Skip to main content

Second Messengers in Neuronal Growth and Degeneration

  • Chapter
Current Aspects of the Neurosciences

Abstract

Just as different animal and plant species are identifiable by their particular shapes and sizes, different cell types also have identifying forms. For example, in the nervous system different types of nerve cells and glial cells are easily discriminated (Figure 1). The shapes of all animal cells are determined largely by two interacting systems, the cytoskeleton and the plasma membrane. In general, the molecular compositions of these cellular building blocks are quite similar from cell type to cell type and from animal to animal. Thus, from yeast to man, cytoskeletal microfilaments are composed of essentially the same actin protein, and cell membranes possess similar phospholipid molecules. This conversion of cell structural components raises an intriguing question: If the building blocks of different cells are similar, then what accounts for the great diversity of cell shapes? One answer is that mechanisms exist for controlling the structural building blocks, and moulding them into their cell type-specific arrangements. The topic of this chapter concerns the intracellular signalling mechanisms that control the architecture of the fundamental cellular unit of the nervous system, the neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agranoff, B. W. and dFisher, S. K. (1986). Ligand-stimulated turnover of inositol lipids in the nervous system. Prog. Brain Res., 69, 3–14

    Article  PubMed  CAS  Google Scholar 

  • Alkon, D. L. (1989). Memory storage and neural systems. Sci. Amer., 261, 42–50

    Article  PubMed  CAS  Google Scholar 

  • Appel, S. H. (1986). A Unifying hypothesis for the cause of Amyotrophic lateral sclerosis, Parkinsonism, and Alzheimer disease. Ann. Neurol., 10, 499–505

    Article  Google Scholar 

  • Augustine, G. J., Charlton, M. P. and Smith, S. J. (1987). Calcium action in synaptic transmitter release. Ann. Rev. Neurosci., 10, 633–693

    Article  PubMed  CAS  Google Scholar 

  • Bahmanyar, S., Higgins, G. A., Goldgaber, D., Lewis, D. A., Morrison, J. H., Wilson, M. C., Shandar, S. K. and Gajdusek, D. C. (1987). Localization of amyloid B protein messenger RNA in brains from patients with Alzheimer’s disease. Science, 237, 77–80

    Article  PubMed  CAS  Google Scholar 

  • Balazs, R., Hack, N. and Jorgensen, O. S. (1988). Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci. Lett., 87, 80–86

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J. (1984). Inositoltriphosphate and diacylglycerol as second messengers. Biochem. J., 206, 587–595

    Article  Google Scholar 

  • Bixby, J. L. and Spitzer, N. C. (1984). Early differentiation of vertebrate spinal neurons in the absence of voltage-dependent Ca2+ and Na+ influx. Dev. Biol., 106, 89–96

    Article  PubMed  CAS  Google Scholar 

  • Bloch, R. J. and Pumplin, D. W. (1988). Molecular events in synaptogenesis: nerve-muscle adhesion and postsynaptic differentiation. Am. J. Physiol., 254, C345–C364

    Google Scholar 

  • Bray, D. (1973). Model for membrane movements in the neural growth cone. Nature, 244, 93–96

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne, R. D., Pearce, I. A. and Cambray-Deakin, M. (1988). N-methyl-D-aspartate raises cytosolic calcium concentration in cerebellar granule cells in culture. Neurosci. Lett., 91, 47–52

    Article  PubMed  CAS  Google Scholar 

  • Burnside B. (1988). Photoreceptor contraction and elongation: calcium and cyclic adenosine 3′ 5′ monophosphate regulation of actin-and microtubule-dependent changes in cell shape. In Intrinsic Determinants of Neuronal Form and function Alan R. Liss New York 323–35

    Google Scholar 

  • Carafoli, E. (1987). Intracellular calcium homeostasis. Ann. Rev. Biochem., 56, 395–433

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. W. (1987). Ionic dependence of glutamate neurotoxicity. J. Neurosci., 7, 369–3

    PubMed  CAS  Google Scholar 

  • Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron., 1, 623–634

    Article  PubMed  CAS  Google Scholar 

  • Cohan, C. S., Connor, J. A. and Kater, S. B. (1987). Electrically and chemically mediated increases in intracellular calcium in neuronal growth cones. J. Neurosci., 7, 3588–3599

