Platelet-derived Products and Adrenergic Neurotransmission

  • Tony J. Verbeuren


An important factor in the maintenance of the proper control of arterial blood pressure and the adequate perfusion of body tissues is the sympathetic nervous system. Modulation of the sympathetic outflow contributes to the integration of the function of precapillary resistance vessels as well as to that of post-capillary capacitance vessels. The junction between the sympathetic nerve endings and the vascular smooth-muscle cells is the last relay for the impulses originating in the vasomotor centers of the brain stem. Research performed over the past two decades has illustrated that the adrenergic neuroeffector junction can be modulated by local physical, chemical and pharmacological events; ionic, metabolic, local humoral, hormonal, neurogenic and environmental factors have all been shown to interfere with this vital link in the genesis of vasomotor responses (Starke, 1977; Westfall, 1977; Langer, 1980; Vanhoutte et al., 1981).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler-Granschinsky, E. (1983). Dual pre-synaptic effects of 5-hydroxytryptamine on peripheral adrenergic synapses. J. Autonom. Pharmacol., 3, 303–315CrossRefGoogle Scholar
  2. Axelrod, J. (1974). The pineal gland: a neurochemical transducer. Science, 184, 1341–1348PubMedCrossRefGoogle Scholar
  3. Bevan, J. A., Duckies, S. P. and Lee, T. J.-F. (1975). Histamine potentiation of nerve-and drug-induced responses of a rabbit cerebral artery. Circ. Res., 36, 647–653PubMedCrossRefGoogle Scholar
  4. Braquet, P. and Vargaftig, B. B. (1986). Pharmacology of platelet activating factor. Transplant. Proc., 18, 10–19Google Scholar
  5. Burnstock, G. (1988). Sympathetic purinergic transmission in small blood vessels. TIPS, 9, 116–117PubMedGoogle Scholar
  6. Burnstock, G. and Kennedy, C. (1985). A dual function for adenosine 5′-triphosphate in the regulation of vascular tone. Excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent. Circ. Res., 58, 319–330CrossRefGoogle Scholar
  7. Burnstock, G., Crowe, R., Kennedy, C. and Török, J. (1984). Indirect evidence that purinergic modulation of perivascular adrenergic neurotransmission in the portal vein is a physiological process. Br. J. Pharmacol., 82, 359–368PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chang, J.-Y. and Owman, C. (1986). Immunohistochemical and pharmacological studies on serotonergic nerves and receptors in brain vessels. Acta Physiol. Scand., 127, Suppl. 552, 49–53Google Scholar
  9. Chang, J.-Y., Hardebo, J. E., Owman, Ch., Sahlin, Ch. and Svendgaard, N. A. (1987). Nerves containing serotonin, its interaction with noradrenaline, and characterization of serotonin receptors in cerebral arteries of monkey. J. Auton. Pharmac., 7, 317–329CrossRefGoogle Scholar
  10. Chan-Palay, V. (1976). Serotonin axons in supra-and subependymal plexuses and in the leptomeninges; their roles in local alterations of cerebrospinal fluid and vasomotor activity. Brain Res., 102, 103–130PubMedCrossRefGoogle Scholar
  11. Charlton, K. G., Bond, R. A. and Clarke, D. E. (1986). An inhibitory prejunctional 5-HT1-like receptor in the isolated perfused rat kidney: apparent distinction from the 5-HT1A, 5-HT1B and 5-HT1C subtypes. Naunyn-Schmiedeberg’s Arch. Pharmacol., 332, 8–15CrossRefGoogle Scholar
  12. Cohen, R. A. (1985a). Platelet-induced neurogenic coronary contractions due to accumulation of the false neurotransmitter, 5-hydroxytryptamine. J. Clin. Invest., 75, 286–292PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cohen, R. A. (1985b). Serotonergic prejunctional inhibition of canine coronary adrenergic nerves. J. Pharmacol. Exp. Ther., 235, 76–80PubMedGoogle Scholar
  14. Cohen, R. A. (1986). Adenine nucleotides and 5-hydroxytryptamine released by aggregating platelets inhibit adrenergic neurotransmission in canine coronary artery. J. Clin. Invest., 77, 369–375PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cohen, R. A. (1987). Inhibition of adrenergic neurotransmission in canine tibial artery after exposure to 5-hydroxytryptamine in vitro. J. Pharmacol. Exp. Ther., 242, 493–499PubMedGoogle Scholar
