after intraventricular administration of octadecaneuropeptide (‘anxiety peptide’). J. Cerebr. Blood Flow Metab., 9, S682Google Scholar
  178. Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R. and Seeburg, P. H. (1989a). Importance of a novel GABA(A) receptor subunit for benzodiazepine pharmacology. Nature, 338, 582–585PubMedCrossRefGoogle Scholar
  179. Pritchett, D. B., Luddens, H. and Seeburg, P. H. (1989b). Type I and type II GABA(A)-benzodiazepine receptors produced in transfected cells. Science, 245, 1389–1392PubMedCrossRefGoogle Scholar
  180. Robertson, H. A., Baker, G. B., Coutts, R. T., Benderly, A., Locock, R. A. and Martin, I. L. (1981). Interactions of β-carbolines with the benzodiazepine receptor: structure-activity relationships. Eur. J. Pharmacol., 76, 281–284PubMedCrossRefGoogle Scholar
  181. Rodgers, R. J., Waters, A. J. and Rosenfield, S. (1983). Evidence for intrinsic behavioural activity of the benzodiazepine antagonist, Ro 15-1788, in male mice. Pharmacol. Biochem. Behav., 19, 895–898PubMedCrossRefGoogle Scholar
  182. Romer, D., Buscher, H. H., Hill, R. C., Maurer, R. and Petcher, T. J. (1982). An opioid benzodiazepine. Nature, 298, 759–760PubMedCrossRefGoogle Scholar
  183. Rommelspacher, H., Barbey, M., Strauss, S., Greiner, B. and Fahndrich, E. (1982). Is there a correlation between the concentration of beta-carbolines and their pharmacodynamic effects? In β-carbolines and Tetrahydroisoquinolones, (Eds F. Bloom et al.), Liss, New YorkGoogle Scholar
  184. Sandler, M. (1982). The emergence of tribulin. TIPS, 3, 471–472Google Scholar
  185. Sangameswaran, L. and De Blas, A. L. (1985). Demonstration of benzodiazepine-like molecules in the mammalian brain with a monoclonal antibody to benzodiazepines. Proc. Natl Acad. Sci. USA, 82, 5560–5564PubMedPubMedCentralCrossRefGoogle Scholar
  186. Sangameswaran, L., Fales, H. M., Friedrich, P. and De Blas, A. L. (1986). Purification of a benzodiazepine from bovine brain and detection of benzodiazepine-like immunoreactivity in human brain. Proc. Natl Acad. Sci. USA, 83, 9236–9240PubMedPubMedCentralCrossRefGoogle Scholar
  187. Sarter, M., Bodewitz, G. and Stephens, D. N. (1988). Attenuation of scopolamine-induced impairment of spontaneous alteration behaviour by antagonist but not inverse agonist and agonist β-carbolines. Psychopharmacol., 94, 491–495CrossRefGoogle Scholar
  188. Sarter, M. and Stephens, D. N. (1989). Disinhibitory properties of β-carboline antagonists of benzodiazepine receptors: a possible therapeutic approach for senile dementia? Biochem. Soc. Transactions, 17, 81–83CrossRefGoogle Scholar
  189. Schaffner, R., Martin, J. R. and Haefely, W. E. (1988). The benzodiazepine receptor (BZR) partial agonist Ro 19-5686, a novel putative anxiolytic, exhibits lower ethanol potentiation and dependence potential than BZR full agonists. Eur. J. Neurosci., 18, 18 (abstr.)Google Scholar
  190. Schneider, H. H. and Stephens, D. N. (1988). Coexistence of kindling induced by the β-carboline, FG 7142, and tolerance to diazepam following chronic treatment in mice. Eur. J. Pharmacol., 154, 35–45PubMedCrossRefGoogle Scholar
  191. Schoch, P., Richards, J. G., Haring, P., Takacs, B., Stahli, C., Staehelin, T., Haefely, W. and Mohler, H. (1985). Co-localization of GABA(A) receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies. Nature, 314, 168–171PubMedCrossRefGoogle Scholar
  192. Schofield, P. R., Darlison, M. G., Gujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H. and Barnard, E. A. (1987). Sequence and functional expression of the GABA-A receptor shows a ligand gated super family. Nature, 328, 221PubMedCrossRefGoogle Scholar
  193. Scollo-Lavizzari, G. (1984). The anticonvulsant effect of the benzodiazepine antagonist, Ro 15-1788: an EEG study in 4 cases. Eur. Neurol., 23, 1–6PubMedCrossRefGoogle Scholar
  194. Sequier, J. M., Richards, J. G., Malherbe, P., Price, G. W., Mathews, S. and Mohler, H. (1988). Mapping of brain areas containing RNA homologous to cDNAs encoding the α and β subunits of the rat GABAA gamma-aminobutyrate receptor Proc. Natl Acad. Sci. USA, 85, 7815–7819CrossRefGoogle Scholar