    PubMed  CAS  Google Scholar 

  • Connor, J. A. (1986). Digital imaging of free calcium changes and of spatial gradients in growing processes in single mammalian central nervous system cells. Proc. Natl Acad. Sci. USA, 83, 6179–6183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connor, J. A., Tseng, H. Y. and Hockberger, P. E. (1987). Depolarization-and transmitter-induced changes in intracellular Ca2+ of rat cerebellar granule cells in expiant cultures. J. Neurosci., 7, 1384–1400

    PubMed  CAS  Google Scholar 

  • Connor, J. A., Wadman, W. J., Hockberger, P. E. and Wong, R. K. S. (1988). Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science, 240, 649–653

    Article  PubMed  CAS  Google Scholar 

  • Contreras, M. L. and Guroff, G. (1987). Calcium-dependent nerve growth factor-stimulated hydrolysis of phosphoinositides in PC12 cells. J. Neurochem., 48, 1466–1472

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W. M., Fawcett, J. W., O’Leary, D. D. M. and Stanfield, B. B. (1984). Regressive events in neurogenesis. Science, 225, 1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J. T. and Schwarcz, R. (1976). Lesion of striatal neurons with kainic acid provides a model for Huntington’s Chorea. Nature, 263, 244–246

    Article  PubMed  CAS  Google Scholar 

  • Crapper, D. R., Krishnan, S. S. and Dalton, A. J. (1973). Brain aluminum distribution in Alzheimer’s disease and especially neurofibrillary degeneration. Science, 180, 511–513

    Article  PubMed  CAS  Google Scholar 

  • Davis, L., Banker, G. and Steward, O. (1987). Selective dendritic transport of RNA in hippocampal neurons in culture. Nature, 330, 477–479

    Article  PubMed  CAS  Google Scholar 

  • Dawes, L. R., Mattson, M. P., Kater, S. B. and Neve, R. L. (1988). Regulation of the Alzheimer amyloid precursor RNA in primary cell culture. Soc. Neurosci. Abstr., 14, 637

    Google Scholar 

  • Deyo, R. A., Straube, K. T. and Disterhoft, J. F. (1989). Nimodipine facilitates associative learning in aging rabbits. Science, 243, 809–811

    Article  PubMed  CAS  Google Scholar 

  • Dotti, C. G. and Banker, G. A. (1987). Experimentally induced alteration in the polarity of developing neurons. Nature, 330, 254–256

    Article  PubMed  CAS  Google Scholar 

  • Favaron, M., Manev, H., Alho, H., Bertolino, M., Ferret, B., Guidotti, A. and Costa, E. (1988). Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc. Natl Acad. Sci. USA, 85, 7351–7355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrante, R. J., Kowall, N. W., Beal, M. F., Richardson, E. P., Bird, E. D. and Martin, J. B. (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science, 230, 561–563

    Article  PubMed  CAS  Google Scholar 

  • Fine, R. E. and Rubin, J. B. (1988). Specific trophic factor—receptor interactions: Key selective elements in brain development and ‘regeneration’.J. Amer. Geriatric Soc., 36, 457–466

    Article  CAS  Google Scholar 

  • Forno, L. S. (1980). Pathology of Parkinson’s disease. In Movement Disorders (eds C. D. Marsden and S. Fahn), Butterworths, London, pp. 25–40

    Google Scholar 

  • Gage, F. H., Armstrong, D. M., Williams, L. R. and Varon, S. (1988). Morphological response of axotomized septal neurons to nerve growth factor. J. Comp. Neurol., 269, 147–155

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E. and Peterson, C. (1987). Calcium and the aging nervous system. Neurobiol. Aging, 8, 329–343

    Article  PubMed  CAS  Google Scholar 

  • Goldenring, J. R., Vallano, M. L., Lasher, R. S., Ueda, T. and DeLorenzo, R. J. (1986). Association of calmodulin-dependent kinase II and its substrate proteins with neuronal cytoskeleton. Prog. Brain Res., 69, 341–354

    Article  PubMed  CAS  Google Scholar 

  • Green, L. A. and Shooter, E. M. (1980). The nerve growth factor. Annu. Rev. Neurosci., 4, 353–402

    Article  Google Scholar 

  • Greengard, P. (1979). Cyclic nucleotides, phosphorylated proteins, and the nervous system. Federation Proc., 38, 2208–2217

    CAS  Google Scholar 

  • Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985). A new generation of calcium indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440–3450