  16. Cohen, R. A. (1989). Interactions of 5-hydroxytryptamine with endothelial cells. In The Peripheral Actions of 5-Hydroxytryptamine (ed J. R. Fozard), Oxford University Press, Oxford, pp. 182–200Google Scholar
  17. Cohen, R. A., Shepherd, J. T. and Vanhoutte, P. M. (1983). Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science, 221, 273–274PubMedCrossRefGoogle Scholar
  18. Cohen, R. A., Zitnay, K. M. and Weisbrod, R. M. (1987). Accumulation of 5-hydroxytryptamine leads to dysfunction of adrenergic nerves in canine coronary artery following intimai damage in vivo. Circ. Res., 61, 829–833PubMedCrossRefGoogle Scholar
  19. Curro, F. A., Greenberg, S., Verbeuren, T. J. and Vanhoutte, P. M. (1978). Interaction between alpha-adrenergic and serotonergic activation of canine saphenous vein. J. Pharmacol. Exp. Ther., 207, 936–943PubMedGoogle Scholar
  20. Da Prada, M. and Picotti, G. B. (1979). Content and subcellular localization of catecholamines and 5-hydroxytryptamine in human and animal blood platelets: monoamine distribution between platelets and plasma. Brit. J. Pharamcol., 65, 653–662CrossRefGoogle Scholar
  21. De Clerck, F. and de Chaffoy de Courcelles, D. (1989). Amplification mechanisms in platelet activation. In Blood Cells and Arteries in Hypertension and Atherosclerosis (ed. eP. Meyer and P. Marche), Raven Press, New York, pp. 115–140Google Scholar
  22. De Clerck, F. and Van Nueten, J. M. (1982). Platelet-mediated vascular contractions: inhibition of the serotonergic component by ketanserin. Thrombosis Res., 27, 713–727CrossRefGoogle Scholar
  23. De Clerck, F., Van Nueten, J. M. and Reneman, R. S. (1984). Platelet-vessel wall interactions: implication of 5-hydroxytryptamine. A review. Agent and Actions, 15, 612–626CrossRefGoogle Scholar
  24. de la Lande, I. S. (1989). Amplification mechanisms in peripheral tissues. In The Peripheral Actions of 5-Hydroxytryptamine (ed. J. R. Fozard), Oxford University Press, Oxford, pp. 123–146Google Scholar
  25. De Mey, J. and Vanhoutte, P. M. (1981). Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries. J. Physiol. (London), 316, 437–455Google Scholar
  26. De Mey, J., Burnstock, G. and Vanhoutte, P. M. (1979). Modulation of the evoked release of noradrenaline in canine saphenous vein via presynaptic receptors for adenosine but not ATP. Eur. J. Pharmacol., 55, 401–405PubMedCrossRefGoogle Scholar
  27. Dewar, H. A., Zar, M. A. and Oxley, A. (1989). Neuropeptide Y and platelet aggregation by adrenaline. Life Sci., 45, 367–370PubMedCrossRefGoogle Scholar
  28. Ellis, E. F., Oelz, O., Robert, L. J., II, Payne, N. A., Sweetman, B. S., Nies, A. S. and Oates, J. A. (1976). Coronary arterial smooth muscle contraction by a substance released from platelets: evidence that it is thromboxane A2. Science, 193, 1135–1137PubMedCrossRefGoogle Scholar
  29. Enero, M. A. and Saidman, B. Q. (1977). Possible feedback inhibition of noradrenaline release by purine compounds. Naunyn Schmiedeberg’s Arch. Pharmacol., 297, 39–46CrossRefGoogle Scholar
  30. Engel, G., Göthert, M., Müller-Schweinitzer, E., Schlicker, E., Sistonen, L. and Stadler, P. A. (1983). Evidence for common pharmacological properties of [3H]5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn-Schmiedeberg’s Arch. Pharmacol., 325, 116–124CrossRefGoogle Scholar
  31. Engel, G., Göthert, M., Hoyer, D., Schlicker, E. and Hillenbrand, K. (1986). Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg’s Arch. Pharmacol., 332, 1–7CrossRefGoogle Scholar
  32. Feniuk, W., Humphrey, P. P. A. and Watts, A. D. (1979). Presynaptic inhibitory action of 5-hydroxytryptamine in dog isolated saphenous vein. Brit. J. Pharmacol., 67, 247–254CrossRefGoogle Scholar
  33. Fitzgerald, D. J., Fragetta, J. and Fitzgerald, G. A. (1988). Prostaglandin endoperoxides modulate the response to thromboxane synthase inhibition during coronary thrombosis. J. Clin. Invest., 82, 1708–1713PubMedPubMedCentralCrossRefGoogle Scholar
  34. Flavahan, N. A. and Vanhoutte, P. M. (1986). Sympathetic purinergic vasoconstriction and thermosensitivity in a canine cutaneous vein. J. Pharmacol. Exp. Ther., 239, 784–789PubMedGoogle Scholar
