Regulation of Ion Channels and Neurotransmitter Release by Protein Kinase C

  • P. Jeffrey Conn


It has long been established that activation of neurotransmitter receptors can induce transient changes in the electrical properties of effector neurons that last on the order of milliseconds. Such short-lived changes, known as post-synaptic potentials, can be inhibitory or excitatory and result from changes ia the conductances of ligand-regulated ion channels such as the nicotinic acetylcholine receptor (AChR) or GABAA receptor chloride channel. In recent years it has become increasingly clear that brief activation of neurotransmitter receptors can also induce more prolonged changes in neuronal function that last minutes, hours, or even days or months. Such long-lasting changes in neuronal function play a critical role in regulating animal behaviour and can include changes in a cell’s electrical properties or changes in important cellular processes such as neurotransmitter synthesis or release. Generally, responses that persist after the neurotransmitter has been activated are brought about by formation of second messengers within the cell. The best-known example of a second messenger is adenosine-3′,3′-monophosphate (cyclic AMP).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Latif, A. A. (1986). Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol. Rev., 38, 227–269PubMedGoogle Scholar
  2. Adams, P. R., Brown, D. A. and Constanti, A. (1982). Pharmacological inhibition of the M-current. J. Physiol., 332, 223–262CrossRefGoogle Scholar
  3. Adamson, P., Hajimohamadreza, I., Brammer, M. J. and Campbell, I. C. (1989). Intrasynaptosomal free calcium concentration is increased by phorbol esters via a 1,4-dihydropyridine-sensitive (L-type) Ca2+ channel. Eur. J. Pharmacol., 162, 59–66PubMedCrossRefGoogle Scholar
  4. Akers, R. F., Lovinger, D. M., Colley, P. A., Linden, D. J. and Routtenberg, A. (1986). Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science, 231, 587–589PubMedCrossRefGoogle Scholar
  5. Akiyama, K., Yamada, N. and Otsuki, S. (1989). Lasting increase in excitatory amino acid receptor-mediated polyphosphoinositide hydrolysis in the amygdala/pyriform cortex of amygdala-kindled rats. Brain Res., 485, 95–101PubMedCrossRefGoogle Scholar
  6. Akiyama, K., Yamada, N. and Sato, M. (1987). Increase in ibotenate-stimulated phosphatidylinositol hydrolysis in slices of the amygdala/pyriform cortex and hippocampus of rat by amygdala kindling. Exp. Neurol., 98, 499–508PubMedCrossRefGoogle Scholar
  7. Alkon, D. L., Kubota, M., Neary, J. T., Naito, S., Coulter, D. and Rasmussen, H. (1986). C-kinase activation prolongs Ca-dependent inactivation of K+ currents. Biochem. Biophys. Res. Comm., 134, 1245–1253PubMedCrossRefGoogle Scholar
  8. Alkon, D. L., Naito, S., Kubota, M., Chen, C., Bank, B., Smallwood, J., Gallant, P. and Rasmussen, H. (1988). Regulation of Hermissenda K+ channels by cytoplasmic and membrane-associated C-kinase. J. Neurochem., 51, 903–917PubMedCrossRefGoogle Scholar
  9. Allgaier, C. and Hertting, G. (1986). Polymyxin B, a selective inhibitor of protein kinase C, diminishes the release of noradrenaline and the enhancement of release caused by phorbol 12, 13-butyrate. Am. J. Physiol., 251, C833–C840Google Scholar
  10. Allgaier, C., Daschmann, B., Huang, H. and Hertting, G. (1988). Protein kinase C and presynaptic modulation of acetylcholine release in rabbit hippocampus. Endocrinol., 122, 2699–2709CrossRefGoogle Scholar
  11. Anwyl, R. (1989). Protein kinase C and long-term potentiation in the hippocampus. Trends Pharmacol. Sci., 10, 236–239PubMedCrossRefGoogle Scholar
  12. Arai, A., Larson, J., Kessler, M., Oliver, M. and Lynch, G. (1989). Is protein kinase C involved in the maintenance of long term potentiation? Soc. Neurosci. Abs., 15, 84Google Scholar