    PubMed  CAS  Google Scholar 

  • Gunning, P. W., Landreth, G. E., Bothwell, M. A. and Shooter, E. M. (1981). Differential and synergistic actions of nerve growth factor and cyclic AMP in PC12 cells. J. Cell Biol., 89, 240–245

    Article  PubMed  CAS  Google Scholar 

  • Guthrie P. B. Mattson M. P. Mills L. and Kater S. B. 1988. Calcium homeostasis in molluscan and mammalian neurons Neuron selective set-point of calcium rest concentration. Soc. Neurosci. Abstr. 14 58

    Google Scholar 

  • Hamon, B. and Heinemann, U. (1988). Developmental changes in neuronal sensitivity to excitatory amino acids in area CA1 of the rat hippocampus. Dev. Brain Res., 38, 286–290

    Article  CAS  Google Scholar 

  • Haydon, P. G., McCobb, D. P. and Kater, S. B. (1984). Serotonin selectively inhibits growth cone dynamics and synaptogenesis of specific identified neurons. Science, 226, 561–564

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., Dravid, A. and Hartikka, J. (1984). Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res., 293, 305–311

    Article  PubMed  CAS  Google Scholar 

  • Hockberger, P. and Yamane, T. (1987). Compartmentalization of cyclic AMP elevation in neurons of Aplysia californica. Cellul. Mol. Neurobiol., 7, 19–33

    Article  CAS  Google Scholar 

  • Horsman, A., Gallagher, J. C., Simpson, M. and Nordin, B. E. C. (1977). Prospective trial of estrogen and calcium in postmenopausal women. Br. Med. J., 2, 789–792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishii, D. N. (1978). Effect of tumor promoters on the response of cultured embryonic chick ganglia to nerve growth factor. Cancer Res., 38, 3886–3893

    PubMed  CAS  Google Scholar 

  • Jessell, T. M. (1988). Adhesion molecules and the hierarchy of neural development. Neuron, 1, 1–13

    Article  Google Scholar 

  • Joachim, C. L., Morris, J. H., Kosik, K. S. and Selkoe, D. J. (1987). Tau antisera recognize neurofibrillary tangles in a range of neurodegenerative disorders. Ann. Neurol., 22, 514–520

    Article  PubMed  CAS  Google Scholar 

  • Kater, S. B., Mattson, M. P., Cohan, C. S. and Connor, J. A. (1988). Calcium regulation of the neuronal growth cone. Trends Neurosci., 11, 315–321

    Article  PubMed  CAS  Google Scholar 

  • Korsching, S. (1986). The role of nerve growth factor in the CNS. Trends Neurosci., 9, 570–573

    Article  CAS  Google Scholar 

  • Kosik, K. S., Orecchio, L. D., Binder, L., Trojanowski, J. Q., Lee, V. M.-Y. and Lee, G. (1988). Epitopes that span the tau molecule are shared with paired helical filaments. Neuron, 1, 817–825

    Article  PubMed  CAS  Google Scholar 

  • Kosik, K. S., Bakalis, S. L. and Scoble, H. (1989). Tau modification and Alz-50 reactivity. Soc. Neurosci. Abstr., 15, 330

    Google Scholar 

  • Kowall, N. W. and Kosik, K. S. (1987). Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease. Ann. Neurol., 22, 639–643

    Article  PubMed  CAS  Google Scholar 

  • Kudo, Y., Ito, K., Miyakawa, H., Izumi, Y., Ogura, A. and Kato, H. (1987). Cytoplasmic calcium elevation in hippocampal granule cell induced by perforant path stimulation and L-glutamate application. Brain Res., 407, 168–172

    Article  PubMed  CAS  Google Scholar 

  • Lackshmanan, J. (1978). Nerve growth factor induced turnover of phosphatidyl inositol in rat superior cervical ganglia. Biochem. Biophys. Res. Commun., 82, 767–775

    Article  Google Scholar 

  • Lankford, K. L., DeMello, F. G. and Klein, W. L. (1987). A transient embryonic dopamine receptor inhibits growth cone motility and neurite outgrowth in a subset of avian retina neurons. Neurosci. Lett., 75, 169–174

    Article  PubMed  CAS  Google Scholar 

  • Lankford, K. L. and Letourneau, P. C. (1989). Evidence that calcium may control neurite outgrowth by regulating the stability of actin filaments. J. Cell Biol., 109, 1229–1243

    Article  PubMed  CAS  Google Scholar 

  • Letourneau, P. C. and Ressler, A. H. (1984). Inhibition of neurite initiation and growth by taxol. J. Cell Biol., 98, 1355–1362