  35. Ford-Hutchinson, A. W. (1985). Leukotrienes: their formation and role as inflammatory mediators. Fed. Proc., 44, 25–29PubMedGoogle Scholar
  36. Fox, A. W. (1988). Vascular vasopressin receptors. Gen. Pharmacol., 19, 639–647PubMedCrossRefGoogle Scholar
  37. Fozard, J. R. (1989). The development and early clinical evaluation of selective 5-HT3 receptor antagonists. In The Peripheral Actions of 5-Hydroxytryptamine (ed. J. R. Fozard), Oxford University Press, Oxford, pp. 354–376Google Scholar
  38. Fozard, J. R. and Mwaluko, G. M. P. (1976). Mechanism of the indirect sympathomimetic effect of 5-hydroxytryptamine on the isolated heart of the rabbit. Brit. J. Pharmacol., 57, 115–125CrossRefGoogle Scholar
  39. Fredholm, B. B. (1976). Release of adenosine-like material from isolated perfused dog adipose tissue following sympathetic nerve stimulation and its inhibition by adrenergic α-receptor blockade. Acta Physiol. Scand., 96, 422–430CrossRefGoogle Scholar
  40. Fredholm, B. B. and Dunwiddie, T. V. (1988). How does adenosine inhibit transmitter release? TIPS, 9, 130–134PubMedGoogle Scholar
  41. Fredholm, B. B. and Hedqvist, P. (1980). Modulation of neurotransmission by purine nucleotides and nucleosides. Biochem. Pharmacol., 29, 1635–1643PubMedCrossRefGoogle Scholar
  42. Fukuda, S., Su, C. and Lee, T. J. F. (1986). Mechanisms of extraneuronal serotonin uptake in the rat aorta. J. Pharmacol. Exp. Ther., 239, 264–269PubMedGoogle Scholar
  43. Furchgott, R. F. (1988a). Endothelium-dependent relaxation in systemic arteries. In Relaxing and Contracting Factors (ed. P. M. Vanhoutte), The Humana Press, Crescent Manor, NJ, pp. 1–26Google Scholar
  44. Furchgott, R. F. (1988b). Studies on relaxation of rabbit aorta by sodium nitrate: basis for the proposal that the acid-activatable component of the inhibitory factor from retractor penis is inorganic nitrate and the endothelium-derived relaxing factor is nitric oxide. In Mechanisms of Vasodilatation (ed. P. M. Vanhoutte), Raven Press, New York, pp. 401–414Google Scholar
  45. Furchgott, R. F. and Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (London), 288, 373–376CrossRefGoogle Scholar
  46. Furchgott, R. F. and Vanhoutte, P. M. (1989). Endothelium-derived relaxing and contracting factors. FASEB J., 3, 2007–2018PubMedGoogle Scholar
  47. Garthwaite, J., Charles, S. L. and Chess-Williams, R. (1988). Endothelium-derived relaxing factor release on activation of NMDA receptors suggests a role as intercellular messenger in the brain. Nature, 336, 385–388PubMedCrossRefGoogle Scholar
  48. Gillespie, J. S., Liu, X. and Martin, W. (1989). The effects of L-arginine and N-monomethyl-L-arginine on the response of the rat anococcygeus muscle to NANC nerve stimulation. Brit. J. Pharmacol., 98,1080–1082CrossRefGoogle Scholar
  49. Gillis, C. N. (1985). Peripheral metabolism of serotonin. In Serotonin and the Cardiovascular System (ed. P. M. Vanhoutte), Raven Press, New York, pp. 27–36Google Scholar
  50. Göthert, M. (1982). Modulation of serotonin release in the brain via presynaptic receptors. TIPS, 3, 437–440Google Scholar
  51. Göthert, M., Kollecker, P., Rohm, N. and Zerkowski, H. R. (1986a). Inhibitory presynaptic 5-hydroxytryptamine (5-HT) receptors on the sympathetic nerves of the human saphenous vein. Naunyn-Schmiedeberg’s Arch. Pharmacol., 332, 317–323CrossRefGoogle Scholar
  52. Göthert, M., Schlicker, E. and Kollecker, P. (1986b). Receptor-mediated effects of serotonin and 5-hydroxytryptamine on noradrenaline release in the rat vena cava and in the heart of the pithed rat. Naunyn-Schmiedeberg’s Arch. Pharmacol., 332, 124–130CrossRefGoogle Scholar
  53. Güllner, H. G. (1983). The interactions of prostaglandins with the sympathetic nervous system—a review. J. Auton. Nerv. Syst., 8, 1–12PubMedCrossRefGoogle Scholar
  54. Gu, J., Polak, J., Allen, J. M., Huang, W. M., Sheppard, M. N., Takemoto, K. and Bloom, S. R. (1984). High concentrations of a novel peptide, neuropeptide Y, in the innervation of mouse and rat heart. J. Histochem. Cytochem., 32, 467–472PubMedCrossRefGoogle Scholar