  13. Baraban, J. M., Snyder, S. H. and Alger, B. E. (1985). Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: Electrophysiological effects of phorbol esters. Proc. Natl Acad. Sci. USA, 82, 2538–2542PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bartmann, P., Jackisch, R., Hertting, G., Allgaier, C. (1989). A role for protein kinase C in the electrically evoked release of [3H]gamma-aminobutyric acid in rabbit caudate nucleus. Neurosci., 29, 495–502CrossRefGoogle Scholar
  15. Bazzi, M. D. and Nelsestuen, G. L. (1988a). Association of protein kinase C with phospholipid monolayers: two-stage irreversible binding. Biochem., 27, 6776–6783CrossRefGoogle Scholar
  16. Bazzi, M. D. and Nelsestuen, G. L. (1988b). Constitutive activity of membrane-inserted protein kinase C. Biochem. Biophys. Res. Comm., 152, 336–343PubMedCrossRefGoogle Scholar
  17. Bazzi, M. D. and Nelsestuen, G. L. (1988c). Properties of membrane-inserted protein kinase C. Biochem., 27, 7589–7593CrossRefGoogle Scholar
  18. Benowitz, L. I. and Routtenberg, A. (1987). A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism, and synaptic plasticity. Trends Neurosci., 10, 527–532CrossRefGoogle Scholar
  19. Blackshear, P. J., Nairn, A. C. and Kuo, J. F. (1988). Protein kinases 1988: a current perspective. FASEB J., 2, 2957–2969PubMedGoogle Scholar
  20. Bosma, M. M. and Hille, B. (1989). Protein kinase C is not necessary for peptide-induced suppression of M current or for desensitization of the peptide receptors. Proc. Natl Acad. Sci. USA, 86, 2943–2947PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brown, D. A. and Adams, P. R. (1987). Effects of phorbol dibutyrate on M currents and M current inhibition in bullfrog sympathetic neurons. Cell. Mol. Biol., 7, 255–269Google Scholar
  22. Brown, D. A. and Griffith, W. H. (1983). Calcium-activated outward current in voltage-clamped hippocampal neurones of the guinea-pig. J. Physiol., 337, 287–301PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brown, D. A. and Higashida, H. (1988). Inositol 1,4,5-triphosphate and diacylglycerol mimic bradykinin effects on mouse neuroblastoma×rat glioma hybrid cells. J. Physiol., 397, 185–207PubMedPubMedCentralCrossRefGoogle Scholar
  24. Brown, D. A., Marrion, N. V. and Smart, T. G. (1989). On the transduction mechanism for muscarine-induced inhibition of M-current in cultured rat sympathetic neurones. J. Physiol., 413, 469–488PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brown, T. H., Chapman, P. F., Kairiss, E. W., Keenan, C. L. (1988). Long-term synaptic potentiation. Science, 242, 724–727PubMedCrossRefGoogle Scholar
  26. Buchert-Rau, B. and Sonnhof, U. (1982). An analysis of the epileptogenic potency of Co2+—its ability to induce acute convulsive activity in the isolated frog spinal cord. Pflugers Archiv., 394, 1–11PubMedCrossRefGoogle Scholar
  27. Burgoyne, R. D. (1989). A role for membrane-inserted protein kinase C in cellular memory? Trends Biochem. Sci., 14, 87–88PubMedCrossRefGoogle Scholar
  28. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U. and Nishizuka, Y. (1982). Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem., 257, 7847–7851PubMedGoogle Scholar
  29. Chuang, D. (1989). Neurotransmitter receptors and phosphoinositide turnover. Annu. Rev. Pharmacol. Toxicol., 29, 71–110PubMedCrossRefGoogle Scholar
  30. Colby, K. A. and Blaustein, M. P. (1988). Inhibition of voltage-gated K channels in synaptosomes by sn-1,2-dioctanoylglycerol, an activator of protein kinase C. J. Neurosci., 8, 4685–4692PubMedGoogle Scholar
  31. Cole, A. E. and Nicoll, R. A. (1983). Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science, 221, 1299–1301PubMedCrossRefGoogle Scholar
  32. Conn, P. J. and Kaczmarek, L. K. (1989). The bag cell neurons of Aplysia: a model for the study of the molecular mechanisms involved in the control of prolonged animal behaviors. Mol. Neurobiol. (in press)Google Scholar
  33. Conn, P. J., Strong, J. A., Azhderian, E. A., Nairn, A., Greengard, P. and Kaczmarek, L. K. (1989a). Differential effects of protein kinase inhibitors on cyclic AMP and phorbol ester-induced changes in excitability of Aplysia bag cell neurons. J. Neurosci., 9, 473–479PubMedGoogle Scholar
