Skip to main content

Pertussis Toxin-sensitive GTP-binding Proteins in Neuronal Tissues: Recent Insights into Expression and Function

  • Chapter
Current Aspects of the Neurosciences

Abstract

Receptors which identify neurotransmitters, hormones and growth factors can be subdivided into three broad classes. These are (1) receptors which allow direct gating of ions; (2) receptors which indirectly control the activity of effector systems which are either ion channels or enzymes which generate intracellular second messengers; and (3) receptors which express tyrosyl kinase activity. This review will focus on the mechanism of action of the second class of receptors, because in every case receptor control of effector function is absolutely dependent upon the intermediate activation of one or more members of a family of highly homologous guanine nucleotide-binding proteins (G-proteins). G-proteins which are implicated in cellular signalling processes are found widely throughout evolution. Highly conserved G-proteins have been identified either via cDNA cloning or immunological means in each of mammals, birds, amphibia, invertebrates, yeast and slime moulds. Preliminary evidence has also been presented to indicate the expression of related proteins in both green plants and bacteria. It should be remembered however that not all proteins which bind and hydrolyse GTP are likely to be involved in cellular signalling processes. For example, factors involved in protein synthesis initiation and elongation require GTP, as do the α- and β-subunits of the microtubule-forming protein, tubulin. Further, a series of low-Mr (21-28 kDa), GTP-utilizing polypeptides have been identified, including members of the ras, ral, rho, ARF and smg families of proteins. A number of these proteins have been implicated in signalling processes, particularly in relation to the control of mitogenesis, but further roles, especially in relation to control of secretory processes, appear likely, particularly when genetic information from yeast systems is taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, N., Milligan, G. and Evans, W. H. (1989). Distribution of G-proteins in rat liver plasma-membrane domains and endocytic pathways. Biochem. J., 261, 905–912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asano, T., Katada, T., Gilman, A. G. and Ross, E. M. (1984). Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by β-adrenergic receptors in reconstituted phospholipid vesicles. J. Biol. Chem., 259, 9351–9354

    PubMed  CAS  Google Scholar 

  • Banga, H. S., Walker, R. K., Winberry, L. K. and Rittenhouse, S. E. (1987). Pertussis toxin can activate human platelets. Comparative effects of holotoxin and its ADP-ribosylating S1 subunit. J. Biol. Chem., 262, 14871–14874

    PubMed  CAS  Google Scholar 

  • Brann, M. R., Collins, R. M. and Spiegel, A. (1987). Localization of mRNAs encoding the α subunits of signal-transducing G-proteins within rat brain and among peripheral tissues. FEBS Lett., 222,191–198

    Article  PubMed  CAS  Google Scholar 

  • Buss, J. E., Mumby, S. M., Casey, P. J., Gilman, A. G. and Sefton, B. M. (1987). Myristoylated α subunits of guanine nucleotide binding regulatory proteins. Proc. Natl Acad. Sci. USA, 84, 7493–7497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerione, R. A., Kroll, S., Rajaram, R., Unson, C., Goldsmith, P. and Spiegel, A. M. (1988). An antibody directed against the carboxyl terminal decapeptide of the α subunit of the retinal GTP-binding protein, transducin. Effects on transducin function. J. Biol. Chem., 263, 9345–9352

    PubMed  CAS  Google Scholar 

  • Chang, F. H. and Bourne, H. R. (1987). Dexamethasone increases adenylyl cyclase activity and expression of the α subunit of Gs in GH3 cells. Endocrinology, 121, 1711–1715

    Article  PubMed  CAS  Google Scholar 

  • Codina, J., Olate, J., Abramowitz, J., Mattera, R., Cook, R. G. and Birnbaumer, L. (1988). αi3 cDNA encodes the α subunit of Gk, the stimulatory G-protein of receptor-regulated K+ channels. J. Biol. Chem., 263, 6746–6750

    PubMed  CAS  Google Scholar 

  • Codina, J., Yatani, A., Grenet, D., Brown, A. M. and Birnbaumer, L. (1987). The a subunit of the GTP binding protein Gk opens atrial potassium channels. Science, 236, 442–445

    Article  PubMed  CAS  Google Scholar 

  • Ewald, D. A., Sternweis, P. C. and Miller, R. J. (1988). Guanine nucleotide-binding protein Go-induced coupling of neuropeptide Y receptors to Ca2+ channels in sensory neurons. Proc. Natl Acad. Sci. USA, 85, 3633–3637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Florio, V. A. and Sternweis, P. C. (1985). Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem., 260, 3477–3483

    PubMed  CAS  Google Scholar 

  • Gabrion, J., Brabet, Ph., Dao, B. N. T., Hornberger, V., Dumuis, Sebben, M., Rouot, B. and Bockaert, J. (1989). Ultrastructural localization of the GTP-binding protein Go in neurons. Cell Signalling, 1, 107–123

    Article  PubMed  CAS  Google Scholar 

  • Gao, B., Gilman, A. G. and Robishaw, J. D. (1987). A second form of the β-subunit of signal transducing G-proteins. Proc. Natl Acad. Sci. USA, 84, 6122–6125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gautan, N., Baetscher, M., Aebersold, R. and Simon, M. I. (1989). A G-protein gamma subunit shares homology with ras proteins. Science, 244, 971–974

    Article  Google Scholar 

  • Gierschik, P. and Jakobs, K.-H. (1987). Receptor mediated ADP-ribosylation of a phospholipase C-stimulating G-protein. FEBS Lett., 224, 219–223

    Article  PubMed  CAS  Google Scholar 

  • Gierschik, P., Milligan, G., Pines, M., Goldsmith, P., Codina, J., Klee, W. and Spiegel, A. (1986). Use of specific antibodies to quantitate the guanine nucleotide binding protein Go in brain. Proc. Natl Acad. Sci. USA, 83, 2258–2262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilman, A. G. (1987). G-proteins: transducers of receptor generated signals. Ann. Rev. Biochem., 56, 615–649

    Article  PubMed  CAS  Google Scholar 

  • Goh, J. W. and Pennefather, P. S. (1989). A pertussis toxin-sensitive G-protein in hippocampal long-term potentiation. Science, 244, 980–983

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith, P., Gierschik, P., Milligan, G., Unson, C. G., Vinitsky, R., Malech, H. L. and Spiegel, A. M. (1987). Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophil and brain. J. Biol. Chem., 262, 14683–14688

    PubMed  CAS  Google Scholar 

  • Goldsmith, P., Backlund, P. S. Jr, Rossiter, K., Carter, A., Milligan, G., Unson, C. G. and Spiegel, A. (1988). Purification of heterotrimeric GTP-binding proteins from brain: Identification of a novel form of Go. Biochemistry, 27, 7085–7090

    Article  PubMed  CAS  Google Scholar 

  • Grand, R. J. A. (1989). Acylation of viral and eukaryotic proteins. Biochem. J., 258, 625–638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamm, H. E., Deretic, D., Arendt, A., Hargrave, P. A., Koenig, B. and Hofmann, K. P. (1988). Site of G-protein binding to rhodopsin mapped with synthetic peptides to the α subunit. Science, 241, 832–834

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J. F., Marshall, C. J., McKay, I. A., Gardner, S., Houslay, M. D., Hall, A. and Wakelam, M. J. O. (1988). Mutant but not normal p21 ras elevates inositol phospholipid breakdown in two different cell systems. Oncogene, 3, 187–193

    PubMed  CAS  Google Scholar 

  • Harris-Warrick, R., Hammond, C., Paupardin-Tritsch, D., Hornberger, V., Rouot, B., Bockaert, J. and Gerschenfeld, H. M. (1988). An α40 subunit of a GTP-binding protein immunologically related to Go mediates a dopamine-induced decrease of Ca2+ current in snail neurons. Neuron, 1, 27–32

    Article  PubMed  CAS  Google Scholar 

  • Hescheler, J., Rosenthal, W., Trautwein, W. and Schultz, G. (1987). The GTP-binding protein Go, regulates neuronal calcium channels. Nature (London), 325, 445–447

    Article  CAS  Google Scholar 

  • Huff, R. M. and Neer, E. J. (1986). Subunit interactions of native and ADP-ribosylated α39 and α41, two guanine nucleotide-binding proteins from bovine cerebral cortex. J. Biol. Chem., 261, 1105–1110

    PubMed  CAS  Google Scholar 

  • Jones, D. T. and Reed, R. R. (1987). Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J. Biol. Chem., 262, 14241–14249

    PubMed  CAS  Google Scholar 

  • Kurachi, Y., Nakajima, T. and Sugimoto, T. (1986). Role of intracellular Mg2+ in the activation of muscarinic K+ channels in cardiac atrial cell membrane. Pflugers Arch., 407, 572–574