  55. Hamberg, M., Svensson, J. and Samuelson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl Acad. Sci. USA, 78, 2994–2998CrossRefGoogle Scholar
  56. Head, R. J., Stitzel, R. E., De La Lande, I. S. and Johnson, S. M. (1977). Effect of chronic denervation on the activities of monoamine oxidase and catechol-O-methyltransferase and on the contents of noradrenaline and adenosine triphosphate in the rabbit ear artery. Blood Vessels, 14, 229–239PubMedGoogle Scholar
  57. Hedqvist, P. (1976). Prostaglandin action on transmitter release at adrenergic neuroeffector junctions. In Advances in Prostaglandin and Thromboxane Research (eds B. Samuelsson and R. Paoletti), Raven Press, New York, pp. 357–363Google Scholar
  58. Herman, A. G. (1982). Cardiovascular effects of prostacyclin. In 5-Hydroxytryptamine in Peripheral Reactions (eds F. De Clerck and P. M. Vanhoutte ), Raven Press, New York, pp. 95–Google Scholar
  59. Holmsen, H. (1985). Platelet activation and serotonin. In Serotonin and the Cardiovascular System (ed. P. M. Vanhoutte), Raven Press, New York, pp. 75–86Google Scholar
  60. Houston, D. S., Shepherd, J. T. and Vanhoutte, P. M. (1985). Adenine nucleotides, serotonin, and endothelium-dependent relaxations to platelets. Am. J. Physiol., 248, H389–H395PubMedGoogle Scholar
  61. Houston, D. S., Burnstock, G. and Vanhoutte, P. M. (1987). Different P2-purinergic receptor subtypes on endothelium and smooth muscle in canine blood vessels. J. Pharmacol. Exp. Ther., 241, 501–506PubMedGoogle Scholar
  62. Houston, D. S. and Vanhoutte, P. M. (1988). Platelets and endothelium-dependent responses. In Relaxing and Contracting Factors (ed. P. M. Vanhoutte), The Humana Press, Crescent Manor, NJ, USA, pp. 425–450Google Scholar
  63. Houston, D. S. and Vanhoutte, P. M. (1989). Pathophysiological significance of 5-hydroxytryptamine in the periphery. In The Peripheral Actions of 5-Hydroxytryptamine (ed. J. R. Fozard), Oxford University Press, Oxford, pp. 377–406Google Scholar
  64. Ignarro, L. J., Byrns, R. E. and Wood, K. S. (1988). Biochemical and pharmacological properties of endothelium-derived relaxing factor and its similarity to nitric oxide radical. In Mechanisms of Vasodilation (ed. P. M. Vanhoutte), Raven Press, New York, pp. 427–435Google Scholar
  65. Jackowski, A., Crockard, A. and Burnstock, G. (1988). Ultrastructure of serotonin-containing nerve fibres in the middle cerebral artery of the rat and evidence for its localisation within catecholamine-containing nerve fibres by immunoelectron microscopy. Brain Research, 443, 159–165PubMedCrossRefGoogle Scholar
  66. Jackson, E. K. (1985). Effects of thromboxane synthase inhibition on vascular responsiveness in the in vivo rat mesentery. J. Clin. Invest., 76, 2286–2295PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jackson, E. K., Schumacher, W. A., Kunkel, S. L., Driscoll, E. M. and Lucchesi, B. R. (1986). Platelet-activating factor and the release of a platelet-derived coronary artery vasodilator substance in the canine. Circ. Res., 58, 218–229PubMedCrossRefGoogle Scholar
  68. Jaim-Etcheverry, G. and Zieher, L. M. (1971). Ultrastructural cytochemistry and pharmacology of 5-hydroxytryptamine in adrenergic nerve endings. III. Selective increase of norepinephrine in the rat pineal gland consecutive to depletion of neuronal 5-hydroxytryptamine. J. Pharmacol. Exp. Ther., 178, 42–48PubMedGoogle Scholar
  69. Jaim-Etcheverry, G. and Zieher, L. M. (1980). Stimulation-depletion of serotonin and noradrenaline from vesicles of sympathetic nerves in the pineal gland of the rat. Cell Tissue Res., 207, 13–20PubMedCrossRefGoogle Scholar
  70. Katusic, Z. S., Shepherd, J. T. and Vanhoutte, P. M. (1984). Vasopressin causes endothelium-dependent relaxations of the canine basilar artery. Circ. Res., 55, 575–579PubMedCrossRefGoogle Scholar
  71. Kawasaki, H. and Takasaki, K. (1984). Vasoconstrictor response induced by 5-hydroxytryptamine released from vascular adrenergic nerves by periarterial nerve stimulation. J. Pharmacol. Exp. Ther., 229, 816–822PubMedGoogle Scholar