  34. Conn, P. J., Strong, J. A. and Kaczmarek, L. K. (1989b). Inhibitors of protein kinase C prevent enhancement of calcium current and action potentials in peptidergic neurons from Aplysia., J. Neurosci., 9, 480–487PubMedGoogle Scholar
  35. Costa, M. R. C. and Catterall, W. A. (1984). Phosphorylation of the a subunit of the sodium channel by protein kinase C. Cell Mol. Neurobiol., 4, 291–297PubMedCrossRefGoogle Scholar
  36. Coussens, L., Parker, P. J., Rhee, L., Yang-Feng, T. L., Chen, E., Waterfield, M. D., Francke, U. and Ullrich, A. (1986). Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science, 233, 859–866PubMedCrossRefGoogle Scholar
  37. Davis, R. J., Ganong, B. R., Bell, R. M. and Czech, M. P. (1985). A cell-permeable diacylglycerol that mimics phorbol diester action on the epidermal growth factor receptor and mitogenesis. J. Biol. Chem., 260, 1562–1566PubMedGoogle Scholar
  38. Dekker, L. V., De Graan, P. N. E., Versteeg, D. H. G., Oestreicher, A. B. and Gispen, W. H. (1989). Phosphorylation of B-50 (GAP43) is correlated with neurotransmitter release in rat hippocampal slices. J. Neurochem., 52, 24–30PubMedCrossRefGoogle Scholar
  39. DeRiemer, S. A., Greengard, P. and Kaczmarek, L. K. (1985a). Calcium/phosphatidylserine/ diacylglycerol-dependent protein phosphorylation in the Aplysia nervous system. J. Neurosci., 5, 2672–2676PubMedGoogle Scholar
  40. DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P. and Kaczmarek, L. K. (1985b). Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature, 313, 313–316PubMedCrossRefGoogle Scholar
  41. Doerner, D., Pitler, T. A. and Alger, B. E. (1988). Protein kinase C activators block specific calcium and potassium current components in isolated hippocampal neurons. J. Neurosci., 8, 4069–4078PubMedGoogle Scholar
  42. Downing, J. E. G. and Role, L. W. (1987). Activators of protein kinase C enhance acetylcholine receptor desensitization in sympathetic ganglion neurons. Proc. Natl Acad. Sci. USA, 84, 7739–7743PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dutar, P. and Nicoll, R. A. (1988a). Classification of muscarinic responses in hippocampus in terms of receptor subtypes and second-messenger systems: electrophysiological studies in vitro. J. Neurosci., 8, 4214–4224PubMedGoogle Scholar
  44. Dutar, P. and Nicoll, R. A. (1988b). Stimulation of phosphatidylinositol (PI) turnover may mediate the muscarinic suppression of the M-current in hippocampal pyramidal cells. Neurosci. Lett., 85, 89–94PubMedCrossRefGoogle Scholar
  45. Eusebi, F., Grassi, F., Nervi, C., Caporale, C., Adamo, S., Zani, B. M. and Molinaro, M. (1987). Acetylcholine may regulate its own nicotinic receptor-channel through the C-kinase system. Proc. R. Soc. Lond., 230, 355–365PubMedCrossRefGoogle Scholar
  46. Eusebi, F., Molinaro, M. and Zani, B. M. (1985). Agents that activate protein kinase C reduce acetylcholine sensitivity in cultured myotubes. J. Cell Biol., 100, 1339–1342PubMedCrossRefGoogle Scholar
  47. Ewald, D. A., Matthies, H. J. G., Perney, T. M., Walker, M. W. and Miller, R. J. (1988). The effects of down regulation of protein kinase C on the inhibitory modulation of dorsal root ganglion neuron Ca2+ currents by neuropeptide Y. J. Neurosci., 8, 2447–2451PubMedGoogle Scholar
  48. Farley, J. and Auerbach, S. (1986). Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning. Nature, 319, 220–223PubMedCrossRefGoogle Scholar
  49. Farooqui, A. A., Farooqui, T., Yates, A. J. and Horrocks, L. A. (1988). Regulation of protein kinase C activity by various lipids. Neurochem. Res., 13, 499–511PubMedCrossRefGoogle Scholar
  50. Feuerstein, T. J., Allgaier, C. and Hertting, G. (1987). Possible involvement of protein kinase C (PKC) in the regulation of electrically evoked serotonin (5-HT) release from rabbit hippocampal slices. Eur. J. Pharmacol., 141, 15–21CrossRefGoogle Scholar
  51. Fisher, S. K. and Agranoff, B. W. (1987). Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem., 48, 999–1017PubMedCrossRefGoogle Scholar