  195. Shannon, H. E., Guzman, F. and Cook, J. M. (1984). β-carboline-3-carboxylate-t-butyl ester: a selective BZ1 benzodiazepine receptor antagonist. Life Sci., 35, 2227–2236PubMedCrossRefGoogle Scholar
  196. Shannon, H. E. and Katzman, N. J. (1986). CGS 8216: agonist and diazepam-antagonist effects in rodents. J. Pharmacol. Exp. Thera., 239, 166–173Google Scholar
  197. Sieghart, W. (1983). Several new benzodiazepines selectively interact with a benzodiazepine receptor subtype. Neurosci. Lett., 38, 73–78PubMedCrossRefGoogle Scholar
  198. Sieghart, W. (1987). Multiple benzodiazepine binding sites. In GABA and Benzodiazepine Receptors, vol. II (ed. R. F. Squires), CRC Press, USA, pp. 1–14Google Scholar
  199. Sieghart, W. and Drexler, G. (1983). Irreversible binding of [3H]flunitrazepam to different proteins in various brain regions. J. Neurochem., 41, 47–55PubMedCrossRefGoogle Scholar
  200. Sieghart, W. and Karobath, M. (1980). Molecular heterogeneity of benzodiazepine receptors. Nature, 286, 285–287PubMedCrossRefGoogle Scholar
  201. Simmonds, M. A. (1980). A site for the potentiation of GABA-mediated responses by benzodiazepines. Nature, 284, 558–560PubMedCrossRefGoogle Scholar
  202. Simmonds, M. A. (1984). Physiological and pharmacological characterization of the actions of GABA. In Actions and Interactions of GABA and Benzodiazepines (ed. N. G. Bowery), Raven Press, New York, pp. 27–43Google Scholar
  203. Snyder, S. H., Enna, S. J. and Young, A. B. (1978). Brain mechanisms associated with therapeutic actions of benzodiazepines: focus on neurotransmitters. Am. J. Psych., 134, 662–664Google Scholar
  204. Squires, R. F. (1983). Benzodiazepine receptor multiplicity. Neuropharmacology, 22, 1443–1450PubMedCrossRefGoogle Scholar
  205. Squires, R. F. and Braestrup, C. (1977). Benzodiazepine receptors in rat brain. Nature, 266, 732–734PubMedCrossRefGoogle Scholar
  206. Squires, R. F., Benson, D. I., Braestrup, C., Coupet, J., Klepner, C. A., Myers, V. and Beer, B. (1979). Some properties of brain specific benzodiazepine receptor: new evidence for multiple receptors. Pharmacol. Biochem. Behavior, 10, 825–830CrossRefGoogle Scholar
  207. Steiner-Chaskel, N. and Lader, M. H. (1981). Effects of single doses of clobazam and diazepam on psychological functions in normal subjects. Royal Society of Medicine International Congress and Symposium Series, 43, 23–32Google Scholar
  208. Study, R. E. and Barker, J. L. (1981). Diazepam and [-]-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurones. Proc. Natl Acad. Sci. USA, 78, 7180–7184PubMedPubMedCentralCrossRefGoogle Scholar
  209. Suzdak, P. D., Glowa, J. R., Crawley, J. N., Schwartz, R. D., Skolnick, P. and Paul, S. M. (1986). A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science, 234, 1243–1247PubMedCrossRefGoogle Scholar
  210. Sweetnam, P. M. and Tallman, J. F. (1985). Regional differences in brain benzodiazepine receptor carbohydrates. Mol. Pharmacol., 29, 299–306Google Scholar
  211. Taylor, S. C., Little, H. J., Nutt, D. J. and Sellars, N. (1985). A benzodiazepine agonist contragonist have hypothermic effects in rodents. Neuropharmacol., 24, 69–73CrossRefGoogle Scholar
  212. Tenen, S. S. and Hirsch, J. D. (1980). β-carboline-3-carboxylic acid ethyl ester antagonizes diazepam activity. Nature, 288, 609–610PubMedCrossRefGoogle Scholar
  213. Thiebot, M. H., Soubrie, P. and Sanger, D. (1988). Anxiogenic properties of beta-CCE and FG 7142: a review of promises and pitfalls. Psychopharmacol., 94, 452–463CrossRefGoogle Scholar
  214. Ticku, M. K. (1983). Benzodiazepine-GABA receptor-ionophore complex: Current concepts. Neuropharmacology, 22:12B, 1459–1470PubMedCrossRefGoogle Scholar
  215. Trifiletti, R. R., Snowman, A. M. and Snyder, S. H. (1985). Barbiturate recognition site on the GABA/benzodiazepine receptor complex is distinct from the picrotoxinin/TBPS recognition site. Eur. J. Pharmacol., 106, 441–447CrossRefGoogle Scholar