  72. Kawasaki, H. and Takasaki, K. (1986). Pharmacological characterization of presynaptic-adrenoreceptors in the modulation of the 5-hydroxytryptamine release from vascular adrenergic nerves in the rat. Jap. J. Pharmacol., 42, 561–570PubMedCrossRefGoogle Scholar
  73. Kennedy, C., Saville, V. L. and Burnstock, G. (1986). The contributions of noradrenaline and ATP to the responses of the rabbit central ear artery to sympathetic nerve stimulation depend on the parameters of stimulation. Eur. J. Pharmacol., 122, 291–300PubMedCrossRefGoogle Scholar
  74. Khwala, S., Bedwani, J. R. and Stanton, A. W. B. (1978). Effects of postaglandin E2 and a prostaglandin endoperoxide on neuroeffector transmission in the rat anococcygeus muscle. Br. J. Pharmac., 63, 167–176CrossRefGoogle Scholar
  75. Langer, S. Z. (1980). Presynaptic regulation of the release of catecholamines. Pharmacol. Rev., 32, 337–362PubMedGoogle Scholar
  76. Lefer, M. (1985). Comparison of the actions of thromboxane receptor antagonists in biological systems. Drugs of Today, 21, 283–291Google Scholar
  77. Levitt, B. and Duckies, S. P. (1986). Evidence against serotonin as a vasoconstrictor neurotransmitter in the rabbit basilar artery. J. Pharmacol. Exp. Ther., 238, 880–885PubMedGoogle Scholar
  78. Lindblad, L. E., Shepherd, J. T. and Vanhoutte, P. M. (1984). Cooling augments platelet-induced contraction of peripheral arteries of the dog. Proc. Soc. Exp. Biol. Med., 176,119–122PubMedCrossRefGoogle Scholar
  79. Lorenz, R. R. and Vanhoutte, P. M. (1985). Prejunctional adrenergic inhibition by aggregating platelets in canine blood vessels. Am. J. Physiol., 249, H685–H689PubMedGoogle Scholar
  80. Lundberg, J. M., Terenius, L., Hökfelt, T., Martling, C. R., Takemoto, K., Mutt, V., Polak, J. and Goldstein, M. (1982). Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol. Scand., 116, 477–480PubMedCrossRefGoogle Scholar
  81. Mais, D. E., Saussy, D. L., Chaikhouni, A., Kochel, P. J., Knapp, D. R., Hamanaka, N. and Halushka, P. V. (1985). Pharmacologic characterization of human and canine thromboxane A2/prostaglandin H2 receptors in platelets and blood vessels: evidence for different receptors. J. Pharmacol. Exp. Ther., 233, 418–424PubMedGoogle Scholar
  82. Makita, Y. (1983). Effects of prostaglandin I2 and carbocyclic thromboxane A2 on smooth muscle cells and neuromuscular transmission in the guinea-pig mesenteric atery. Brit. J. Pharmacol., 78, 517–527CrossRefGoogle Scholar
  83. Malik, U. (1978). Prostaglandins—modulation of adrenergic nervous system. Fed. Proc., 37, 203–207PubMedGoogle Scholar
  84. Masferrer, J. and Mullane, K. M. (1988). Modulation of vascular tone by 12(R)-, but not 12(S)-, hydroxyeicosatetraenoic acid. Eur. J. Pharmacol., 151, 487–490PubMedCrossRefGoogle Scholar
  85. Maura, G., Roccatagliata, E. and Raiteri, M. (1986). Serotonin autoreceptor in rat hippocampus: Pharmacological characterization as a subtype of the 5-HT1 receptor. Naunyn-Schmiedeberg’s Arch. Pharmacol., 334, 323–326CrossRefGoogle Scholar
  86. McGoon, M. D. and Vanhoutte, P. M. (1984). Aggregating platelets contract isolated canine pulmonary arteries by releasing 5-hydroxytryptamine. J. Clin. Invest., 74, 828–833PubMedPubMedCentralCrossRefGoogle Scholar
  87. McGrath, M. A. (1977). 5-Hydroxytryptamine and neurotransmitter release in canine blood vessels. Circ. Res., 41, 428–435PubMedCrossRefGoogle Scholar
  88. Moncada, S., Palmer, R. M. J. and Higgs, E. A. (1988). The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension, 12, 365–372PubMedCrossRefGoogle Scholar
  89. Molderings, G. J., Fink, K., Schlicker, E. and Göthert, M. (1987). Inhibition of noradrenaline release via presynaptic 5-HT1B receptors of the rat vena cava. Naunyn-Schmiedeberg’s Arch. Pharmacol., 336, 245–250Google Scholar
  90. Muramatsu, I., Fujiwara, M., Miura, A. and Sakakibara, Y. (1981). Possible involvement of adenine nucleotides in sympathetic neuroeffector mechanisms of dog basilar artery. J. Pharmacol. Exp. Ther., 216, 401–409PubMedGoogle Scholar