    Article  PubMed  CAS  Google Scholar 

  • McArdle, H., Mullaney, I., Magee, A., Unson, C. and Milligan, G. (1988). GTP analogues cause release of the alpha subunit of the GTP binding protein, Go, from the plasma membrane of NG108-15 cells. Biochem. Biophys. Res. Commun., 152, 243–251

    Article  PubMed  CAS  Google Scholar 

  • McFadzean, I., Mullaney, I., Brown, D. A. and Milligan, G. (1989). Antibodies to the GTP binding protein, Go, antagonize noradrenaline-induced calcium current inhibition in NG108-15 hybrid cells. Neuron, 3, 177–182

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, F. R. and Milligan, G. (1989). The use of specific antisera to locate functional domains of guanine nucleotide binding proteins. In Receptors, Membrane Transport and Signal Transduction. NATO ASI series H: Cell Biology, 29, 65–74 (eds A. E. Evangelopoulos, J. P. Changeux, L. Packer, T. G. Sotiroudis and K. W. A. Wirtz), Springer, Berlin

    Google Scholar 

  • Masters, S. B., Stroud, R. M. and Bourne, H. R. (1986). Family of G-protein α chains: amphipathic analysis and predicted structure of functional domains. Protein Engineering, 1, 47–54

    Article  PubMed  CAS  Google Scholar 

  • Masters, S. B., Sullivan, K. A., Miller, R. T., Beiderman, B., Lopez, N. G., Ramachandran, J. and Bourne, H. R. (1988). Carboxyl terminal domain of Gsα specifies coupling of receptors to stimulation of adenylyl cyclase. Science, 241, 448–451

    Article  PubMed  CAS  Google Scholar 

  • Milligan, G. (1988). Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem. J., 255, 1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milligan, G. (1989). Foetal calf serum enhances cholera toxin-catalysed ADP-ribosylation of the pertussis toxin-sensitive guanine nucleotide binding protein, Gi2, in rat glioma C6BU1 cells. Cell. Signalling, 1, 65–74

    Article  PubMed  CAS  Google Scholar 

  • Milligan, G. and Klee, W. A. (1985). The inhibitory guanine nucleotide binding protein (Ni) purified from bovine brain is a high affinity GTPase. J. Biol. Chem., 260, 2057–2063

    PubMed  CAS  Google Scholar 

  • Milligan, G. and McKenzie, F. R. (1988). Opioid peptides promote cholera toxin-catalysed ADP-ribosylation of the inhibitory guanine nucleotide binding protein (Gi) in membranes of neuroblastoma×glioma hybrid cells. Biochem. J., 252, 369–373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milligan, G., Gierschik, P., Spiegel, A. M. and Klee, W. A. (1986). The GTP binding regulatory proteins of neuroblastoma×glioma, NG108-15, and glioma, C6, cells. Immunochemical evidence of a pertussis toxin substrate that is neither Ni nor No. FEBS Lett., 195, 225–230

    Article  PubMed  CAS  Google Scholar 

  • Milligan, G., Streaty, R. A., Gierschik, P., Spiegel, A. M. and Klee, W. A. (1987a). Development of opiate receptors and GTP-binding regulatory proteins in neonatal rat brain. J. Biol. Chem., 262, 8626–8630

    PubMed  CAS  Google Scholar 

  • Milligan, G., Gierschik, P., Unson, C. G. and Spiegel, A. M. (1987b). The use of specific antisera to study the developmental regulation of guanine nucleotide binding proteins. Protides of the Biological Fluids, 35, 415–418

    Article  CAS  Google Scholar 

  • Milligan, G., Mitchell, F. M., Mullaney, I., McClue, S. J. and McKenzie, F. R. (1990). The role and specificity of guanine nucleotide binding proteins in receptor-effector coupling. In Hormone Perception and Signal Transduction in Animals and Plants (eds J. Roberts, M. Venis and C. Kirk), Society of Biologists, London (in press)

    Google Scholar 

  • Mitchell, F. M., Griffiths, S. L., Saggerson, E. D., Houslay, M. D., Knowler, J. T. and Milligan, G. (1989). Guanine nucleotide binding proteins expressed in rat white adipose tissue. Identification of both mRNAs and proteins corresponding to Gi1, Gi2 and Gi3. Biochem. J., 262, 403–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mullaney, I. and Milligan, G. (1989). Elevated levels of the guanine nucleotide binding protein, Go, are associated with differentiation of neuroblastoma×glioma hybrid cells. FEBS Lett., 244, 113–118