  216. Trullas, R., Ginter, H., Jackson, B., Skolnick, P., Allen, M. S., Hagen, T. J. and Cook, J. M. (1988). 3-ethoxy-beta-carboline: a high affinity benzodiazepine receptor ligand with partial inverse agonist properties. Life Sci., 43, 1189–1197PubMedCrossRefGoogle Scholar
  217. Trullas, R., Ginter, H. and Skolnick, P. (1987). A benzodiazepine receptor inverse agonist inhibits stress-induced ulcer formation. Pharmacol. Biochem. Behavior, 27, 35–39CrossRefGoogle Scholar
  218. Turner, D. M., Ransom, R. W., Yang, J. S. J. and Olsen, R. W. (1989). Steroid anesthetics and naturally occurring analogs modulate the (gama)-aminobutyric acid receptor complex at a site distinct from barbiturates. J. Pharmacol. Exp. Ther., 248, 960–966PubMedGoogle Scholar
  219. Unseld, E., Krishna, D. R., Fischer, C. and Klotz, U. (1988). Endogenous benzodiazepines in brain right or wrong? Tins, 11, 490PubMedGoogle Scholar
  220. Vellucci, S. V. and Webster, R. A. (1983). Is Ro15-1788 a partial agonist at benzodiazepine receptors? Eur. J. Pharmacol., 90, 263–268PubMedCrossRefGoogle Scholar
  221. Venault, P., Chapouthier, G., Prado de Carvalho, L., Simiand, J., Morre, M., Dodd, R. H. and Rossier, J. (1986). Benzodiazepine impairs and (beta)-carboline enhances performance in learning and memory tasks. Nature, 321, 864–866PubMedCrossRefGoogle Scholar
  222. Wildmann, J., Mohler, H., Vetter, W., Ranalder, U., Schmidt, K. and Maurer, R. (1987). Diazepam and N-desmethyldiazepam are found in rat brain and adrenal and may be of plant origin. J. Neural Transm., 70, 383–398PubMedCrossRefGoogle Scholar
  223. Wildmann, J. and Ranalder, U. (1988). Presence of lorazepam in the blood plasma of drug free rats. Life Sci., 43, 1257–1260CrossRefGoogle Scholar
  224. Wildmann, J. (1988). Increase of natural benzodiazepines in wheat and potato during germination. Biochem. Biophys. Res. Commun., 157, 1436–1443PubMedCrossRefGoogle Scholar
  225. Willer, J. C., Von Frenkell, R., Bonnet, D. and Le Fur, G. (1986). The ability of PK 8165, a quinoline derivative, to reduce responses to a stressful situation in a double-blind study in man. Neuropharmacol., 25, 275–281CrossRefGoogle Scholar
  226. Williams, E. F., Rice, K. C., Paul, S. M. and Skolnick, P. (1980). Heterogeneity of benzodiazepine receptor in the central nervous system demonstrated with kenazepine, an alkylating benzodiazepine. J. Neurochem., 35, 591–597PubMedCrossRefGoogle Scholar
  227. Williams, M. (1984). Molecular aspects of the action of benzodiazepine and non-benzodiazepine anxiolytics: a hypothetical allosteric model of the benzodiazepine receptor complex. Prog. Neuro-Psychopharmacol. Biol. Psychiat., 8, 209–247CrossRefGoogle Scholar
  228. Williams, M., Bennett, D. A., Loo, P. S., Braunwalder, A. F., Amrick, C. L., Wilson, D. E., Thompson, T. N., Schmutz, M., Yokoyoma, N. and Wasley, J. W. F. (1989). CGS 20625, a novel pyrazolopyridine anxiolytic. J. Pharmacol. Exp. Ther., 248, 89–96PubMedGoogle Scholar
  229. Williams, M. and Yokoyoma, N. (1986). Anxiolytics, anticonvulsants and sedative-hypnotics. In Annual Reports in Medicinal Chemistry (ed. D. M. Bailey, B. Hesp, J. A. Bristol, F. C. Sciavolino, B. A. Pawson, R. W. Egan and R. C. Allen), Academic Press, Orlando, pp. 11–20Google Scholar
  230. Wood, P. L., Loo, P., Braunwalder, A. and Cheney, D. L. (1984). In vitro characterization of agonist, antagonist, inverse agonist and agonist/antagonist benzodiazepines. Prog. Neuro-Psychopharmacol. Biol. Psychiat., 8, 785–788CrossRefGoogle Scholar
  231. Woolf, J. H. and Nixon, J. C. (1981). Endogenous effector of the benzodiazepine binding site: purification and characterization. Biochemistry, 20, 4263–4269PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1990

Authors and Affiliations

  • David Nutt
    • 1
  1. 1.Department of Pharmacology, School of Medical SciencesUniversity WalkBristolUK

Personalised recommendations