  91. Myers, A. K., Farhat, M. Y., Vaz, C. A., Keiser, H. R. and Zukowska-Grojec, Z. (1988). Release of immunoreactive-neuropeptide Y by rat platelets. Biochem. Biophys. Res. Commun., 155, 118–122PubMedCrossRefGoogle Scholar
  92. Mylecharane, E. J. and Phillips, C. A. (1989). Mechanisms of 5-hydroxytryptamine induced vasodilation. In The Peripheral Actions of 5-Hydroxytryptamine (ed. J. R. Fozard), Oxford University Press, Oxford, pp. 147–181Google Scholar
  93. Nakajima, M. and Toda, N. (1986). Prejunctional and postjunctional actions of prostaglandins F2a and I2 and carbocyclic thromboxane A2 in isolated dog mesenteric arteries. Eur. J. Pharmacol., 120, 309–318PubMedCrossRefGoogle Scholar
  94. Owman, C. (1964). Sympathetic nerves probably storing two types of mono-amines in the rat pineal gland. Int. J. Neuropharmacol., 2, 105–112CrossRefGoogle Scholar
  95. Page, I. H. and McCubbin, J. W. (1953). The variable arterial pressure response to serotonin in laboratory animals and man. Circ. Res., 1, 354–362PubMedCrossRefGoogle Scholar
  96. Pagella, P. G., Agozzino, S., Bellavite, O., Dona, G. C. and Mendola, N. (1984). Different sensitivity of basilar and saphenous arteries to thromboxane A2-induced contractions. Drug Res., 34, 1514–1516Google Scholar
  97. Paiva, M. Q., Caramona, M. and Osswald, W. (1984). Intra-and extraneuronal metabolism of 5-hydroxytryptamine in the isolated saphenous vein of the dog. Naunyn-Schmiedeberg’s Arch. Pharmacol., 325, 62–68CrossRefGoogle Scholar
  98. Palmer, R. M. J., Ferrige, A. G. and Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (London), 237, 524–526CrossRefGoogle Scholar
  99. Palmer, R. M. J., Ashton, D. S. and Moncada, S. (1988). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature (London), 333, 664–666CrossRefGoogle Scholar
  100. Patel, K. P. and Schmid, P. G. (1988). Vasopressin inhibits sympathetic ganglionic transmission but potentiates sympathetic neuroeffector responses in hindlimb vasculature of rabbits. J. Pharmacol. Exp. Ther., 245, 779–785PubMedGoogle Scholar
  101. Pearson, J. D. and Gordon, J. L. (1985). Nucleotide metabolism by the endothelium. Ann. Rev. Physiol., 47, 617–627CrossRefGoogle Scholar
  102. Pellegrino de Iraldi, A., Zieher, L. M. and De Robertis, E. (1963). 5-hydroxytryptamine content and synthesis of normal and denervated pineal gland. Life Sci., 1, 691–696CrossRefGoogle Scholar
  103. Piper, P. J. and Vane, J. R. (1969). Release of additional factors in anaphylaxis and its antagonism by anti-inflammatory drugs. Nature (London), 223, 29–35CrossRefGoogle Scholar
  104. Potter, E. K. (1988). Neuropeptide Y as an autonomic neurotransmitter. Pharmac. Ther., 37, 251–273CrossRefGoogle Scholar
  105. Rapoport, R. M. and Murad, F. (1988). Role of cyclic GMP in endothelium-dependent relaxation of vascular smooth muscle. In Relaxing and Contracting Factors (ed. P. M. Vanhoutte), The Humana Press, Crescent Manor, NJ, USA, pp. 219–240Google Scholar
  106. Richardson, B. P. and Engel, G. (1986). The pharmacology and function of 5-HT3 receptors. Trends in Neurosci., 9, 424–428CrossRefGoogle Scholar
  107. Ross, R. (1986). The pathogenesis of atherosclerosis—an update. N. Engl. J. Med., 8, 488–500CrossRefGoogle Scholar
  108. Schlicker, E., Fink, K., Göthert, M., Hoyer, D., Molderings, G., Roschke, I. and Schoeffter, P. (1989). The pharmacological properties of the presynaptic serotonin autoreceptor in the pig brain cortex conform to the 5-HT1D receptor subtype. Naunyn-Schmiedeberg’s Arch. Pharmacol., 340, 45–51Google Scholar
  109. Shimokawa, H. and Vanhoutte, P. M. (1989). Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis. Circ. Res., 64, 900–914PubMedCrossRefGoogle Scholar
  110. Shinozuka, K., Bjur, R. A. and Westfall, D. P. (1988). Characterization of prejunctional purinoceptors on adrenergic nerves of the rat caudal artery. Naunyn-Schmiedeberg’s Arch. Pharmacol., 338, 221–227CrossRefGoogle Scholar
  111. Siess, W. (1989). Molecular mechanisms of platelet activation. Physiol. Rev., 69, 58–178PubMedGoogle Scholar
  112. Sneddon, P. and Burnstock, G. (1984). ATP as a co-transmitter in rat tail artery. Eur. J. Pharmacol., 106, 149–152PubMedCrossRefGoogle Scholar
  113. Smith, T., Wilson, A. P., Prichard, B. N. C. and Betteridge, D. J. (1986). Stimulus-induced release of endogenous catecholamines from human washed platelets. Clin. Sci., 70, 495–500PubMedCrossRefGoogle Scholar
  114. Starke, K. (1977). Regulation of noradrenaline release by presynaptic receptor systems. Rev. Physiol. Bioch. Pharmacol., 77, 1–124Google Scholar
  115. Starke, K. and Weitzeil, R. (1978). Is histamine involved in the sympathomimetic effect of nicotine? Naunyn-Schmiedeberg’s Arch. Pharmacol., 304, 237–248CrossRefGoogle Scholar
  116. Stjärne, L. (1975). Basic mechanisms and local feedback control of secretion of adrenergic and cholinergic neurotransmitters. In Handbook of Psychopharmacology (ed. L. L. Iversen, S. D. Iversen and S. H. Snyder), Plenum, New York, pp. 179–233Google Scholar
  117. Stjärne, L. and Lishajko, F. (1966). Comparison of spontaneous loss of catecholamines and ATP in vitro from isolated bovine adrenomedullary, vesicular gland, vas deferens and splenic nerve granules. J. Neurochem., 13, 1213–1216PubMedCrossRefGoogle Scholar
  118. Su, C. (1975). Neurogenic release of purine compounds in blood vessels. J. Pharmacol. Exp. Ther., 195, 159–166PubMedGoogle Scholar
  119. Su, C. (1985). Extracellular functions of nucleotides in heart and blood vessels. Annu. Rev. Physiol., 47, 665–676PubMedCrossRefGoogle Scholar
  120. Su, C. and Uruno, T. (1985). Excitatory and inhibitory effects of 5-hydroxytryptamine in mesenteric arteries of spontaneously hypertensive rats. Eur. J. Pharmacol., 106, 283–290CrossRefGoogle Scholar
  121. Takemoto, K. (1982). Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc. Natl Acad. Sci. USA, 79, 5485–5489CrossRefGoogle Scholar
  122. Thoa, N. B., Eccleston, D. and Axelrod, J. (1969). The accumulation of C14 serotonin in the guinea-pig vas deferens. J. Pharmacol. Exp. Ther., 169, 68–73PubMedGoogle Scholar
  123. Trachte, G. J. (1986). Thromboxane agonist (U46619) potentiates norepinephrine efflux from adrenergic nerves. J. P harmacol. Exp. Ther., 237, 473–477Google Scholar
  124. Trachte, G. J. and Stein, E. (1988). Platelet-generated thromboxane A2 enhances norepinephrine release from adrenergic nerves. J. Pharmacol. Exp. Ther., 247, 1139–1145PubMedGoogle Scholar
  125. Trachte, G. J. and Stein, E. (1989). Thromboxane receptor agonists enhance adrenergic neurotransmission in rabbit isolated mesenteric arteries. J. Pharmacol. Exp. Ther., 249, 216–220PubMedGoogle Scholar
  126. Trachte, G. J., Hook, P. J., Kemp, J. R., Acosta, E. P. and Ziegler, R. J. (1988). Thromboxane synthesis and actions in isolated adrenergic nerve (pheochromocytoma-12) cells. J. Pharmacol. Exp. Ther., 247, 43–46PubMedGoogle Scholar
  127. Trachte, G. J., Binder, S. B. and Peach, M. J. (1989). Indirect evidence for separate vesicular neuronal origins of norepinephrine and ATP in the rabbit vas deferens. Eur. J. Pharmacol., 164, 425–433PubMedCrossRefGoogle Scholar
  128. Van Diest, M. J., Verbeuren, T. J. and Herman, A. G. (1986). Cyclo-oxygenase blockers influence the effects of 15-lipoxygenase metabolites of arachidonic acid in isolated blood vessels. Prostaglandins, 32, 97–100PubMedCrossRefGoogle Scholar
  129. Van Diest, M. J., Verbeuren, T. J. and Herman, A. G. (1989). 15-lipoxygenase metabolites of arachidonic acid evoke contractions and relaxations in isolated canine arteries: role of thromboxane-receptors, endothelial cells and cyclo-oxygenase. J. Pharmacol. Exp. Ther., submittedGoogle Scholar
  130. Vanhoutte, P. M. (ed.) (1988a). Vasodilatation, Raven Press, New York, pp. 1–572Google Scholar
  131. Vanhoutte, P. M. (ed.) (1988b). Relaxing and Contracting Factors, The Humana Press, Crescent Manor, NJ, USA, pp. 1–543Google Scholar
  132. Vanhoutte, P. M. (1988c). The endothelium and control of coronary arterial tone. Hosp. Practice, May 15, pp. 77–94Google Scholar
  133. Vanhoutte, P. M. (1989). Endothelium, platelets, and vasospasm. In Blood Cells and Arteries in Hypertension and Atherosclerosis (ed. P. Meyer and P. Marche), Raven Press, New York, pp. 1–14Google Scholar
  134. Vanhoutte, P. M., Verbeuren, T. J. and Webb, R. C. (1981). Local modulation of the adrenergic neuroeffector interaction in the blood vessel wall. Physiol. Rev., 61, 151–247PubMedGoogle Scholar
  135. Van Nueten, J. M., Janssen, P. A. J., VanBeek, J., Xhonneux, R., Verbeuren, T. J. and Vanhoutte, P. M. (1981). Vascular effects of ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. J. Pharmacol. Exp. Ther., 218, 217–230PubMedGoogle Scholar
  136. Van Nueten, J. M., Janssens, W. J. and Vanhoutte, P. M. (1985). Serotonin and vascular smooth muscle. In Serotonin and the Cardiovascular System (ed. P. M. Vanhoutte), Raven Press, New York, pp. 95–104Google Scholar
  137. Verbeuren, T. J. (1989). Synthesis, storage, release and metabolism of 5-hydroxytryptamine in peripheral tissues. In The Peripheral Actions of 5-Hydroxytryptamine (ed. J. R. Fozard), Oxford University Press, Oxford, pp. 1–25Google Scholar
  138. Verbeuren, T. J. (1990). The distribution and biochemistry of 5-hydroxytryptamine in the cardiovascular system. In Cardiovascular Pharmacology of 5-Hydroxytryptamine (ed. P. R. Saxena), Kluwer Academic Publishers, Amsterdam, pp. 3–13Google Scholar
  139. Verbeuren, T. J., Jordaens, F. H. and Herman, A. G. (1983). Accumulation and release of [3H]-5-hydroxytryptamine in saphenous veins and cerebral arteries of the dog. J. Pharmacol. Exp. Ther., 226, 579–588PubMedGoogle Scholar
  140. Verbeuren, T. J., Coen, E. P., Schoups, A., Van de Velde, R., Baeyens, R. and De Potter, W. P. (1984). Presynaptic serotonin receptors regulate the release of 3H-serotonin in hypothalamic slices of the rabbit. Naunyn-Schmiedeberg’s Arch. Pharmacol., 327, 102–106CrossRefGoogle Scholar
  141. Verbeuren, T. J., Zonnekeyn, L. L., Jordaens, F. H. and Herman, A. G. (1986a). Effects of iskedyl and its two constituents raubasine and dihydroergocristine on the release of [3H] noradrenaline and [3H] serotonin in canine basilar arteries. Eur. J. Pharmacol., 125, 1–10PubMedCrossRefGoogle Scholar
  142. Verbeuren, T. J., Jordaens, F. H., Zonnekeyn, L. L., Van Hove, C. E., Coene, M. C. and Herman, A. G. (1986b). Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ. Res., 58, 552–564PubMedCrossRefGoogle Scholar
  143. Verbeuren, T. J., Coene, M. C., Jordaens, F. H., Van Hove, C. E., Zonnekeyn, L. L. and Herman, A. G. (1986c). Effect of hypercholesterolemia on vascular reactivity in the rabbit. II. Influence of treatment with dipyridamole on endothelium-dependent and endothelium-independent responses in isolated aortas of control and hypercholesterolemic rabbits. Circ. Res., 59, 496–504PubMedCrossRefGoogle Scholar
  144. Verbeuren, T. J., Van Diest, M. J. and Herman, A. G. (1987). Contractions to platelets in aortas of control and cholesterol-fed rabbits. Thromb. Haemostasis, 58, 273Google Scholar
  145. Verbeuren, T. J., Jordaens, F. H., Bult, H. and Herman, A. G. (1988). The endothelium inhibits the penetration of serotonin and norepinephrine in the isolated canine saphenous vein. J. Pharmacol. Exp. Ther., 244, 276–282PubMedGoogle Scholar
  146. Verhaeghe, R. H., Vanhoutte, P. M. and Shepherd, J. T. (1977). Inhibition of sympathetic neurotransmission in canine blood vessels by adenosine and adenine nucleotides. Circ. Res., 40, 208–215PubMedCrossRefGoogle Scholar
  147. Watts, A. D., Feniuk, W. and Humphrey, P. P. A. (1981). A pre-junctional action of 5-hydroxytryptamine and methysergide on noradrenergic nerves in dog isolated saphenous vein. J. Pharmac. Pharmacol., 33, 515–520CrossRefGoogle Scholar
  148. Westfall, T. C. (1977). Local regulation of adrenergic neurotransmission. Physiol. Rev., 57, 659–728PubMedGoogle Scholar
  149. Wong-Dusting, H. K. and Rand, M. J. (1988). Pre-and postjunctional effects of neuropeptide Y on the rabbit isolated ear artery. Clin. Exp. Pharmacol. Physiol., 15, 411–418PubMedCrossRefGoogle Scholar
  150. Zucker, M. B. and Nachmias, V. T. (1985). Platelet activation. Arteriosclerosis, 5, 2–18PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1990

Authors and Affiliations

  • Tony J. Verbeuren
    • 1
  1. 1.Institut de RecherchesFrance

Personalised recommendations