    Article  PubMed  CAS  Google Scholar 

  • Letourneau, P. C. (1985). Axonal growth and guidance. In Molecular Bases of Neuronal Development (ed G. M. Edelman, W. E. Gall and M. Cowan), John Wiley and Sons, New York, pp. 269–294

    Google Scholar 

  • Letourneau, P. C., Shattuck, T. A. and Ressler, A. H. (1987). ‘Pull’ and ‘push’ in neurite elongation: observations on the effects of different concentrations of cytochalasin B and taxol. Cell Motil. Cytoskel., 8, 193–209

    Article  CAS  Google Scholar 

  • Manetto, V., Perry, G., Tabaton, M., Mulvihill, P., Fried, V. A., Smith, H. T., Gambetti, P. and Autilio-Gambetti, L. (1988). Ubiquitin is associated with abnormal cytoplasmic filaments characteristic of neurodegenerative diseases. Proc. Natl Acad. Sci. USA, 85, 4501–4505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maragos, W. F., Greenamyre, J. T., Penney, J. B. and Young, A. B. (1987). Glutamate dysfunction in Alzheimer’s disease: an hypothesis. Trends Neurosci., 10, 1065–1068

    Google Scholar 

  • Marsh, L. and Letourneau, P. C. (1984). Growth of neuntes without filopodial or lamellipodial activity in the presence of cytochalasin B. J. Cell Biol., 99, 2041–2047

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (1988). Neurotransmitters in the regulation of neuronal cytoarchitecture. Brain Res. Rev., 13, 179–212

    Article  CAS  Google Scholar 

  • Mattson, M. P. (1989a). Cellular signaling mechanisms common to the development and degeneration of neuroarchitecture. Mech. Ageing Dev., 50, 103–157

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (1989b). Acetylcholine potentiates glutamate-induced neurodegeneration in cultured hippocampal neurons. Brain Res., 497, 402–406

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. and Kater, S. B. (1987). Calcium regulation of neunte elongation and growth cone motility. J. Neurosci., 7, 4034–4043

    PubMed  CAS  Google Scholar 

  • Mattson, M. P. and Kater, S. B. (1988). Isolated hippocampal neurons in cryopreserved long term culture: Development of neuroarchitecture and sensitivity to NMD A. Int. J. Develop. Neurosci., 6, 439–452

    Article  CAS  Google Scholar 

  • Mattson, M. P. and Kater, S. B. (1989a). Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroarchitecture. Brain Res., 478, 337–348

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. and Kater, S. B. (1989b). Development and selective neurodegeneration in cell cultures from different hippocampal regions. Brain Res., 490, 110–125

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Dou, P. and Kater, S. B. (1988a). Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci., 8, 2087–2100

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., Guthrie, P. B. and Kater, S. B. (1988b). Components of neurite outgrowth which determine neuroarchitecture: Influence of calcium and the growth substrate. J. Neurosci. Res., 20, 331–345

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Lee, R. E., Adams, M. E., Guthrie, P. B. and Kater, S. B. (1988c). Interactions between entorhinal axons and target hippocampal neurons: A role for glutamate in the development of hippocampal circuitry. Neuron, 1, 865–876

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Taylor-Hunter, A. and Kater, S. B. (1988d). Neurite outgrowth in individual neurons of a neuronal population is differentially regulated by calcium and cyclic AMP. J. Neurosci., 8, 1704–1711

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., Guthrie, P. B. and Kater, S. B. (1988e). Intracellular messengers in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci. Res., 20, 447–464

    Article  Google Scholar 

  • Mattson, M. P., Guthrie, P. B. and Kater, S. B. (1989a). Intrinsic factors in the selective vulnerability of hippocampal pyramidal neurons. In Alzheimer’s Disease and Related Disorders (eds K. Iqbal, H. M. Wisniewski and B. Winblad), Alan R. Liss, New York, pp. 333–351

    Google Scholar 

  • Mattson, M. P., Guthrie, P. B., Hayes, B. C. and Kater, S. B. (1989b). Roles for mitotic history in the generation and degeneration of neuroarchitecture. J. Neurosci., 9, 1223–1232

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., Murrain, M., Guthrie, P. B. and Kater, S. B. (1989c). Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci., 9, 3728–3740

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., Guthrie, P. B. and Kater, S. B. (1989d). A role for Na+-dependent calcium extrusion in protection against neuronal excitotoxicity. FASEB J., 3, 2519–2526

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., Guthrie, P. B. and Kater, S. B. (1990a). Compartmentalization of glutamate receptors linked to calcium influx in cultured hippocampal pyramidal neurons (in preparation)

    Google Scholar 

  • Mattson, M. P., Murrain, M. and Guthrie, P. B. (1990b). Localized calcium influx orients axon formation in embryonic hippocampal pyramidal neurons. Dev. Brain Res., in press

    Google Scholar 

  • Matus, A. (1988). Microtubule-associated proteins: their potential role in determining neuronal morphology. Ann. Rev. Neurosci., 11, 29–44

    Article  PubMed  CAS  Google Scholar 

  • McCobb, D. P. and Kater, S. B. (1986). Interactive effects of serotonin and acetylcholine on neurite elongation. Neuron, 1, 377–385

    Article  Google Scholar 

  • Miller, R. J. (1985). Second messengers, phosphorylation and neurotransmitter release. Trends Neurosci., 8, 463–465

    Article  CAS  Google Scholar 

  • Namuri, S. and Fujita, I. (1978). Stimulatory effects of substance P and nerve growth factor (NGF) on neurite outgrowth in embryonic chick dorsal root ganglia. Neuropharmacology, 17, 73–76

    Article  Google Scholar 

  • Nestler, E. J. and Greengard, P. (1983). Protein phosphorylation in the brain. Nature, 305, 583–588

    Article  PubMed  CAS  Google Scholar 

  • Nestler, E. J. and Greengard, P. (1986). Synapsin I: A review of its distribution and biological regulation. Prog. Brain Res., 69, 323–340

    Article  PubMed  CAS  Google Scholar 

  • Neve, R. L., Perrone-Bizzoze o, N. I., Finkelstein, S., Zwiers, H., Bird, E., Kurnit, D. M. and Benowitz, L. I. (1987). The neuronal growth-associated protein GAP43 (B-50, F1): Neuronal specificity, developmental regulation and regional distribution of the human and rat mRNAs. Molec. Brain Res., 2, 177–183

    Article  CAS  Google Scholar 

  • Nicoletti, F., Meek, J. L., Iadarola, M. J., Chuang, D. M., Roth, B. L. and Costa, E. (1986). Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem., 46, 40–46

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg, M., Wilson, S., Higashida, H., Rotter, A., Krueger, K., Busis, N., Ray, R., Kenimer, J. G. and Adler, M. (1983). Modulation of synapse formation by cyclic adenosine monophosphate. Science, 222, 794–799

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, R. A. D., Ostberg, A. J. C. and Vrbova, G. (1984). Protease inhibitors reduce the loss of nerve terminals induced by activity and calcium in developing rat soleus muscles in vitro. Neuroscience, 12, 646–673

    Google Scholar 

  • Olney, J. W. (1978). Neurotoxicity of excitatory amino acids. In Kainic Acid as a Tool in Neurobiology (eds E. G. McGeer, J. W. Olney and P. L. McGeer), Raven, New York, pp. 95–121

    Google Scholar 

  • Onodera, H. and Kogure, K. (1989). Mapping second messenger systems in the rat hippocampus after transient forebrain ischemia: in vitro [3H]forskolin and [3H]inositol 1,4,5-tiphosphate binding. Brain Res., 487, 343–349

    Article  PubMed  CAS  Google Scholar 

  • Patterson, P. H. (1978). Environmental determination of autonomic neurotransmitter functions. Ann. Rev. Neurosci., 1, 1–18

    Article  PubMed  CAS  Google Scholar 

  • Pearce, I. A., Cambray-Deakin, M. A. and Burgoyne, R. D. (1987). Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Lett., 223, 143–147

    Article  PubMed  CAS  Google Scholar 

  • Perry, G., Friedman, R., Shaw, G. and Chau, V. (1987). Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer’s Disease. Proc. Natl Acad. Sci. USA, 84, 3030–3036

    Google Scholar 

  • Piomelli, D., Volterra, A., Dale, N., Siegelbaum, S. A., Kandel., E. R., Schwartz, J. H. and Belardetti, F. (1987). Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory neurons. Nature, 328, 38–43

    PubMed  CAS  Google Scholar 

  • Poenie, M., Alderton, J., Steinhardt, R. and Tsien, R. (1986). Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science, 233, 886–889

    Article  PubMed  CAS  Google Scholar 

  • Price, D. L. (1986). New perspectives on Alzheimer’s disease. Ann. Rev. Neurosci., 9, 489–512

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, H. (1981). Calcium and Cyclic AMP as Synarchic Messengers. Wiley, New York

    Google Scholar 

  • Reboulleau, C. P. (1986). Extracellular calcium-induced neuroblastoma differentiation: Involvement of phosphatidylinositol turnover. J. Neurochem., 46, 920–930

    Article  PubMed  CAS  Google Scholar 

  • Recker, R. R., Saville, P. D. and Heaney, R. P. (1977). Effects of estrogen and calcium carbonate on bone loss in postmenopausal women. Ann. Int. Med., 87, 649–655

    Article  PubMed  CAS  Google Scholar 

  • Represa, A., Tremblay, E. and Ben-Ari, Y. (1989). Transient increase of NMDA-binding sites in human hippocampus during development. Neurosci. Lett., 99, 61–66

    Article  PubMed  CAS  Google Scholar 

  • Rothman, S. M. and Olney, J. W. (1986). Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol., 19, 105–111

    Article  PubMed  CAS  Google Scholar 

  • Routtenberg, A. (1986). Synaptic plasticity and protein kinase C. Prog. Brain Res., 69, 211–234

    Article  PubMed  CAS  Google Scholar 

  • Rydel, R. E. and Greene, L. A. (1988). cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor. Proc. Natl Acad. Sci. USA, 85, 1257–1261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saji, M. and Reis, D. J. (1987). Delayed transneuronal death of substantia nigra neurons prevented by GABA agonist. Science, 235, 66–69

    Article  PubMed  CAS  Google Scholar 

  • Sanes, J. R. (1989). Extracellular matrix molecules that influence neural development. Ann. Rev. Neurosci., 12,491–516

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M., Euteneuer, U., Bulinski, J. C. and Izant, J. C. (1981). Calcium lability of cytoplasmic microtubules and its modulation by microtubule-associated proteins. Proc. Natl Acad. Sci. USA, 78, 1037–1041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schubert, D., LaCorbiere, M., Whitlock, C. and Stallcup, W. (1978). Alterations in the surface properties of cells responsive to nerve growth factor. Nature, 273, 718–723

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Foster, A. C., French, E. D., Whetsell, W. O. and Kohler, C. (1984). Excitotoxic models for neuodegenerative disorders. Life Sci., 35, 19–32

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, D. L. (1973). Morphological and biochemical alterations in foetal rat brain cells cultured in the presence of monobutyl cyclic AMP. Nature, 241, 203–204

    Article  PubMed  CAS  Google Scholar 

  • Shea, T. B. and Sapirstein, B. S. (1988). Vesicle-mediated delivery of membrane to growth cones during neuritogenesis in embryonic rat primary neuronal cultures. Exp. Cell Biol., 56, 67–73

    PubMed  CAS  Google Scholar 

  • Siman, R. and Noszek, J. C. (1988). Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron, 1, 279–287

    Article  PubMed  CAS  Google Scholar 

  • Siman, R., Noszek, J. C. and Kegerise, C. (1989). Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J. Neurosci., 9, 1579–1590

    PubMed  CAS  Google Scholar 

  • Simon, R. P., Griffiths, T., Evans, M. C., Swan, J. H. and Meldrum, B. S. (1984a). Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J. Cereb. Blood Flow Metab., 4, 350–361

    Article  PubMed  CAS  Google Scholar 

  • Simon, R. P., Swan, J. H., Griffiths, T. and Meldrum, B. S. (1984b). Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science, 226, 850–852

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, G. I., Baas, P. W. and Heidemann, S. R. (1988). Role of microtubules in the cytoplasmic compartmentation of neurons. II. Endocytosis in the growth cone and neurite shaft. Brain Res., 450, 60–68

    Article  PubMed  CAS  Google Scholar 

  • Skene, J. H. P. (1989). Axonal growth-associated proteins. Ann. Rev. Neurosci., 12, 127–156

    Article  PubMed  CAS  Google Scholar 

  • Slater, T. F. (1972). Free Radical Mechanisms in Tissue Injury. Pion, London

    Google Scholar 

  • Spinelli, W. and Ishii, D. N. (1983). Tumor promoter receptor regulation of neurite formation in cultured human neuroblastoma cells. Cancer Res., 43, 4119–4125

    PubMed  CAS  Google Scholar 

  • Sternberger, N. H., Sternberger, L. A. and Ulrich, J. (1985). Aberrant neurofilament phosphorylation in Alzheimer’s disease. Proc. Natl Acad. Sci. USA, 82, 4274–4276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suarez-Isla, B. A., Pelto, D. J., Thompson, J. M. and Rapoport, S. I. (1984). Blockers of calcium permeability inhibit neurite extension and formation of neuromuscular synapses in cell culture. Dev. Brain Res., 14, 263–270

    Article  CAS  Google Scholar 

  • Sutherland, E. W. (1972). Studies on the mechanism of hormone action. Science, 177, 401–408

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Hunter, A., Mattson, M. P. and Kater, S. B. (1987). Regulation of neurite outgrowth by calcium, cyclic AMP, and protein kinase C second messenger systems in a diverse population of identified and unidentified Helisoma neurons. Soc. Neurosci. Abstr., 13, 1484

    Google Scholar 

  • Traynor, A. E. (1984). The relationship between neurite extension and phospholipid metabolism in PC12 cells. Dev. Brain Res., 14, 205–210

    CAS  Google Scholar 

  • VanHoesen, G. W., Hyman, B. T. and Damasio, A. R. (1986). Cell-specific pathology in neural systems of the temporal lobe in Alzheimer’s disease. Prog. Brain Res., 70, 321–335

    Article  CAS  Google Scholar 

  • Varon, S., Pettmann, B. and Manthorpe, M. (1988). Humoral and surface-anchored factors in development and repair of the nervous system. Prog. Brain Res., 73, 465–487

    Article  PubMed  CAS  Google Scholar 

  • Volonte, C., Parries, G. S. and Racker, E. (1988). Stimulation of inositol incorporation into lipids of PC12 cells by nerve growth factor and bradykinin. J. Neurochem., 51, 1156–1162

    Article  PubMed  CAS  Google Scholar 

  • Vrbova, G. and Lowrie, M. (1989). Role of activity in developing synapses: search for molecular mechanisms. News Physiol. Sci., 4, 75–78

    CAS  Google Scholar 

  • Walicke, P., Cowan, W. M., Ueno, N., Baird, A. and Guillemin, R. (1986). Fibroblast growth factor promotes survival of dissociated hippocampal neurons and promotes neurite extension. Proc. Natl Acad. Sci USA, 83, 3012–3016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walicke, P. A. (1988). Basic and acidic fibroblast growth factors have trophic effects on neurons from multiple CNS regions. J. Neurosci., 8, 2618–2627

    PubMed  CAS  Google Scholar 

  • Wallace; B. G. (1989). Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus. J. Neurosci., 9, 1294–1302

    PubMed  CAS  Google Scholar 

  • Weisenberg, R. C. (1972). Microtubule formation in vitro in solutions containing low calcium concentration. Science, 177, 1104–1105

    Article  PubMed  CAS  Google Scholar 

  • West, J. R., Hodges, C. A. and Black, A. C. (1981). Prenatal exposure to ethanol alters the organization of hippocampal mossy fibers in rats. Science, 211, 957–959

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, H. M., Sturman, J. A. and Shek, J. W. (1980). Aluminum chloride induced neurofibrillary changes in the developing rabbit: a chronic animal model. Ann. Neurol., 8, 479–490

    Article  PubMed  CAS  Google Scholar 

  • Wolozin, B. L., Pruchnicki, A., Dickson, D. W. and Davies, P. (1986). A neuronal antigen in the brains of Alzheimer’s patients. Science, 232, 648–650

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. G., Hadley, R. D., Kater, S. B. and Hauser, G. C. (1981). Neurite outgrowth in molluscan organ and cell cultures: The role of conditioning factor(s). J. Neurosci., 1, 1008–1021

    PubMed  CAS  Google Scholar 

  • Worley, P. F., Baraban, J. M. and Snyder, S. H. (1987). Beyond receptors: Multiple second-messenger systems in brain. Ann. Neurol., 21, 217–229

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 Macmillan Publishers Limited

About this chapter

Cite this chapter

Mattson, M.P. (1990). Second Messengers in Neuronal Growth and Degeneration. In: Osborne, N.N. (eds) Current Aspects of the Neurosciences. Palgrave, London. https://doi.org/10.1007/978-1-349-11922-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11922-6_1

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11924-0

  • Online ISBN: 978-1-349-11922-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics