Receptors Linked to Hydrolysis of Choline Phospholipids: the Role of Phospholipase D in a Putative Mechanism of Signal Transduction

  • Konrad Löffelholz
Chapter

Abstract

The structure and basic functions of biomembranes are essentially determined by the lipid bilayer. In contrast, specific membrane functions, such as signal recognition and transduction and transport processes, have been preferentially attributed to proteins that are embedded in the outer or inner leaflet of this bilayer or may span the membrane up to five times or more, as in the case of receptor molecules. The segregating view of membrane protein and lipid functions may have delayed a broad research interest in the dynamic interactions between these components of the membrane. The present review is devoted to such a recently discovered interaction: the coupling of receptor activation and hydrolysis of Ch-containing glycerophospholipids, the major constituents of the lipid bilayer in mammals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A. A. (1986). Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev., 38, 227–272PubMedGoogle Scholar
  2. Agwu, D. E., McPhail, L. C., Chabot, M. C.,. Daniel, L. W., Wykle, R. L. and McCall, C. E. (1989). Choline-linked phosphoglycerides. J. Biol. Chem., 264, 1405–1413PubMedGoogle Scholar
  3. Ailing, C., Gustavsson, L., Mansson, J. E., Benthin, G. and Änggard, E. (1984). Phosphatidyl-ethanol formation in rat organs after ethanol treatment. Biochim. Biophys. Acta, 793, 119–122CrossRefGoogle Scholar
  4. Anthes, J. C., Eckel, S., Siegel, M. I., Egan, R. W. and Billah, M. M. (1989). Phospholipase D in homogenates from HL-60 granulocytes: implications of calcium and G protein control. Biochem. Biophys. Res. Commun., 163, 657–664PubMedCrossRefGoogle Scholar
  5. Anwyl, R. (1989). Protein kinase C and long-term potentiation in the hippocampus. TIPS, 10, 236–239PubMedGoogle Scholar
  6. Asaoka, Y., Kikkawa, U., Sekiguchi, K., Shearman, M. S., Kosaka, Y., Nakano, Y., Satoh, T. and Nishizuka, Y. (1988). Activation of a brain-specific protein kinase C subspecies in the presence of phosphatidylethanol. FEBS Lett., 231, 221–224PubMedCrossRefGoogle Scholar
  7. Ballester, R. and Rosen, O. M. (1985). Fate of immunoprecipitable protein kinase C in GH3 cells treated with phorbol 12-myristate 13-acetate. J. Biol. Chem., 260, 15194–15199PubMedGoogle Scholar
  8. Balsinde, J., Diez, E. and Mollinedo, F. (1988). Phosphatidylinositol-specific phospholipase D: a pathway for generation of a second messenger. Biochem. Biophys. Res. Commun., 154, 502–508PubMedCrossRefGoogle Scholar
  9. Berridge, M. J. (1987). Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann. Rev. Biochem., 56, 159–193PubMedCrossRefGoogle Scholar
  10. Besterman, J. M., Duronio, V. and Cuatrecasas, P. (1986). Rapid formation of diacylglycerol from phosphatidylcholine: a pathway for generation of a second messenger. Proc. Natl Acad. Sci., 83, 6785–6789PubMedPubMedCentralCrossRefGoogle Scholar
  11. Biden, T. J., Peter-Riesch, B., Schlegel, W. and Wollheim, C. B. (1987). Ca2+-mediated generation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in pancreatic islets. J. Biol. Chem., 262, 3567–3571PubMedGoogle Scholar
  12. Billah, M. M., Pai, J. K., Mullmann, T. J., Egan, R. W. and Siegel, M. I. (1989a). Regulation of phospholipase D in HL-60 granulocytes. J. Biol. Chem., 264, 9069–9076PubMedGoogle Scholar
  13. Billah, M. M., Eckel, S., Mullmann, T. J., Egan, R. W. and Siegel, M. I. (1989b). Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. J. Biol. Chem., 264, 17069–17077PubMedGoogle Scholar
  14. Boeynaems, J. M., Pirotton, S., Van Coevorden, A., Raspe, E., Demolie, D. and Erneaux, C. (1988). P2-purinergic receptors in vascular endothelial cells: from concept to reality. J. Recept. Res., 8, 121–132PubMedGoogle Scholar
  15. Bocckino, S. B., Blackmore, P. F. and Exton, J. H. (1985). Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II. J. Biol. Chem., 260, 14201–14207PubMedGoogle Scholar
  16. Bocckino, S. B., Blackmore, P. F., Wilson, P. B. and Exton, J. H. (1987a). Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J. Biol. Chem., 262, 15309–15315PubMedGoogle Scholar
  17. Bocckino, S. B., Wilson, P. B. and Exton, J. H. (1987b). Ca2+-mobilizing hormones elicit phosphatidylethanol accumulation via phospholipase D activation. FEBS Lett., 225, 201–204PubMedCrossRefGoogle Scholar
  18. Boyer, J. L., Hepler, J. R. and Harden, T. K. (1989). Hormone and growth factor receptor-mediated regulation of phospholipase C activity. TIPS, 10, 360–364PubMedGoogle Scholar
  19. Brass, L. F. and Laposata, M. (1987). Diacylglycerol causes Ca release from the platelet dense tubular system: comparisons with Ca release caused by inositol 1,4,5-triphosphate. Biochem. Biophys. Res. Commun., 142, 7–14PubMedCrossRefGoogle Scholar
  20. Brehm, R., Corradetti, R., Krahn, V., Löffelholz, K. and Pepeu, G. (1985). Muscarinic mobilization of choline in rat cerebral cortex does not involve alterations of blood-brain barrier. Brain. Res., 345, 306–314PubMedCrossRefGoogle Scholar
  21. Brehm, R., Lindmar, R. and Löffelholz, K. (1987). Muscarinic mobilization of choline in rat brain in vivo as shown by the cerebral arterio-venous difference of choline. J. Neurochem., 48, 1480–1485PubMedCrossRefGoogle Scholar
  22. Brock, T. A., Dennis, P. A., Griendling, K. K., Diehl, T. S. and Davies, P. F. (1989). gTPγS loading of endothelial cells stimulates phospholipase C and uncouples ATP receptors. Am. J. Physiol., 255, C667–C673Google Scholar
  23. Brostrom, M. A., Chin, K.-V., Cade, C., Gmitter, D. and Brostrom, C. O. (1987). Stimulation of protein synthesis in pituitary cells by phorbol esters and cyclic AMP. J. Biol. Chem., 262, 16515–16523PubMedGoogle Scholar
  24. Brown, J. H. and Jones, L. G. (1986). Phosphoinositide metabolism in the heart. In Phosphoino-sitides and receptor mechanisms (ed. J. W. Putney), Alan R. Liss, Inc., New York, pp. 245–270Google Scholar
  25. Burch, R. M. and Axelrod, J. (1987). Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc. Natl Acad. Sci., 84, 6374–6378PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cabot, M. C., Welsh, C. J., Zhang, Z., Cao, H., Chabbott, H. and Lebowitz, M. (1988a). Vasopressin, phorbol diesters and serum elicit choline glycerophospholipid hydrolysis and diacylglycerol formation in nontransformed cells: transformed derivatives do not respond. Biochim. Biophys. Acta, 959, 46–57PubMedCrossRefGoogle Scholar
  27. Cabot, M. C., Welsh, C. J., Cao, H. and Chabbott, H. (1988b). The phosphatidylcholine pathway of diacylglycerol formation stimulated by phorbol diesters occurs via phospholipase D activation. FEBS Lett., 233, 153–157PubMedCrossRefGoogle Scholar
  28. Cabot, M. C., Welsh, C. J., Zhang, Z. and Cao, H. T. (1989). Evidence for a protein kinase C-directed mechanism in the phorbol diester-induced phospholipase D pathway of diacylglycerol generation from phosphatidylcholine. FEBS Lett., 245, 85–90PubMedCrossRefGoogle Scholar
  29. Chalifour, R. J. and Kanfer, J. N. (1980). Microsomal phospholipase D of rat brain and lung tissues. Biochem. Biophys. Res. Commun., 96, 742–747PubMedCrossRefGoogle Scholar
  30. Charest, R., Blackmore, P. F. and Exton, J. H. (1985). Characterization of responses of isolated rat hepatocytes to ATP and ADP. J. Biol. Chem., 260, 15789–15794PubMedGoogle Scholar
  31. Clark, M. A., Shorr, R. G. L. and Bomalaski, J. S. (1986). Antibodies prepared to bacillus cereus phospholipase C crossreact with a phosphatidylcholine preferring phospholipase C in mammalian cells. Biochem. Biophys. Res. Commun., 140, 114–119PubMedCrossRefGoogle Scholar
  32. Cooper, D. R., Konda, T. S., Standaert, M. L., Davis, J. S., Pollet, R. J. and Farese, R. V. (1987). Insulin increases membrane and cytosolic protein kinase C activity in BC3H-1 myocytes. J. Biol. Chem., 262, 3633–3639PubMedGoogle Scholar
  33. Corradetti, R., Lindmar, R. and Löffelholz, K. (1982). Physostigmine facilitates choline efflux from isolated heart and cortex in vivo. Eur. J. Pharmacol., 85, 123–124PubMedCrossRefGoogle Scholar
  34. Corradetti, R., Lindmar, R. and Löffelholz, K. (1983). Mobilization of cellular choline by stimulation of muscarine receptors in isolated chicken heart and rat cortex in vivo. J. Pharmacol. Exp. Ther., 226, 826–832PubMedGoogle Scholar
  35. Davis, J. S., West, L. A. and Farese, R. V. (1984). Gonadotropin-releasing hormone rapidly alters polyphosphoinositide metabolism in rat granulosa cells. Biochem. Biophys. Res. Commun., 122, 1289–1295PubMedCrossRefGoogle Scholar
  36. Derian, C. K. and Moskowitz, M. A. (1986). Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments. J. Biol. Chem., 261, 3831–3837PubMedGoogle Scholar
  37. De Vries, G. H., Chalifour, R. J. and Kanfer, J. N. (1983). The presence of phospholipase D in rat central nervous system axolemma. J. Neurochem., 40, 1189–1191CrossRefGoogle Scholar
  38. Dolezal, V. and Tucek, S. (1984). Activation of muscarinic receptors stimulates the release of choline from brain slices. Biochem. Biophys. Res. Commun., 120, 1002–1007PubMedCrossRefGoogle Scholar
  39. Domino, S. E. and Garbers, D. L. (1988). The fucose-sulfate glycoconjugate that induces an acrosome reaction in spermatozoa stimulates inositol 1,4,5-trisphosphate accumulation. J. Biol. Chem., 263, 690–695PubMedGoogle Scholar
  40. Domino, S. E., Bocckino, S. B. and Garbers, D. L. (1989). Activation of phospholipase D by the fucose-sulfate glycoconjugate that induces an acrosome reaction in spermatozoa. J. Biol. Chem., 264, 9412–9419PubMedGoogle Scholar
  41. Drummond, A. H. (1989). Inositol lipid signalling in excitable cells: Introduction. In Inositol lipids in cell signalling (eds R. H. Michell, A. H. Drummond and C. P. Downes), Academic Press, London, pp. 305–309Google Scholar
  42. Exton, J. H. (1988). Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J., 2, 2670–2676PubMedGoogle Scholar
  43. Farese, R. V., Standaert, M. L., Barnes, D. E., Davis, J. S. and Pollet, R. J. (1985). Phorbol ester provokes insulin-like effects on glucose transport, amino acid uptake, and pyruvate dehydrogenase activity in BC3H-1 cultured myocytes. Endocrinology, 116, 2650–2655PubMedCrossRefGoogle Scholar
  44. Farese, R. V., Cooper, D. R., Konda, T. S., Nair, G., Standaert, M. L., Davis, J. S. and Pollet, R. J. (1988). Mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes. Biochem. J., 256, 175–184PubMedPubMedCentralCrossRefGoogle Scholar
  45. Flower, R. J. (1988). Lipocortin and the mechanism of action of the glucocorticoids. Brit. J. Pharmacol., 94, 987–1015CrossRefGoogle Scholar
  46. Ford, D. A., Miyake, R., Glaser, P. E. and Gross, R. W. (1989). Activation of protein kinase C by naturally occurring ether-linked diglycerides. J. Biol. Chem., 264, 13818–13824PubMedGoogle Scholar
  47. Gelas, P., Ribbes, G., Record, M., Terce, F. and Chap, H. (1989). Differential activation by fMet-Leu-Phe and phorbol ester of a plasma membrane phosphatidylcholine-specific phospholipase D in human neutrophil. FEBS Lett., 251, 213–218PubMedCrossRefGoogle Scholar
  48. Griendling, K. K., Rittenhouse, S. E., Brock, T. A., Ekstein, L. S., Gimbrone, M. A. and Alexander, R. W. (1986). Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J. Biol. Chem., 261, 5901–5906PubMedGoogle Scholar
  49. Griendling, K. K., Delafontaine, P., Rittenhouse, S. E., Gimbrone, M. A. and Alexander, R. W. (1987). Correlation of receptor sequestration with sustained diacylglycerol accumulation in angiotensin II-stimulated cultured vascular smooth muscle cells. J. Biol. Chem., 262, 14555–14562PubMedGoogle Scholar
  50. Griendling, K. K., Tsuda, T. and Alexander, R. W. (1989). Endothelin stimulates diacylglycerol accumulation and activates protein kinase C in cultured vascular smooth muscle cells. J. Biol. Chem., 264, 8237–8240PubMedGoogle Scholar
  51. Grillone, L. R., Clark, M. A., Godfrey, R. W., Stassen, F. and Crooke, S. T. (1988). Vasopressin induces V1 receptors to activate phosphatidylinositol-and phosphatidylcholine-specific phospholipase C and stimulates the release of arachidonic acid by at least two pathways in the smooth muscle cell line, A-10. J. Biol. Chem., 263, 2658–2663PubMedGoogle Scholar
  52. Guy, G. R. and Murray, A. W. (1982). Tumor promoter stimulation of phosphatidylcholine turnover in HeLa cells. Cancer Res., 42, 1980–1985PubMedGoogle Scholar
  53. Habermann, E. and Laux, M. (1986). Depolarization increases inositol-phosphate production in a particulate preparation from rat brain. Naunyn-Schmiedeberg’s Arch. Pharmacol., 334, 1–9CrossRefGoogle Scholar
  54. Hattori, H. and Kanfer, J. N. (1984). Synaptosomal phospholipase D: potential role in providing choline for acetylcholine synthesis. Biochem. Biophys. Res. Commun., 124, 945–949PubMedCrossRefGoogle Scholar
  55. Hokin, L. E. (1985). Receptors and phosphoinositide-generated second messengers. Ann. Rev. Biochem., 54, 205–235PubMedCrossRefGoogle Scholar
  56. Irving, H. R. and Exton, J. H. (1987). Phosphatidylcholine breakdown in rat liver plasma membranes. J. Biol. Chem., 262, 3440–3443PubMedGoogle Scholar
  57. Jensen, R. T., Wank, S. A., Rowley, W. H., Sato, S. and Gardner, J. D. (1989). Interaction of CCK with pancreatic acinar cells. TIPS, 10, 418–423PubMedGoogle Scholar
  58. Kanfer, J. N. (1980). The base exchange enzymes and phospholipase D of mammalian tissue. Can. J. Biochem., 58,1370–1380PubMedCrossRefGoogle Scholar
  59. Kanfer, J. N. and Hattori, H. (1986). Mammalian phospholipase D and related activities. In Enzymes of Lipid Metabolism II (eds L. Freysz, H. Dreyfus, R. Massarelli and S. Gatt), Plenum Press, New York, pp. 665–679CrossRefGoogle Scholar
  60. Kaya, H., Patton, G. M. and Hong, S. L. (1989). Bradykinin-induced activation of phospholipase A2 is independent of the activation of polyphosphoinositide-hydrolyzing phospholipase C. J. Biol. Chem., 264, 4972–4977PubMedGoogle Scholar
  61. Kinsky, S. C., Loader, J. E. and Benedict, S. H. (1989). Phorbol ester activation of phospholipase D in human monocytes but not peripheral blood lymphocytes. Biochem. Biophys. Res. Commun., 162, 788–793PubMedCrossRefGoogle Scholar
  62. Kobayashi, M. and Kanfer, J. N. (1987). Phosphatidylethanol formation via transphosphatidylation by rat brain synaptosomal phospholipase D. J. Neurochem., 48, 1597–1603CrossRefGoogle Scholar
  63. Kobayashi, M., Bansal, V. S., Singh, I. and Kanfer, J. N. (1988). Dexamethasone-induced reduction of phospholipase D activity in the rat. Possible role of lipocortin. FEBS Lett., 236, 380–382PubMedCrossRefGoogle Scholar
  64. Korth, M., Sharma, V. K. and Sheu, S. S. (1988). Stimulation of muscarinic receptors raises free intracellular Ca2+ concentration in rat ventricular myocytes. Circ. Res., 62, 1080–1087PubMedCrossRefGoogle Scholar
  65. Lacal, J. C., Moscat, J. and Aaronson, S. A. (1987). Novel source of 1,2-diacylglycerol elevated in cells transformed by Ha-ras oncogene. Nature, 330, 269–271PubMedCrossRefGoogle Scholar
  66. Ladinsky, H., Consolo, S. and Peri, G. (1974). Effect of oxotremorine and physostigmine on choline levels in mouse whole brain, spleen and cerebellum. Biochem. Pharmacol., 23, 1187–1193PubMedCrossRefGoogle Scholar
  67. Lakher, M., Wurtman, R. J., Blusztajn, J., Holbrook, P., Maire, J.-C., Mauron, C. and Tacconi, M. (1986). Brain phosphatidylcholine pools as possible sources of free choline for acetylcholine synthesis. In Biological Methylation and Drug Design (eds R. T. Borchardt, C. R. Creveling and P. M. Ueland), Humana Press, Clifton, NJ, pp. 101–110Google Scholar
  68. Langer, G. A. and Rich, T. L. (1985). Phospholipase D produces increased contractile force in rabbit ventricular muscle. Circ. Res., 56, 146–149PubMedCrossRefGoogle Scholar
  69. Lindmar, R., Löffelholz, K. and Sandmann, J. (1986). Characterization of choline efflux from the perfused heart at rest and after muscarine receptor activation. Naunyn-Schmiedeberg’s Arch. Pharmacol., 332, 224–229CrossRefGoogle Scholar
  70. Lindmar, R., Löffelholz, K. and Sandmann, J. (1988). On the mechanism of muscarinic hydrolysis of choline phospholipids in the heart. Biochem. Pharmacol., 37, 4689–4695PubMedCrossRefGoogle Scholar
  71. Liscovitch, M. (1989). Phosphatidylethanol biosynthesis in ethanol-exposed NG108-15 neuroblastoma X glioma hybrid cells. J. Biol. Chem., 264, 1450–1456PubMedGoogle Scholar
  72. Liscovitch, M. and Amsterdam, A. (1989). Gonadotropin-releasing hormone activates phospholipase D in ovarian granulosa cells. J. Biol. Chem., 264, 11762–11767PubMedGoogle Scholar
  73. Liscovitch, M., Slack, B., Blusztajn, J. K. and Wurtman, R. J. (1987). Differential regulation of phosphatidylcholine biosynthesis by 12-O-tetradecanoylphorbol-13-acetate and diacylglycerol in NG108-15 neuroblastomaxglioma hybrid cells. J. Biol. Chem., 262, 17487–17491PubMedGoogle Scholar
  74. Löffelholz, K. (1987). Commentary to Wurtman, R. J., Nutrients affecting brain composition and behavior. Integr. Psychiatry., 5, 242–244Google Scholar
  75. Löffelholz, K. (1989). Receptor regulation of choline phospholipid hydrolysis. Biochem. Pharmacol., 38, 1543–1549PubMedCrossRefGoogle Scholar
  76. Löffelholz, K., Lindmar, R. and Sandmann, J. (1989). The relationship between choline, phospholipids and acetylcholine in the brain. In Neurochemical Aspects of Phospholipid Metabolism, Fidia Research Series, vol. 20 (eds L. Freysz, J. N. Hawthorne and G. Toffano), Liviana Press, Padova, pp. 193–199Google Scholar
  77. Lundgren, G., Karlen, B. and Holmstedt, B. (1977). Acetylcholine and choline in mouse brain—influence of peripherally acting cholinergic drugs. Biochem. Pharmacol., 26, 1607–1612PubMedCrossRefGoogle Scholar
  78. Ma, F. and Leung, P. C. K. (1985). Luteinizing hormone-releasing hormone enhances polyphosphoinositide breakdown in rat granulosa cells. Biochem. Biophys. Res. Commun., 130, 1201–1208PubMedCrossRefGoogle Scholar
  79. Martin, M. and Resch, K. (1988). Interleukin 1: more than a mediator between leukocytes. TIPS, 9, 171–177PubMedGoogle Scholar
  80. Martin, T. W. (1988). Formation of diacylglycerol by a phospholipase D-phosphatidate phosphatase pathway specific for phosphatidylcholine in endothelial cells. Biochim. Biophys. Acta, 962, 282–296PubMedCrossRefGoogle Scholar
  81. Martin, T. W. and Michaelis, K. C. (1988). Bradykinin stimulates phosphodiesteratic cleavage of phosphatidylcholine in cultured endothelial cells. Biochem. Biophys. Res. Commun., 157, 1271–1279PubMedCrossRefGoogle Scholar
  82. Martin, T. W. and Michaelis, K. C. (1989). P2-purinergic agonists stimulate phosphodiesteratic cleavage of phosphatidylcholine in endothelial cells. J. Biol. Chem., 264, 8847–8856PubMedGoogle Scholar
  83. Martinson, E. A., Goldstein, D. and Brown, J. H. (1989). Muscarinic receptor activation of phosphatidylcholine hydrolysis. J. Biol. Chem., 264, 14748–14754PubMedGoogle Scholar
  84. Masters, S. B., Harden, T. K. and Brown, J. H. (1984). Relationships between phosphoinositide and calcium responses to muscarinic agonists in astrocytoma cells. Mol. Pharmacol., 26, 149–155PubMedGoogle Scholar
  85. Matozaki, T. and Williams, J. A. (1989). Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. J. Biol. Chem., 264, 14729–14734PubMedGoogle Scholar
  86. Matsumoto, K. and Pappano, A. J. (1989). Sodium-dependent membrane current induced by carbachol in single guinea-pig ventricular myocytes. J. Physiol (Lond.), 415, 487–502CrossRefGoogle Scholar
  87. Michell, R. H. (1975). Inositol phospholipids and cell surface receptor function. Biochem. Biophys. Acta, 415, 81–147PubMedGoogle Scholar
  88. Mufson, R. A., Okin, E. and Weinstein, I. B. (1981). Phorbol esters stimulate the rapid release of choline from prelabelled cells. Carcinogenesis, 2, 1095–1102PubMedCrossRefGoogle Scholar
  89. Murayama, T. and Ui, M. (1987). Phosphatidic acid may stimulate membrane receptors mediating adenylate cyclase inhibition and phospholipid breakdown in 3T3 fibroblasts. J. Biol. Chem., 262, 5522–5529PubMedGoogle Scholar
  90. Nair, G. P., Standaert, M. L., Pollet, R. J., Cooper, D. R. and Farese, R. V. (1988). Effects of insulin and phorbol esters on diacylglycerol generation and synthesis and hydrolysis of phosphatidylcholine in BC3H-1 myocytes. Biochem. Biophys. Res. Commun., 154, 1345–1349PubMedCrossRefGoogle Scholar
  91. Naor, Z. and Yavin, E. (1982). Gonadotropin-releasing hormone stimulates phospholipid labeling in cultured granulosa cells. Endocrinology, 111, 1615–1619PubMedCrossRefGoogle Scholar
  92. Nishizuka, Y. (1986). Studies and perspectives of protein kinase C. Science, 233, 305–312PubMedCrossRefGoogle Scholar
  93. Nishizuka, Y. (1988). The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 334, 661–665PubMedCrossRefGoogle Scholar
  94. Ohta, H., Okajima, F. and Ui, M. (1985). Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J. Biol. Chem., 260, 15771–15780PubMedGoogle Scholar
  95. Pai, J.-K., Siegel, M. I., Egan, R. W. and Billah, M. M. (1988a). Activation of phospholipase D by chemotactic peptide in HL-60 granulocytes. Biochem. Biophys. Res. Commun., 150, 355–364PubMedCrossRefGoogle Scholar
  96. Pai, J. K., Siegel, M. I., Egan, R. W. and Billah, M. M. (1988b). Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes. J. Biol. Chem., 263, 12472–12477PubMedGoogle Scholar
  97. Pappano, A. J., Matsumoto, K., Tajima, T., Agnarsson, U. and Webb, W. (1988). Pertussis toxin-insensitive mechanism for carbachol-induced depolarization and positive inotropic effect in heart muscle. TIPS, 9 (Suppl.), 35–39Google Scholar
  98. Pelech, S. L. and Vance, D. E. (1989). Signal transduction via phosphatidylcholine cycles. TIBS, 14, 28–30Google Scholar
  99. Philipson, K. D. (1985). Sodium-calcium exchange in plasma membrane vesicles. Ann. Rev. Physiol., 47, 561–571CrossRefGoogle Scholar
  100. Pierce, G. N. and Panagia, V. (1989). Role of phosphatidylinositol in cardiac sarcolemmal membrane sodium-calcium exchange. J. Biol. Chem., 264, 15344–15350PubMedGoogle Scholar
  101. Putney, J. W., Weiss, S. J., Van de Walle, C. M. and Haddas, R. A. (1980). Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature, 284, 345–347PubMedCrossRefGoogle Scholar
  102. Reibman, J., Korchak, H. M., Vosshall, L. B., Haines, K. A., Rich, A. M. and Weissmann, G. (1988). Changes in diacylglycerol labeling, cell shape, and protein phosphorylation distinguish ‘triggering’ from ‘activation’ of human neutrophils. J. Biol. Chem., 263, 6322–6328PubMedGoogle Scholar
  103. Rosoff, P. M., Savage, N. and Dinarello, C. A. (1988). Interleukin-1 stimulates diacylglycerol production in T lymphocytes by a novel mechanism. Cell, 54, 73–81PubMedCrossRefGoogle Scholar
  104. Rossi, F., Grzeskowiak, M. and Delia Bianca, V. (1986). Double stimulation with fMLP and con A restores the activation of the respiratory burst but not of the phosphoinositide turnover in Ca2+-depleted human neutrophils. A further example of dissociation between stimulation of the NADPH oxidase and phosphoinositide turnover. Biochem. Biophys. Res. Commun., 140, 1–11PubMedCrossRefGoogle Scholar
  105. Rubin, R. (1988). Phosphatidylethanol formation in human platelets: evidence for thrombin-induced activation of phospholipase D. Biochem. Biophys. Res. Commun., 156, 1090–1096PubMedCrossRefGoogle Scholar
  106. Salmon, D. M. and Honeyman, T. W. (1980). Proposed mechanism of cholinergic action in smooth muscle. Nature, 284, 344–345PubMedCrossRefGoogle Scholar
  107. Sandmann, J. and Wurtman, R. J. (1989). Phospholipase D and phospholipase C in human cholinergic neuroblastoma (LA-N-2) cells: modulation by muscarinic agonists and protein kinase C. In Advances in Second Messenger and Phosphoprotein Research (ed. Y. Nishizuka), Raven Press, New York, vol. 24Google Scholar
  108. Sandmann, J., Leißner, J., Lindmar, R. and Löffelholz, K. (1990). The effects of phorbol esters on choline phospholipid hydrolysis in heart and brain. Eur. J. Pharmacol., Mol. Pharmacol. Section, 188, 89–95CrossRefGoogle Scholar
  109. Sheikhnejad, R. G. and Srivastava, P. N. (1986). Isolation and properties of a phosphatidylcho-line-specific phospholipase C from bull seminal plasma. J. Biol. Chem., 261, 7544–7549PubMedGoogle Scholar
  110. Smith, C. D., Cox, C. C. and Snyderman, R. (1986). Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein. Science, 232, 97–100PubMedCrossRefGoogle Scholar
  111. Taki, T. and Kanfer, J. N. (1979). Partial purification and properties of a rat brain phospholipase D. J. Biol. Chem., 254, 9761–9765PubMedGoogle Scholar
  112. Tettenbora, C. S. and Mueller, G. C. (1988). 12-O-Tetradecanoylphorbol-13-acetate activates phosphatidylethanol and phosphatidylglycerol synthesis by phospholipase D in cell lysates. Biochem. Biophys. Commun., 155, 249–255CrossRefGoogle Scholar
  113. Tijburg, L. B. M., Geelen, M. J. H. and van Golde, L. M. G. (1989). Regulation of the biosynthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine in the liver. Biochim. Biophys. Acta, 1004, 1–19PubMedCrossRefGoogle Scholar
  114. Trilivas, I. and Brown, J. H. (1989). Increases in intracellular Ca2+ regulate the binding of [3H]phorbol 12,13-dibutyrate to intact 1321N1 astrocytoma cells. J. Biol. Chem., 264, 3102–3107PubMedGoogle Scholar
  115. Truett, A. P., Verghese, M. W., Dillon, S. B. and Snyderman, R. (1988). Calcium influx stimulates a second pathway for sustained diacylglycerol production in leukocytes activated by chemoattractants. Proc. Natl Acad. Sci. USA, 85, 1549–1553PubMedPubMedCentralCrossRefGoogle Scholar
  116. Tyagi, S. R., Tamura, M., Burnham, D. N. and Lambeth, J. D. (1988). Phorbol myristate acetate (PMA) augments chemoattractant-induced diglyceride generation in human neutrophils but inhibits phosphoinositide hydrolysis. J. Biol. Chem., 263, 13191–13196PubMedGoogle Scholar
  117. Uhing, R. J., Prpic, V., Jiang, H. and Exton, J. H. (1986). Hormone-stimulated polyphosphoinositide breakdown in rat liver plasma membranes. J. Biol. Chem., 261, 2140–2146PubMedGoogle Scholar
  118. Vemuri, R. and Philipson, K. D. (1987). Phospholipid composition modulates the Na+-Ca2+ exchange activity of cardiac sarcolemma in reconstituted vesicles. Biochim. Biophys. Acta, 937, 258–268CrossRefGoogle Scholar
  119. Waite, M. (1987). The Phospholipases, Handbook of Lipid Research, vol. [vn5 (ed. D. J. Hanahan), Plenum Press, New York and LondonGoogle Scholar
  120. Weinstein, I. B. (1981). Current concepts and controversies in chemical carcinogenesis. J. Supramolec. Struct. Cell. Biochem., 17, 99–120CrossRefGoogle Scholar
  121. Welsh, C. J., Cao, H., Chabbott, H. and Cabot, M. C. (1988). Vasopressin is the only component of serum-free medium that stimulates phosphatidylcholine hydrolysis and accumulation of diacylglycerol in cultured REF52 cells. Biochem. Biophys. Res. Commun., 152, 565–572PubMedCrossRefGoogle Scholar
  122. Wolf, R. A. and Gross, R. W. (1985). Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J. Biol. Chem., 260, 7295–7303PubMedGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1990

Authors and Affiliations

  • Konrad Löffelholz
    • 1
  1. 1.Department of PharmacologyUniversity of MainzMainzFederal Republic of Germany

Personalised recommendations