  52. Forder, J., Scriabine, A. and Rasmussen, H. (1985). Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction. J. Pharmacol. Exp. Ther., 235, 267–273PubMedGoogle Scholar
  53. Freedman, J. E. and Aghajanian, G. K. (1987). Role of phosphoinositide metabolites in the prolongation of afterhyperpolarizations by α1-adrenoreceptors in rat dorsal raphe neurons. J. Neurosci., 7, 3897–3906PubMedGoogle Scholar
  54. Girard, P. R., Mazzei, G. J., Wood, J. G. and Kuo, J. F. (1985). Polyclonal antibodies to phospholipid/Ca2+-dependent protein kinase and immunocytochemical localization of the enzymes in rat brain. Proc. Natl Acad. Sci. USA, 82, 3030–3034PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gleason, M. M. and Flaim, S. F. (1986). Phorbol ester contracts rabbit thoracic aorta by increasing intracellular calcium and by activating calcium influx. Biochem. Biophys. Res. Commun., 138, 1362–1369PubMedCrossRefGoogle Scholar
  56. Grafe, P., Mayer, C. J. and Wood, J. D. (1980). Synaptic modulation of calcium-dependent potassium conductance in myenteric neurones in the guinea-pig. Journal of Physiol., 305, 235–248CrossRefGoogle Scholar
  57. Grega, D. S., Werz, M. A. and Macdonald, R. L. (1987). Forskolin and phorbol esters reduce the same potassium conductance of mouse neurons in culture. Science, 235, 345–348PubMedCrossRefGoogle Scholar
  58. Gross, R. A. and Macdonald, R. L. (1989). Activators of protein kinase C selectively enhance inactivation of a calcium current component of cultured sensory neurons in a pertussis-toxin-sensitive manner. J. Neurophysiol., 61, 1259–1269PubMedGoogle Scholar
  59. Gustafsson, B., Huang, Y. and Wigström, H. (1988). Phorbol ester-induced synaptic potentiation differs from long-term potentiation in the guinea pig hippocampus in vitro. Neurosci. Lett., 85, 77–81PubMedCrossRefGoogle Scholar
  60. Halliwell, J. V. and Adams, P. R. (1982). Voltage-clamp analysis of muscarine excitation in hippocampal neurons. Brain Res., 250, 71–92PubMedCrossRefGoogle Scholar
  61. Hannun, Y. A. and Bell, R. M. (1989). Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science, 243, 500–507PubMedCrossRefGoogle Scholar
  62. Harris, K. M., Kongsamut, S. and Miller, R. J. (1986). Protein kinase C mediated regulation of calcium channels in PC-12 pheochromocytoma cells. FEBS Lett., 196, 365–369CrossRefGoogle Scholar
  63. Hidaka, H., Inagaki, M., Kawamoto, S. and Sasaki, Y. (1984). Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry, 23, 5036–5041PubMedCrossRefGoogle Scholar
  64. Higashida, H. and Brown, D. A. (1986). Two polyphosphatidylinositide metabolites control two K+ currents in a neuronal cell. Nature, 323, 333–335PubMedCrossRefGoogle Scholar
  65. Hockberger, P., Toselli, M., Swandulla, D. and Lux, H. D. (1989). A diaclyglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation. Nature, 338, 340–342PubMedCrossRefGoogle Scholar
  66. Holz, G. G., Rane, S. G. and Dunlap, K. (1986). GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature, 319, 670–672PubMedPubMedCentralCrossRefGoogle Scholar
  67. Huang, F. L., Yoshida, Y., Nakabayashi, H. and Huang, K. (1987). Differential distribution of protein kinase C isozymes in the various regions of brain. J. Biol. Chem., 262, 15714–15720PubMedGoogle Scholar
  68. Huang, F. L., Yoshida, Y., Nakabayashi, H., Young III, W. S. and Huang, K. (1988). Immunocytochemical localization of protein kinase C isozymes in rat brain. J. Neurosci., 8, 4734–4744PubMedGoogle Scholar
  69. Huang, K. P., Nakabayashi, H. and Huang, F. L. (1986). Isozymic forms of rat brain Ca2+-activated and phospholipid-dependent protein kinase. Proc. Natl Acad. Sci. USA, 83, 8535–8539PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hu, G. Y., Hvalby, O., Walaas, S. I., Albert, K. A., Skjeflo, P., Andersen, P. and Greengard, P. (1987). Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation. Nature, 328, 426–429PubMedCrossRefGoogle Scholar
  71. Huganir, R. L. (1987). Regulation of the nicotinic acetylcholine receptor by protein phosphorylation. J. Receptor Res., 7, 241–256Google Scholar
  72. Iadorola, M. J., Nicoletti, F., Naranjo, J. R., Putnam, F. and Costa, E. (1986). Kindling enhances the stimulation of inositol phospholipid hydrolysis elicited by ibotenic acid in rat hippocampal slices. Brain Res., 374, 174–178PubMedCrossRefGoogle Scholar
  73. Jones, S. W. and Adams, P. R. (1987). The M-current and other potassium currents of vertebrate neurons. In Neuromodulation: The Biochemical Control of Neuronal Excitability (eds L. Kaczmarek and I. Levitan), Oxford University Press, New York, pp. 159–186Google Scholar
  74. Kamiya, H., Sawada, S. and Yamamoto, C. (1988). Additive feature of long-term potentiation and phorbol ester-induced synaptic enhancement in the mossy fiber-CA3 synapse. Exp. Neurol., 102, 314–317PubMedCrossRefGoogle Scholar
  75. Kikkawa, U., Ogita, K., Go, M., Nomura, H., Kitano, T., Hashimoto, T., Ase, K., Sekiguchi, K., Kuomoto, J., Nishizuka, Y., Saito, N. and Tanaka, C. (1988a). Protein kinase C in membrane signaling. In Advances in Second Messenger and Phophoprotein Research, vol. 21 (ed. R. Adelstein, C. Klee and M. Rodbell), Raven Press, New York, pp. 67–74Google Scholar
  76. Kikkawa, U., Ogita, K., Shearman, M. S., Ase, K., Sekigughi, K., Naor, Z., Ido, M., Nishizuka, Y., Saito, N., Tanaka, C., Ono, Y., Fujii, T. and Igarashi, K. (1988b). The heterogeneity and differential expression of protein kinase C in nervous system. Phil. Trans. R. Soc. Lond., 320, 313–324CrossRefGoogle Scholar
  77. Kikkawa, U., Ogita, K., Ono, Y., Asaoka, Y., Shearman, M. S., Fujii, T., Ase, K., Sekiguchi, K., Igarashi, K. and Nishizuka, Y. (1987). The common structure and activities of four subspecies of rat brain protein kinase C family. FEBS Lett., 223, 212–216PubMedCrossRefGoogle Scholar
  78. Knight, D. E. (1987). Calcium and diacylglycerol control of secretion. Biosci. Reports, 7, 355–367CrossRefGoogle Scholar
  79. Kraft, A. S. and Anderson, W. B. (1983). Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature, 301, 621–623PubMedCrossRefGoogle Scholar
  80. Kreutter, D., Kim, J. Y. H., Goldenring, J. R., Rasmussen, H., Ukomadu, C., DeLorenzo, R. J. and Yu, R. K. (1987). Regulation of protein kinase C activity by gangliosides. J. Biol. Chem., 262, 1633–1637PubMedGoogle Scholar
  81. Kuo, J. F., Andersson, R. G. G., Wise, B. C., Mackerlova, L., Salomonsson, I., Brackett, N. L., Katoh, N., Shoji, M. and Wrenn, R. W. (1980). Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Proc. Natl Acad. Sci. USA, 77, 7039–7043PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kuo, J. F., Schatzman, R. C., Turner, R. S. and Mazzei, G. J. (1984). Phospholipid-sensitive Ca2+-dependent protein kinase: a major protein phosphorylation system. Mol. Cell. Endocrinol., 35, 65–73PubMedCrossRefGoogle Scholar
  83. Lacerda, A. E., Rampe, D. and Brown, A. M. (1988). Effects of protein kinase C activators on cardiac Ca2+ channels. Nature, 335, 249–251PubMedCrossRefGoogle Scholar
  84. Lancaster, B. and Adams, P. R. (1986). Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J. Neurophysiol., 55, 1268–1282PubMedGoogle Scholar
  85. Lancaster, B. and Nicoll, R. A. (1987). Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J. Physiol., 389, 187–203PubMedPubMedCentralCrossRefGoogle Scholar
  86. Leonard, J. P., Nargeot, J., Snutch, T. P., Davidson, N. and Lester, H. A. (1987). Ca channels induced in Xenopus oocytes by rat brain mRNA. J. Neurosci., 7, 857–881Google Scholar
  87. Levitan, I. B. and Kaczmarek, L. K. (1987). Ion currents and ion channels: substrates for neuromodulation. In Neuromodulation: The Biochemical Control of Neuronal Excitability (eds L. Kaczmarek and I. Levitan), Oxford University Press, New York, pp. 18–38Google Scholar
  88. Lewis, D. L. and Weight, F. F. (1988). The protein kinase C activator l-oleoyl-2-acetylglycerol inhibits voltage-dependent Ca2+ current in the pituitary cell line AtT-20. Neuroendocrinology, 47, 169–175PubMedCrossRefGoogle Scholar
  89. Lewis, D. V. and Wilson, W. A. (1982). Calcium influx and poststimulus current during early adaptation in Aplysia giant neurons. J. Neurophysiol., 48, 202–216PubMedGoogle Scholar
  90. Linden, D. J., Murakami, K. and Routtenberg, A. (1986). A newly discovered protein kinase C activator (oleic acid) enhances long-term potentiation in the intact hippocampus. Brain Res., 379, 358–363PubMedCrossRefGoogle Scholar
  91. Löffelholz, K. (1989). Receptor regulation of choline phospholipid hydrolysis. Biochem. Pharmacol., 38, 1543–1549PubMedCrossRefGoogle Scholar
  92. Lovinger, D. M., Colley, P. A., Akers, R. F., Nelson, R. B. and Routtenberg, A. (1987). Direct relation of long-term synaptic potentiation to phosphorylation of protein F1, a substrate for membrane protein kinase C. Brain Res., 399, 205–211CrossRefGoogle Scholar
  93. Lovinger, D. M. and Routtenberg, A. (1988). Synapse-specific protein kinase C activation enhances maintenance of long-term potentiation in rat hippocampus. J. Physiol., 400, 321–333PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lynch, M. A., Clements, M. P., Errington, M. L. and Bliss, T. V. P. (1988). Increased hydrolysis of phosphatidylinositol-4,5-biphosphate in long-term potentiation. Neurosci. Lett., 84, 291–296PubMedCrossRefGoogle Scholar
  95. Madison, D. V. (1989). Phorbol esters increase unitary calcium channel activity in cultured hippocampal neurons. Soc. Neurosci. Abs., 15, 16Google Scholar
  96. Madison, D. V., Lancaster, B. and Nicoll, R. A. (1987). Voltage clamp analysis of cholinergic action in the hippocampus. J. Neurosci., 7, 733–741PubMedGoogle Scholar
  97. Madison, D. V., Malenka, R. C. and Nicoll, R. A. (1986). Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature, 321, 695–697PubMedCrossRefGoogle Scholar
  98. Madison, D. V. and Nicoll, R. A. (1984). Control of repetitive discharge of rat CA1 pyramidal neurones in vitro. J. Physiol., 354, 319–331PubMedPubMedCentralCrossRefGoogle Scholar
  99. Malenka, R. C., Ayoub, G. S. and Nicoll, R. A. (1987). Phorbol esters enhance transmitter release in rat hippocampal slices. Brain Res., 403, 198–203PubMedCrossRefGoogle Scholar
  100. Malenka, R. C., Madison, D. V., Andrade, R. and Nicoll, R. A. (1986a). Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons. J. Neurosci., 6, 475–480PubMedGoogle Scholar
  101. Malenka, R. C., Madison, D. V. and Nicoll, R. A. (1986b). Potentiation of synaptic transmission in the hippocapus by phorbol esters. Nature, 321, 175–177PubMedCrossRefGoogle Scholar
  102. Malinow, R., Madison, D. V. and Tsien, R. W. (1988). Persistent protein kinase activity underlying long-term potentiation. Nature, 335, 820–824PubMedCrossRefGoogle Scholar
  103. Malinow, R., Schulman, H. and Tsien, R. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science, 245, 862–866PubMedCrossRefGoogle Scholar
  104. Marchetti, C. and Brown, A. M. (1988). Protein kinase activator l-oleoyl-2-acetyl-sn-glycerol inhibits two types of calcium currents in GH3 cells. Amer. J. Physiol., 254, 206–210Google Scholar
  105. Matthies, H. J., Palfrey, H. C., Hirning, L. D. and Miller, R. J. (1987). Down regulation of protein kinase C in neuronal cells: effects on neurotransmitter release. Neurosci. Lett., 75, 71–74CrossRefGoogle Scholar
  106. McDonald, J. R. and Walsh, M. P. (1985). Inhibition of the Ca2+-and phospholipid-dependent protein kinase by a novel Mr 17,000 Ca2+-binding protein. Biochem. Biophys. Res. Comm., 129, 603–610PubMedCrossRefGoogle Scholar
  107. Merrill, A. H. Jr and Stevens, V. L. (1989). Modulation of protein kinase C and diverse cell functions by sphingosine—a pharmacologically interesting compound linking sphingolipids and signal transduction. Biochim. Biophys. Acta, 1010, 131–139PubMedCrossRefGoogle Scholar
  108. Miller, R. J. (1987). Multiple calcium channels and neuronal function. Science, 235, 46–52PubMedCrossRefGoogle Scholar
  109. Minakuchi, R., Takai, Y., Yu, B. and Nishizuka, Y. (1981). Widespread occurrence of calcium-activated phospholipid dependent protein kinase in mammalian tissues. J. Biochem., 89, 1651–1654PubMedGoogle Scholar
  110. Murray, A. W., Fournier, A. and Hardy, S. J. (1987). Proteolytic activation of protein kinase C: a physiological reaction? Trends Biochem. Sci., 12, 53–54CrossRefGoogle Scholar
  111. Nastainczyk, W., Röhrkasten, A., Sieber, M., Rudolph, C., Schachtele, C., Marmé, D. and Hofmann, F. (1987). Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur. J. Biochem., 169, 137–142PubMedCrossRefGoogle Scholar
  112. Navarro, J. (1987). Modulation of [3H]dihydropyridine receptors by activation of protein kinase C in chick muscle cells. J. Biol. Chem., 262, 4649–4652PubMedGoogle Scholar
  113. Negro-Vilar, A., Conte, D. and Valenca, M. (1986). Transmembrane signals mediating neural peptide secretion: role of protein kinase C activators and arachidonic acid metabolites in luteinizing hormone-releasing hormone secretion. Naunyn-Schmiedeberg’s Arch. Pharmacol., 334, 218–221CrossRefGoogle Scholar
  114. Nestler, E. J. and Greengard, P. (1984). Protein Phosphorylation in the Nervous System, Wiley, New YorkGoogle Scholar
  115. Nichols, R. A., Haycock, J. W., Wang, J. K. and Greengard, P. (1987). Phorbol ester enhancement of neurotransmitter release from rat brain synaptosomes. Nature, 325, 58–60CrossRefGoogle Scholar
  116. Nicoll, R. A., Kauer, J. and Malenka, R. C. (1988). The current excitement in long-term potentiation. Neuron, 1, 97–103PubMedCrossRefGoogle Scholar
  117. Nishizuka, Y. (1986). Studies and perspectives of protein kinase C. Science, 233, 305–312PubMedCrossRefGoogle Scholar
  118. Nowycky, M. C., Fox, A. P. and Tsien, R. W. (1985). Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature, 316, 440–443PubMedCrossRefGoogle Scholar
  119. O’Callahan, C. M., Ptasienski, J. and Hosey, M. M. (1988). Phosphorylation of the 165-kDa dihydropyridine/phenylalkylamine receptor from skeletal muscle by protein kinase C. J. Biol. Chem., 263, 17342–17349PubMedGoogle Scholar
  120. Ottoson, D. and Swerup, C. (1981). Ionic basis of adaptation in crustacean stretch receptors. J. Physiol., 317, 26–27Google Scholar
  121. Pennefather, P., Lancaster, B., Adams, P. R. and Nicoll, R. A. (1985). Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc. Natl Acad. Sci. USA, 82, 3040–3044PubMedPubMedCentralCrossRefGoogle Scholar
  122. Pfaffinger, P. J., Leibowitz, M. D., Subers, E. M., Nathanson, N. M., Aimers, W. and Hille, B. (1988). Agonists that suppress M-current elicit phosphoinositide turnover and Ca2+ transients, but these events do not explain M-current suppression. Neuron, 1, 477–484PubMedCrossRefGoogle Scholar
  123. Rane, S. G. and Dunlap, K. (1986). Kinase C activator 1,2-oleoacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. Proc. Natl Acad. Sci. USA, 83, 184–188PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rane, S. G., Walsh, M. P., McDonald, J. R. and Dunlap, K. (1989). Specific inhibitors of protein kinase C block transmitter-induced modulation of sensory neuron calcium current. Neuron, 3, 239–245PubMedCrossRefGoogle Scholar
  125. Reymann, K. G., Brödemann, R., Kase, H. and Matthies, H. (1988). Inhibitors of calmodulin and protein kinase C block different phases of hippocampal long-term potentiation. Brain Res., 461, 388–392PubMedCrossRefGoogle Scholar
  126. Routtenberg, A. (1986). Synaptic plasticity and protein kinase C. Prog. Brain Res., 69, 211–234PubMedCrossRefGoogle Scholar
  127. Sawada, M., Cleary, L. J. and Byrne, J. H. (1989a). Inositol triphosphate and activators of protein kinase C modulate membrane currents in tail motor neurons of Aplysia. J. Neuro-physiol., 61, 302–310Google Scholar
  128. Sawada, M., Ichinose, M. and Maeno, T. (1989b). Protein kinase C activators reduce the inositol triphosphate-induced outward current and the Ca2+-activated outward current in identified neurons of Aplysia. J. Neurosci. Res., 22, 158–166PubMedCrossRefGoogle Scholar
  129. Shoji, M., Raynor, R., Wolfgang, E. B., William, R. V. and Kuo, J. F. (1988). Effects of thioether phospholipid BM 41.440 on protein kinase C and phorbol ester-induced differentiation of human leukemia HL60 and KG-1 cells. Cancer Res., 48, 6669–6673PubMedGoogle Scholar
  130. Sigel, E. and Baur, R. (1988). Activation of protein kinase C differentially modulates neuronal Na+, Ca2+, and γ-aminobutyrate type A channels. Proc. Natl Acad. Sci. USA, 85, 6192–6196PubMedPubMedCentralCrossRefGoogle Scholar
  131. Storm, J. F. (1987). Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. J. Physiol., 385, 733–759PubMedPubMedCentralCrossRefGoogle Scholar
  132. Strong, J. A., Fox, A. P., Tsien, R. W. and Kaczmarek, L. K. (1987). Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature, 325, 714–717PubMedCrossRefGoogle Scholar
  133. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T. and Numa, S. (1987). Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature, 328, 313–318PubMedCrossRefGoogle Scholar
  134. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R. and Fox, A. P. (1988). Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci., 11, 431–438PubMedCrossRefGoogle Scholar
  135. Tsuji, S., Minota, S. and Kuba, K. (1987). Regulation of the two ion channels by a common muscarinic receptor-transduction system in a vertebrate neurone. Neurosci. Lett., 81, 139–145PubMedCrossRefGoogle Scholar
  136. Vavaudou, M. B., Clapp, L. H., Walsh, J. V. Jr and Singer, J. J. (1988). Regulation of one type of Ca2+ current in smooth muscle cells by diacylglycerol and acetylcholine. FASEB J., 2, 2497–2504Google Scholar
  137. Walker, M. W., Ewald, D. A., Perney, T. M. and Miller, R. J. (1988). Neuropeptide Y modulates neurotransmitter release and Ca2+ currents in rat sensory neurons. J. Neurosci., 8, 2438–2446PubMedGoogle Scholar
  138. Walsh, K. B. and Kass, R. S. (1988). Regulation of a heart potassium channel by protein kinase A and C. Science, 242, 67–69PubMedCrossRefGoogle Scholar
  139. Wang, H. Y. and Friedman, E. (1987). Protein kinase C: regulation of serotonin release from rat brain cortical slices. Brain Res., 419, 364–368CrossRefGoogle Scholar
  140. Weiss, S., Ellis, J., Hendley, D. and Lenox, R. H. (1989). Translocation and activation of protein kinase C in striatal neurons in primary culture: relationship to phorbol dibutyrate actions on the inositol phosphate generating system and neurotransmitter release. J. Neurochem., 52, 530–536PubMedCrossRefGoogle Scholar
  141. Werz, M. A. and Macdonald, R. L. (1987a). Dual actions of phorbol esters to decrease calcium and potassium conductances of mouse neurons. Neurosci. Lett., 78, 101–106PubMedCrossRefGoogle Scholar
  142. Werz, M. A. and Macdonald, R. L. (1987b). Phorbol esters: voltage-dependent effects on calcium-dependent action potentials in mouse central and peripheral neurons in cell culture. J. Neurosci., 7,1639–1637PubMedGoogle Scholar
  143. Wolf, M., LeVine, H. III, May, W. S. Jr, Cuatrecasas, P. and Sahyoun, N. (1985). A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters. Nature, 317, 546–548PubMedCrossRefGoogle Scholar
  144. Wood, J. G., Girard, P. R., Mazzei, G. J. and Kuo, J. F. (1986). Immunocytochemical localization of protein kinase C in identified neuronal compartments of rat brain. J. Neurosci., 6, 2571–2577PubMedGoogle Scholar
  145. Yamada, N., Akiyama, K. and Otsuki, S. (1989). Hippocampal kindling enhances excitatory amino acid receptor-mediated polyphosphoinositide hydrolysis in the hippocampus and amygdala/pyriform cortex. Brain Res., 490, 126–132PubMedCrossRefGoogle Scholar
  146. Zucker R. S. (1987). Neurotransmitter release and its modulation. In Neuromodulation: The Biochemical Control of Neuronal Excitability (eds L. Kaczmarek and I. Levitan) Oxford University Press New York pp. 243–26Google Scholar

Copyright information

© Macmillan Publishers Limited 1990

Authors and Affiliations

  • P. Jeffrey Conn
    • 1
  1. 1.Department of PharmacologyEmory University School of MedicineAtlantaUSA

Personalised recommendations