    Article  PubMed  CAS  Google Scholar 

  • Neer, E. J. and Clapham, D. E. (1988). Roles of G protein subunits in transmembrane signalling. Nature (London), 333, 129–134

    Article  CAS  Google Scholar 

  • Nicoll, R. A. (1988). The coupling of neurotransmitter receptors to ion channels in the brain. Science, 241, 545–551

    Article  PubMed  CAS  Google Scholar 

  • Ohta, H., Okajima, F. and Ui, M. (1985). Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J. Biol. Chem., 260, 15771–15780

    PubMed  CAS  Google Scholar 

  • Pines, M., Gierschik, P., Milligan, G., Klee, W. and Spiegel, A. (1985). Antibodies against the carboxyl-terminal 5-kDa peptide of the α subunit of transducin crossreact with the 40-kDa but not the 39-kDa guanine nucleotide binding protein from brain. Proc. Natl Acad. Sci. USA, 82, 4095–4099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quan, F., Wolfgang, W. J. and Forte, M. A. (1989). The Drosophila gene coding for the α subunit of a stimulatory G-protein is preferentially expressed in the nervous system. Proc. Natl Acad. Sci. USA, 86, 4321–4325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenthal, W., Hescheler, J., Trautwein, W. and Schultz, G. (1988). Control of voltage-dependent Ca2+ channels by G-protein-coupled receptors. FASEB J 2, 2784–2790

    PubMed  CAS  Google Scholar 

  • Saito, N., Guitart, X., Hayward, M., Tallman, J. F., Duman, R. S. and Nestler, E. J. (1989). Corticosterone differentially regulates the expression of Gsα and Giα messenger RNA and protein in rat cerebral cortex. Proc. Natl Acad. Sci. USA, 86, 3906–3910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki, K. and Sato, M. (1987). A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors. Nature (London), 325, 259–262

    Article  CAS  Google Scholar 

  • Sternweis, P. C. and Robishaw, J. D. (1984). Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol. Chem., 259, 13806–13813

    PubMed  CAS  Google Scholar 

  • Sullivan, K. A., Miller, R. T., Masters, S. B., Beiderman, B., Heideman, W. and Bourne, H. R. (1987). Identification of receptor contact site involved in receptor-G-protein coupling. Nature (London), 330, 758–759

    Article  CAS  Google Scholar 

  • Thalmann, R. H. (1988). Evidence that guanosine triphosphate (GTP) binding proteins control a synaptic response in brain. Effect of pertussis toxin and GTP7S on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J. Neuroscience, 8, 4589–4602

    PubMed  CAS  Google Scholar 

  • Ueda, H., Yoshihara, Y., Misawa, H., Fukushima, N., Katada, T., Ui, M., Takagi, H. and Satoh, M. (1989). The kyotorphin (tyrosine-arginine) receptor and a selective reconstitution with purified Gi, measured with GTPase and phospholipase C assays. J. Biol. Chem., 264, 3732–3741

    PubMed  CAS  Google Scholar 

  • VanDongen, A. J. M., Codina, J., Olate, J., Mattera, R., Joho, R., Birnbaumer, L. and Brown, A. M. (1988). Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science, 242, 1433–1436

    Article  Google Scholar 

  • Weinstein, L. S., Spiegel, A. M. and Carter, A. D. (1988). Cloning and characterization of the human gene for the α subunit of Gi2, a GTP-binding signal transduction protein. FEBS Lett., 232, 333–340

    Article  PubMed  CAS  Google Scholar 

  • Worley, P. F., Baraban, J. M., Van Dop, C., Neer, E. J. and Snyder, S. H. (1986). Go, aguanine nucleotide-binding protein: immunohistochemical localization in rat brain resembles distribution of second messenger systems. Proc. Natl Acad. Sci. USA, 83, 4561–4565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yatani, A., Mattera, R., Codina, J., Graf, R., Okabe, K., Padrell, E., Iyengar, R., Brown, A. M. and Birnbaumer, L. (1988). The G-protein-gated atrial K+ channel is stimulated by three distinct Giα subunits. Nature (London), 336, 680–682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 Macmillan Publishers Limited

About this chapter

Cite this chapter

Milligan, G. (1990). Pertussis Toxin-sensitive GTP-binding Proteins in Neuronal Tissues: Recent Insights into Expression and Function. In: Osborne, N.N. (eds) Current Aspects of the Neurosciences. Palgrave, London. https://doi.org/10.1007/978-1-349-11922-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11922-6_3

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11924-0

  • Online ISBN: 978-1-349-11922-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics