Skip to main content

Peptides and Proteins

  • Chapter

Abstract

Peptides are short chains of amino acids containing, usually, less than 50–100 residues linked by peptide bonds. A number of peptides have been shown to exist in the cell bodies, as well as in the axons and nerve terminals, of the central nervous system and, by definition, these are called brain peptides or neuropeptides. Neuropeptides have been identified in different brain regions, and neuronal peptidergic pathways have been visualized and characterized in the central nervous system by means of different immunocytochemical, immunofluorescence and radioreceptor assay techniques. For most brain peptides, the localization of their neuronal pathways has been one of the most powerful tools in the understanding of their functions.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, J., Butt, A.M. and Zloković, B.V. (1988). Techniques for study of blood-brain barrier in non-mammalian species. In Rakić, Lj., Begley, D.J., Davson, H. and Zloković, B.V. (Eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 293–397

    Google Scholar 

  • Adam, G., Joó, F., Temesvari, P., Dux, E. and Szerdahelyi, P. (1988). Effects of acute hypoxia on the adenylate cyclase activity and albumin transport of brain microvessels. Neurochem. Int. (in press)

    Google Scholar 

  • Akmal, M.D., Goldstein, A., Multani, S. and Massry, S.G. (1984). Role of uremia, brain calcium and parathyroid hormone on changes in electroencephalogram in chronic renal failure. Am. J. Physiol., 246, F575–F579

    Google Scholar 

  • Aldred, A.R., Dickson, P.W., Marley, P.D. and Schreiber, G. (1987). Distribution of transferrin synthesis in brain and other tissues in the rat. J. Biol. Chem., 262, 5293–5297

    PubMed  CAS  Google Scholar 

  • Banks, W.A. and Kastin, A.J. (1983). CSF-plasma relationships for DSIP and some other neuropeptides. Pharmacol. Biochem. Behav., 19, 1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Banks, W.A. and Kastin, A.J. (1985). Aluminium alters blood-brain barrier permeability to non-peptides. Neuropharmacology, 24, 407–412

    Article  CAS  Google Scholar 

  • Banks, W.A. and Kastin, A.J. (1986a). Aging, peptides and the blood-brain barrier: implications and speculations. In Crook, T., Bartus, R., Ferris, S. and Gerhson, S.M. (Eds), Treatment Development Strategies for Alzheimers Disease. Powley Associates, Madison, Conn., pp. 245–265

    Google Scholar 

  • Banks, W.A. and Kastin, A.J. (1989b). Modulation of the carrier-mediated transport of Tyr-MIF-1 across the blood-brain barrier by essential amino acids. J. Pharmacol., 239, 668–672

    Google Scholar 

  • Banks, W.A. and Kastin, A.J. (1988a). Peptides and the blood-brain barrier. In Rakić, Lj., Begley, Dj., Davson, H. and Zloković, B.V. (Eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 21–32

    Chapter  Google Scholar 

  • Banks, W.A. and Kastin, A.J. (1988b). Twenty-one hormones fail to inhibit the brain to blood transport system for Tyr-MIF-1 and the enkephalins in mice. J. Pharm. Pharmacol., 40, 289–291

    Article  PubMed  CAS  Google Scholar 

  • Banks, W.A., Kastin, A.J. and Coy, D.H. (1983). Delta sleep-inducing peptide (DSIP)-like materials absorbed by the gastrointestinal tract of the neonatal rat. Life Sci., 33, 1587–1897

    Article  PubMed  CAS  Google Scholar 

  • Banks, W.A., Kastin, A.J., Fishman, A.J., Coy, D.H. and Strauss, S.L. (1986). Carrier mediated transport of enkephalins and N-Tyr-MIF-1 across the blood-brain barrier. Am. J. Physiol., 251 (Endocrinol. Metab., 14), E477—E482

    Google Scholar 

  • Banks, W.A., Kastin, A.J., Horvath, A. and Michals, E.A. (1987). Carrier-mediated transport of vasopressin across the blood-brain barrier of the mouse. J. Neurosci. Res., 18, 326–332

    Article  PubMed  CAS  Google Scholar 

  • Banks, W.A., Kastin, A.J. and Nager, B.J. (1988). Analgesia and the blood-brain barrier transport system for Tyr-MIF-1 enkephalin: evidence for dissociation. Neuropharmaco-logy, 27, 175–179

    Article  CAS  Google Scholar 

  • Banks, W.A., Kastin, A.J. and Siznick, J.K. (1985). Modulation of inununoactive levels of DSIP and blood-brain barrier permeability by lighting and diurnal rhythm. J. Neurosci. Res., 14, 347–355

    Article  PubMed  CAS  Google Scholar 

  • Bar, R.S., DeRose, A., Sandra, A., Peacock, M.L. and Owen, W.G. (1983). Insulin binding to microvascular endothelium of intact heart: a kinetic and morphometric analysis. Am. J. Physiol., 244, E447–E543

    Google Scholar 

  • Barrera, C.M., Kastin, A.J. and Banks, W.A. (1987). D-[Ala1]-Peptide T amide is transported from blood to brain by a saturable system. , 19, 629–633

    Google Scholar 

  • Barry, D.I., Paulson, O.B. and Hertz, M.M. (1980). The blood-brain barrier: an overview with special reference to insulin effect on glucose transport. Acta Neurol. Scand., 778, 147–156

    Google Scholar 

  • Baskin, D.G., Dorsa, D.M., Figlewicz, D.P., Corp, E.S., Wilcox, B.J., Wallum, B.J. and Woods, S.C. (1988). Insulin as a regulatory peptide in the CNS. In Rakić, Lj., Begley, D.J., Davson, H. and Zloković, B.V. (Eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 79–90

    Chapter  Google Scholar 

  • Baskin, D.G., Figlewicz, D.P., Woods, S.C., Porte, D. and Dorsa, D.M. (1987). Insulin in the brain. Ann. Rev. Physiol., 49, 335–347

    Article  CAS  Google Scholar 

  • Baskin, D.G., Woods, S.C., West, D.B., van Houten, M., Posner, B.I., Dorsa, D.M. and Porte, D. Jr. (1983). Immunocytochemical detection of insulin in rat hypothalamus and its possible uptake from cerebrospinal fluid. Endocrinology, 112, 1818–1825

    Article  Google Scholar 

  • Bayliss, W.M. and Starling, E.H. (1902). The mechanism of pancreatic secretion, J. Physiol, 28, 325–353

    Article  CAS  Google Scholar 

  • Beckwith, B.E., Couk, D.I. and Till, T.S. (1983). Vasopressin analog influences the performance of males on a reaction time task. Peptides, 4, 707–709

    Article  CAS  Google Scholar 

  • Begley, D.J. and Chain, D.G. (1982). Clearance of glutamic acid, glutamine and pyroglutamic acid from the cerebrospinal fluid of the rabbit: a comparison with thyrotropin releasing hormone. J. Physiol., 326, 22–23

    Google Scholar 

  • Begley, D.J. and Chain, D.G. (1988). Transport of encephalin from cerebrospinal fluid of the rabbit. In Rakić, Lj., Begley, D.G., Davson, H. and Zloković, B.V. (Eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 55–64

    Chapter  Google Scholar 

  • Begley, D.J., Michaelson, I.A. and Davson, H. (1980). Clearance of the dipeptide glycyl-L-leucine from rabbit cerebrospinal fluid. J. Physiol., 307, 83P

    Google Scholar 

  • Begley, D.J., Squires, L.K., Zloković, B.V. and Mitrović, D.M. (1990). Permeability of blood-brain barrier to the immuno-suppressive cyclic peptide cyclosporin A. J. Neurochem., 55, 1222–1230

    Article  PubMed  CAS  Google Scholar 

  • Begley, J.D. and Zloković, B.V. (1986). Neuropeptides and the blood-brain barrier. In Suckling, A.J., Rumsby, M.G. and Bradbury, M.W. (Eds), Blood-Brain Barrier in Health and Disease. Verlagsgesellschaft, Weinheim, 98–108

    Google Scholar 

  • Ben-Jonathan, N., Mical, R.S. and Porter, J.C. (1974). Transport of LRF from CSF to hypophysial portal systemic blood and the release of LH. Endocrinology, 95, 18–25

    Article  CAS  Google Scholar 

  • Bloom, F.E. (1987). Molecular diversity and cellular functions of neuropeptides. In de Kloet, E.R., Wiegant, A.M. and de Wied, D. (Eds), Neuropeptides and Brain Function. Progress in Brain Research, Vol. 72, pp. 213–223

    Chapter  Google Scholar 

  • Boyles, J.K., Pitas, R.E., Wilson, E., Mahley, R.W. and Taylor, J.M. (1985). Apolipopro-tein, E: associated with astrocytic glia of the central nervous system and with non-myelinating glia of the peripheral nervous system. J. Clin. Invest., 76, 1501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bradbury, W.B. (1989). Transport across the blood-brain barrier. In Neuwelt, E.A. (Ed.), Implications of the Blood-Brain Barrier and Its Manipulation. Plenum Medical Book Company. New York. pp. 119–137

    Chapter  Google Scholar 

  • Brightman, M.W. and Reese, T.S. (1969). Junctions between intimately opposed cell membranes in the vertebrate brain. J. Cell Biol., 40, 648–677

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Broadwell, R.D., Balin, B.J. and Salcman, M. (1988). Transcytotic pathway for blood-borne protein through the blood-brain barrier. Proc. Natl Acad. Sci. USA. 85. 632–636

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Broadwell, R.D., Balin, B.J., Salcman, M. and Kaplan, R.S. (1983). Brain-blood barrier? Yes and no. Proc. Natl. Acad Sci. USA, 80 7352–7356

    Article  CAS  Google Scholar 

  • Buijs, R.M. and Van Heerikhuize, J.J. (1982). Vasopressin and oxytocin release in the brain-a synaptic event. Brain Res., 252, 71–76

    Article  PubMed  CAS  Google Scholar 

  • Burbach, J.P., Kovacs, G.L., De Wied, D., van Nispen, J.W. and Greven, H.M. (1983). A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science, 221, 1310–1312

    Article  CAS  Google Scholar 

  • Cefalu, W.T. and Pardridge, W.M. (1985). Restrictive transport of a lipid-soluble peptide (cyclosporin) through the blood–brain barrier. J. Neurochem., 45, 1954–1956

    Article  PubMed  CAS  Google Scholar 

  • Coghlan, J.P., Congiu, M., Denton, D.A., Fei, D.T. and Park, R.G. (1986). Augmented plasma renin levels in dehydrated sheep with periventricular lesions. Brain Res., 376, 416–419

    Article  PubMed  Google Scholar 

  • Cohen, S.L., Knight, M., Tamminga, C.A. and Chase, T.N. (1983). Tolerance to the antiavoidance properties of cholecystokinin-octapeptide. Peptides, 4, 67–70

    Article  CAS  Google Scholar 

  • Congiu, M., Denton, D.A., Park, R.G., Penschow, J., Simpson, J.B., Tarjan, E., Weisinger, R.S. and Wright, R.D. (1984). The anterior wall of the third cerebral ventricle and homeostatic responses to dehydration. J. Physiol. (Paris), 79, 421–427

    Google Scholar 

  • Connelly, J.C., Skidgel, R.A., Schulz, W.W., Johnson, A.R. and Erdos E.G. (1985). Neutral endopeptidase 24.11 in human neutrophils: cleavage of chemotactic peptide. Proc. Natl Acad. Sci. USA, 82, 8737–8741

    Article  CAS  Google Scholar 

  • Cornford, E.M., Braun, L.D., Crane, P.D. and Oldendorf, W.H. (1978). Blood-brain barrier restrictions of peptides and the low uptake of enkephalins. Endocrinology, 103, 1297–1303

    Article  CAS  Google Scholar 

  • Corp, E.S., Woods, S.C., Porte, D., Jr., Dorsa, D.M., Figlewicz, D.P. and Baskin, D.G. (1986). Localization of I-insulin binding sites in the rat hypothalamus by quantitative autoradiography. Neurosci. Lett., 70, 17–22

    Article  PubMed  CAS  Google Scholar 

  • Davis, J.L. and Pico, R.M. (1984). Arginine vasotocin delays extinction of a conditioned avoidance behavior in neonatal chicks. Peptides, 5, 1221–1223

    Article  CAS  Google Scholar 

  • Davson, H. (1955). A comparative study of the aqueous humor and cerebrospinal fluid in the rabbit. J. Physiol., 129, 11–133

    Article  Google Scholar 

  • Davson, H. and Oldendorf, W.H. (1967). Transport in the central nervous system. Proc. Roy. Soc. Med., 60, 326–328

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H. and Segal, M.B. (1970). The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid. J. Physiol., 209, 131–153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davson, H., Welch, K. and Segal, M.B. (1987). Physiology and Pathophysiology of the Cerebrospinal Fluid. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Denbow, D.M. and Myers, R.D. (1982). Eating, drinking and temperature responses to intracerebroventricular cholecystokinin in the chick. Peptides, 3, 739–743

    Article  CAS  Google Scholar 

  • Derian, C.K. and Moskowitz, M.A. (1986). Polyphosphoinoside hydrolysis in endothelial cells and carotid artery segments. Bradykinin-2 receptor stimulation is calcium-dependent. J. Biol. Chem., 261, 3831–3837

    PubMed  CAS  Google Scholar 

  • de Sousa, E.B. and Kuhar, H.J. (1986). Corticotrophin-releasing factor receptors: autoradiographic identification. In Martin, J.B. and Barchas, J.D. (Eds), Neuropeptides in Neurologic and Psychiatric Disease. Raven Press, New York, pp. 179–198

    Google Scholar 

  • de Wied, D. (1987). The neuropeptide concept. In de Kloet, E.R., Wiegant, N.M. and de Wied, D. (Eds), Neuropeptides and Brain Function. Progress in Brain Research, Vol. 72, Elsevier, Amsterdam, pp. 93–108

    Chapter  Google Scholar 

  • de Wied, D., Gaffori, O., van Ree, J.M. and de Jong, W. (1984). Central target for the behavioral effects of vasopressin peptides. Nature, 308, 276–278

    Article  Google Scholar 

  • Dickson, P.W., Aldred, A.P., Marley, P.D., Guo-Fen, T., Howlett, G J. and Schreiber, G. (1985). High prealbumin and transferrin mRNA levels in the choroid plexus of rat brain. Biochem. Biophys. Res. Commun., 127, 890–895

    Article  PubMed  CAS  Google Scholar 

  • Doczi, T., Joó, F., Szerdahelyi, P. and Bodosi, M. (1988). Regulation of brain water and electrolyte contents: the opposite actions of central vasopressin and atrial natriuretic factor (ANF). Acta Neurochir., 43, (Suppl.), 186–188

    CAS  Google Scholar 

  • Dodd, J. and Kelly, J.S. (1981). The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus. Brain Res., 205, 337–356

    Article  PubMed  CAS  Google Scholar 

  • Du Vigneaud, V. (1954). Hormones of the posterior pituitary gland: oxytocin and vasopressin. Harvey Lectures, 50, 1–26

    Google Scholar 

  • Dux, E. and Joó, F. (1982). Effects of histamine on brain capillaries: fine structural and immunohistochemical studies after intracarotid infusion. Exp. Brain Res., 47, 252–258

    Article  PubMed  CAS  Google Scholar 

  • Dziegielewska, K.M. and Saunders, N.R. (1988a). The development of the blood-brain barrier: proteins in fetal and neonatal CSF, their nature and origins. In Meisami, E. and Timiras, P.J. (Eds), Handbook of Human Growth and Biological Development. CRC Press, Boca Raton, Florida, pp. 103–118

    Google Scholar 

  • Dziegielewska, K.M. and Saunders, N.R. (1988b). The origins and functions of proteins in CSF in the developing brain. In Rakić, L., Begley, D.J., Davson, H. and Zloković, B.V. (Eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 105–121

    Google Scholar 

  • Edvinsson, L., Fahrenburg, J., Hanko, J., McCulloch, J., Owman, C. and Uddman, R. (1981). Vasoactive intestinal polypeptide and effects on cerebral blood flow and metabolism. In Cervos-Navarro, J. and Fritschka, E. (Eds),Cerebral Blood Flow and Metabolism. Raven Press, New York, pp. 147–155

    Google Scholar 

  • Ermisch, A. (1987). Blood-brain barrier and peptides. Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturmiss. R., 36, 72–77

    CAS  Google Scholar 

  • Ermisch, A., Landgraf, R., Brust, P., Kretzschmar, R. and Hess, J. (1988). Peptide receptors of the cerebral capillary endothelium and the transport of amino acids across the blood–brain barrier. In Rakić, Lj., Begley, D.J., Davson, H. and Zloković, B.V. (Eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 43–55

    Google Scholar 

  • Ermisch, A., Landgraf, R. and Mobius, P. (1986). Vasopressin and oxytocin in brain areas of rats with high or low behavioral performance. Brain Res., 379, 21–29

    Article  Google Scholar 

  • Fahzenkrug, J. (1979). Vasoactive intestinal polypeptide: measurement distribution and putative neurotransmitter function. Digestion, 19, 149–169

    Article  Google Scholar 

  • Feldman, S.C. and Kastin, A.J. (1984). Localization of neurones containing immunoreac-tive delta sleep-inducing peptide in the rat brain: an immunocytochemical study. Neuroscience, 11, 303–317

    Article  CAS  Google Scholar 

  • Figlewicz, D.P., Lacour, F., Sipols, A., Porte, Jr., D. and Woods, S.C. (1987). Gastroenter-opancreatic (GEP) peptides in the central nervous system. Ann. Rev. Physiol., 49, 383–395

    Article  CAS  Google Scholar 

  • Frank, H.J.L., Jankovic-Vokis, T., Pardridge, W.M. and Morris, W.L. (1985). Enhanced insulin binding to blood-brain barrier in vivo and to brain microvessels in vitro in newborn rabbits. Diabetes, 34, 728–733

    Article  CAS  Google Scholar 

  • Frank, H.J.L., Pardridge, W.M., Morris, W.L., Rosenfeld, R.G. and Choi, T.B. (1986). Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels. Diabetes, 35, 654

    Article  CAS  Google Scholar 

  • Freedman, F. and Johnson, J. (1969). Equilibrium and kinetic properties of the Evans blue-albumin system. Am. J. Physiol., 216, 675–681

    PubMed  CAS  Google Scholar 

  • Gafford, J.T., Skidgel, R.A., Erdos, E.G. and Hersh, L.B. (1983). Human kidney ‘enkephalinase’, a neutral metalloendopeptidase that cleaves active peptides. Biochemistry, 22, 3265–3271

    Article  CAS  Google Scholar 

  • Gaudreau, P., Quirion, R., St. Pierre, S. and Pert, C.B.(1983). Characterization and visualization of cholecystokinin receptors in rat brain using 3H-pentagastrin. Peptides, 4, 755–762

    Article  CAS  Google Scholar 

  • Giles, T.D. and Sander, G.E. (1983). Mechanism of the cardiovascular response to systemic intravenous administration of leucine-enkephalin in the conscious dog. Peptides, 4, 171–175

    Article  CAS  Google Scholar 

  • Gjedde, A. (1988). Exchange diffusion of large neutral amino acids between blood and brain. In Rakić, Lj., Begley, D.J., Davson, H. and Zloković, B.V.(Eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 213–223

    Google Scholar 

  • Gjedde, A. and Bodsch, W. (1987). Facilitated diffusion across the blood-brain barriers interactions between receptors and transporters. Wiss. Z. Karl-Marx Univ. Leipzig, Math.-Naturmiss. R., 36 (1), 67–71

    Google Scholar 

  • Gold, P.W. and Chrousos, G.P. (1985). Clinical studies with corticotropin releasing factor: implications for diagnosis and pathophysiology of depression, Cushing’s disease, and adrenal insufficiency. Psychoneuroendocrinology, 10, 401–419

    Article  CAS  Google Scholar 

  • Gold, P.W., Chrousos, G., Kellner, C., Post, R., Roy, A., Augerinos, P., Schulte, H., Oldfield, E. and Loriaux, D.L. (1984). Psychiatric implications of basic and clinical studies with corticotropin-releasing factor. Am. J. Psychiat., J41, 619–623

    Google Scholar 

  • Goldman, H. and Murphy, S. (1981). An analog of ACTH/MSH ORG-2766, reduces permeability of the blood-brain barrier. Pharmacol. Biochem. Behav., 14, 845–848

    Article  PubMed  CAS  Google Scholar 

  • Goldmann, E.E. (1909). Die äussere und innere secretetion des gesunden und kranken organismus im lichte der ‘vitalon tarbung’. Beitz. Klin. Chiurg., 64, 192–265

    Google Scholar 

  • Goldmann, E.E. (1913). Vitalfarbung am Zentral Nervensystem (Abh. Preuss. Akad. Wiss.). Phys Math. Kl., 1, 1–60

    Google Scholar 

  • Goodman, R.F., Fricker, L.D. and Snyder, S.H. (1983). Enkephalins. In Kreiger, D.T., Browstein, J. and Martin, J.B. (Eds), Brain Peptides. Wiley, New York, pp. 828–849

    Google Scholar 

  • Greig, N.H. (1989). Drug delivery to the brain by blood-brain barrier circumvention and drug modification. In Neuwelt, E.A. (Ed.), Implications of the Blood-Brain Barrier and Its Manipulation. Plenum Medical Book Company, New York, pp. 311–312

    Chapter  Google Scholar 

  • Griffin, D.E. and Giffels, J. (1982). Study of protein characteristics that influence entry into the cerebrospinal fluid of normal mice and mice with encephalitis. J. Clin. Invest., 70, 289–293

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gros, C., Giros, B. and Schwartz, J.C. (1985). Identification of aminopeptidase M as an enkephalin-inactivating enzyme in rat cerebral membranes. Biochemistry, 24, 2179–2185

    Article  CAS  Google Scholar 

  • Gross, P.M., Kadekaro, M., Andrews, D.W., Sokoloff, L. and Saavedra, J.M. (1985). Selective metabolic stimulation of the subfornical organ and pituitary neural lobe by peripheral angiotensin II. Peptides, 6 (Suppl. 1), 145–152

    Article  CAS  Google Scholar 

  • Guglietta, A., Strunk, C.L., Irons, B.J. and Lazarus, L.H. (1985). Central neuromodulation of gastric acid secretion by bombesin-like peptides. Peptides, 6 (Suppl. 3), 75–81

    Article  CAS  Google Scholar 

  • Hanko, J., Hardebo, J.E. and Owman, C. (1981). In Cervos-Navarro, J. and Fritschka, E. (Eds), Cerebral Microcirculation and Metabolism. Raven Press, New York, pp. 157–161

    Google Scholar 

  • Harbaugh, R.E., Roberts, D.W., Coombs, D.W., Saunders, R.L. and Reeder, T.M. (1984). Preliminary report: intracranial cholinergic drug infusion in patients with Alzheimer’s disease. Neurosurgery, 15, 514–517

    Article  CAS  Google Scholar 

  • Hassen, A.H., Feuerstein, G. and Faden, A.I. (1983). Differential cardiovascular effects mediated by mu and kappa opiate receptors in hindbrain nuclei. Peptides, 4, 621–625

    Article  CAS  Google Scholar 

  • Heidenreich, K.A., Zahniser, N.R., Berhanu, P., Brandenburg, D. and Olefsky, J.M. (1983). Structural differences between insulin receptors in the brain and peripheral target tissues. J. Biol. Chem., 258, 8527–8530

    PubMed  CAS  Google Scholar 

  • Hersch, L.B. (1982). Degradation of enkephalins: the search for an enkephalinase. Mol. Cell Biochem., 47, 35–43

    Google Scholar 

  • Hersch, L.B., Aboukhair, N. and Watson, S. (1987). Immunohistochemical localization of aminopeptidase M in rat brain and periphery: relationship of enzyme localization and enkephalin metabolism. Peptides, 8, 523–532

    Article  Google Scholar 

  • Hess, J., Gjedde, A. and Jessen, H. (1987). Vasopressin receptors at the blood-brain barrier in rats. Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturmiss. R., 36, 81–83

    CAS  Google Scholar 

  • Hoehler, F.K. and Sandman, C.A.(1981). Effects of alpha-MSH and beta-endorphin on startle reflex in rat. Peptides, 2, Suppl. 1, 137–141

    Article  CAS  Google Scholar 

  • Hoffman, P.L., Szabo, G. and Tabakoff, B. (1988). The effects of vasopressin and related peptides on tolerance to ethanol. In Rakić, Lj., Begley, D.J., Davson, H. and Zloković, B.V. (Eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 147–156

    Chapter  Google Scholar 

  • Hoffman, P.L., Walter, R. and Bulat, M. (1977). An enzymatically stable peptide with activity in the central nervous system: its penetration through the blood-CSF barrier. Brain Res., 122, 87

    Article  PubMed  CAS  Google Scholar 

  • Holtman, J.R., Buller, A.L., Hamosh, P. and Gillis, R. (1986). Central respiratory stimulation produced by thyrotropin-releasing hormone in the cat. Peptides, 7, 207–212

    Article  CAS  Google Scholar 

  • Hoosein, N.M. and Gurd, R.S. (1984). Identification of glucagon receptors in rat brain. Proc. Natl Acad. Sci. USA, 84, 4368–4372

    Article  Google Scholar 

  • Huang, J.T. (1982). Accumulation of peptides by choroid plexus in vitro: Tyr-D-Ala-Gly as a model. Neurochem. Res., 7, 1541–1548

    Article  CAS  Google Scholar 

  • Huang, J.T. and Lajtha, A. (1978). The accumulations of 3H-enkephalinamide (2-D-alanine-5-methioninamide) in rat brain tissues. Neuropharmacology, 17, 1075–1079

    Article  CAS  Google Scholar 

  • Huang, M., Hanley, D.A. and Rorstad, O.P. (1983). Parathyroid hormone stimulates adenylate cyclase in rat cerebral microvessels. Life Sci., 32, 1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Huang, M. and Rorstad, O.P. (1983). Effects of vasoactive intestinal polypeptide, monoamines, prostaglandins and 2-choloroadenosine on adenylate cyclase in rat cerebral microvessels. J. Neurochem., 40, 719–726

    Article  PubMed  CAS  Google Scholar 

  • Huffman, L.J., Campbell, G.T. and Gilmore, J.P. (1983). Renal function and pituitary hormone release during cerebral osmostimulation and TRH in dogs. Peptides, 4, 843–847

    Article  CAS  Google Scholar 

  • Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Morgan, B.A. and Morris, H.R. (1975). Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, 258, 577–579

    Article  CAS  Google Scholar 

  • Hurley, J.V., Anderson, R.McD. and Sexton P.T. (1981). The fate of plasma protein which escapes from blood vessels of the choroid plexus of the rat-An electron microscopic study. J. Pathol., 134, 57–70

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L., Lee, C.M., Gilbert, R.F., Hunt, S. and Emson, P.C. (1980). Regulation of neuropeptide release. Proc. R. Soc., 210, 91–111

    Article  CAS  Google Scholar 

  • Jackson, I.M. and Lechan, R.M. (1983). Thyrotropin releasing hormone. In Kreiger, D.T., Browstein, J. and Martin, J.B. (Eds), Brain Peptides. Wiley, New York

    Google Scholar 

  • Jeffries, W.A., Brandon, M.R., Hunt, S.V., Williams, A.F., Gatter, K.C. and Mason, D.Y. (1984). Transferrin receptor on endothelium of brain capillaries. Nature, 312, 162

    Article  Google Scholar 

  • Johanson, C.E. (1989). Potential for pharmacological manipulation of the blood-cerebrospinal fluid barrier. In Neuwelt, E.A. (Ed.), Implications of the Blood-Brain Barrier and Its Manipulation. Plenum Medical Book Company, New York, pp. 223–261

    Chapter  Google Scholar 

  • Jones, P.M. and Robinson, I.C.A.F. (1982). Clearance of neurohypophysial peptides from cerebrospinal fluid. J. Physiol., 326, 23P

    Google Scholar 

  • Joó, F. (1972). Effect of N6, O6-dibutyryl cyclic 3’,5’-adenosine monophosphate on the pinocytosis of brain capillaries in mice. Experientia, 28, 1470–1471

    Article  Google Scholar 

  • Joó, F. (1986). New aspects to the function of the cerebral endothelium. Nature, 321, 197–198

    Article  Google Scholar 

  • Joó, F. (1988). Cyclic nucleotide-mediated regulation of albumin transport in brain microvessels. In Rakić, Lj., Begley, DJ., Davson, H. and Zloković, B.V. (Eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 119–128

    Chapter  Google Scholar 

  • Joó, F., Temesvari, P. and Dux, E. (1983). Regulation of the macromolecular transport in the brain microvessels: the role of cyclic GMP. Brain Res., 278, 165–174

    Article  PubMed  Google Scholar 

  • Kabat, E.A., Moore, D.H. and Landow, H. (1942). An electrophoretic study of the protein components in the cerebrospinal fluid and their relationship to serum protein. J. Clin. Invest., 21, 571–577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kalin, N.H., Shelton, S.E., Kraemer, G.W. and McKinney, W.T. (1983). Associated endocrine, physiological and behavioral changes in Rhesus monkeys after intravenous corticotropin-releasing factor administration. Peptides, 4, 211–215

    Article  CAS  Google Scholar 

  • Kapadia, S.E. and DeLanerolle, N.C. (1984). Immunohistochemical and electron micro-scopic demonstration of vascular innervation in the mammalian brainstem. Brain Res., 292, 33–39

    Article  PubMed  CAS  Google Scholar 

  • Karnushina, I., Palacios, J.M., Barbin, G., Dux, E., Joó, F. and Schwartz, J.C. (1980). Studies on a capillary-rich fraction isolated from brain: histaminic components and characterization of the histamine receptors linked to adenylate cyclase. J. Neurochem., 34, 1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A.J. and Dickson, J.C. (1987). Hypophysectomy increases Tyr-MIF-1 like immunoreactivity in rat plasma. Neuroendocrinology, 45, 177–181

    Article  CAS  Google Scholar 

  • Kastin, A.J., Nissan, C. and Coy, D.H. (1981). Permeability of blood-brain barrier to DSIP peptides. Pharmacol. Biochem. Behav., 15, 955–959

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A.J., Nissan, C., Schally, A.V. and Coy, D.H. (1976). Blood-brain barrier, half time disappearance, and brain distribution for labeled enkephalin and a potent analog. Brain Res. Bull., 1, 583–589

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A.J., Olson, R.D., Schally, A.V. and Coy, D.H. (1979). CNS effects of peripherally administered peptides. Life Sci., 25, 401–414

    Article  PubMed  CAS  Google Scholar 

  • Katusic, Z.S., Shepherd, J.T. and Vanhoutte, P.M. (1984). Vasopressin causes endothe-lium-dependent relaxations of the canine basilar artery. Circ. Res., 55 (5), 575–579

    Article  PubMed  CAS  Google Scholar 

  • Katusic, Z.S., Shepherd, J.T. and Vanhoutte, P.M. (1986). Oxytocin causes endothelium-dependent relaxations of canine basilar arteries by activating Vl-vasopressinergic recep-tors. J. Pharmacol. Exp. Ther., 236, 166–170

    PubMed  CAS  Google Scholar 

  • Kordon, C., Blauet-Pajot, M.T., Clausen, H., Drouva, S., Enjabert, A. and Epelbaum, Y. (1987). New designs in neuroendocrine systems. In de Kloet, E.R., Wiegant, N.M. and de Wied, D.C. (Eds), Neuropeptides and Brain Function. Progress in Brain Research, Vol. 72, Elsevier, Amsterdam, pp. 27–34

    Chapter  Google Scholar 

  • Koslo, R.J., Gmerek, D.E. and Porreca, F. (1986). Intrathecal bombesin-induced inhibition of gastrointestinal transit: requirement for an intact pituitary-adrenal axis. Reg. Peptides, 14, 237–242

    Article  CAS  Google Scholar 

  • Kowarski, D., Shuman, H., Somlyo, A.P. and Somlyo, A.V. (1985). Calcium release by noradrenaline from central sarcoplasmic reticulum in rabbit main pulmonary artery smooth muscle. J. Physiol., 366, 153–175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kragh-Hansen, U. (1981). Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev., 33, 17–53

    PubMed  CAS  Google Scholar 

  • Kretzschmar, R., Landgraf, R., Gjedde, A. and Ermisch, A. (1986). Vasopressin binds to microvessels from rat hippocampus. Brain Res., 380, 325–330

    Article  PubMed  CAS  Google Scholar 

  • Kreiger, D.T. (1986). An overview of neuropeptides. In Martin, J.B. and Barchas, J.D. (Eds), Neuropeptides in Neurologic and Psychiatric Diseases. Raven Press, New York, pp. 1–32

    Google Scholar 

  • Kumagai, A.K., Eisenberg, J. and Pardridge, W.M. (1986). Rapid binding and internaliza-tion of cationized albumin by isolated brain capillaries. Clin. Res., 34, 69A

    Google Scholar 

  • Kumagai, A.K., Eisenberg, J. and Pardridge, W.M. (1987). Absorption-mediated endocy-tosis and cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J. Biol. Chem.,262,15214–15219

    PubMed  CAS  Google Scholar 

  • Lackoff, A. and Jackson, I.M.D. (1981). Calcium dependency of potassium-stimulated thyrotropin-releasing hormone secretion from rat neurohypophysis in vitro. Neurosci. Lett., 27, 17

    Google Scholar 

  • Landgraf, R., Hess, J. and Ermisch, A. (1978). The influence of vasopressin on the regional uptake of [3H]orotic acid by rat brain. Acta Biol. Med. Ger., 37, 655–658

    PubMed  CAS  Google Scholar 

  • Landgraf, R., Hess, J. and Hartmann, E. (1977). Der Einfluss von Ocytocin auf die regionale 3H Orotsaure-Aufnahme durch das Rattengehirn. Endokrinologie, 70, 45–52

    CAS  Google Scholar 

  • Lee, R.J. and Lomax, P. (1983). Thermoregulatory, behavioral and seizure modulatory effects of AVP in the gerbil. Peptides, 4, 801–805

    Article  CAS  Google Scholar 

  • Lenhard, L. and Deftos, L.J. (1982). Adenohypophysial hormones in the CSF. Neuro-endocrinology, 34, 303–308

    Article  CAS  Google Scholar 

  • Levin, MJ., Tuil, D., Uzan, G., Dreyfus, J.C. and Kahn, A. (1984). Expression of the transferrin gene during development of nonhepatic tissues: high levels of transferrin mRNA in fetal muscle and adult brain. Biochem. Biophys. Res. Commun., 122, 212

    Article  PubMed  CAS  Google Scholar 

  • Levine, R., Frederics, W. and Rapoport, S. (1982). Entry of bilirubin into the brain due to opening of the blood-brain barrier. Pediatrics, 69, 255–259

    CAS  Google Scholar 

  • Levitan, H., Ziylan, Z., Smith, Q. et al. (1984). Brain uptake of food dye, erythrosin B, prevented by plasma protein binding. Brain Res., 322, 131–134

    Article  PubMed  CAS  Google Scholar 

  • Lipton, J.M. and Glyn, J.R. (1980). Central administration of peptides alters thermoregula-tion in the rabbit. Peptides, 1, 15–18

    Article  CAS  Google Scholar 

  • McComb, J.G. (1983). Recent research into the nature of cerebrospinal fluid formation and absorption. J. Neurosurg, 59, 369–383

    Article  CAS  Google Scholar 

  • McKinley, M.J., Allen, A., Clevers, T., Dentin, D.A., Mendlesohn, F.A.O., Oldfield, B.J., Tarjan, E. and Weisirger, R.S. (1987). Angiotensin II receptors in the brain of the sheep. Wiss. Z. Karl-Marx-Univ. LeipzigMath.-Naturwiss. R., 36, 189–192

    Google Scholar 

  • Makara, G.B. (1985). Mechanism by which stressful stimuli activate the pituitary-adrenal system. Fed. Proc., 45, 149–153

    Google Scholar 

  • Matsas, R., Stephenson, S.L., Hryszko, J., Kenny, A.J., and Turner, A.J. (1985). The metabolism of neuropeptides: phase separation of synaptic membrane preparations with triton X-114 reveals the presence of aminopeptidase N. Biochem. J., 231, 445–449

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, T., Kanaide, H., Nishimura, J., Shogakiuchi, Kobayshi, S. and Nakamura, M. (1986). Histamine activates H1-receptors to induce cytosolic free calcium transients in cultured vascular smooth muscle cells from rat aorta. Biochem. Biophys. Res. Commun., 135, 172–177

    Article  PubMed  CAS  Google Scholar 

  • Meisenberg, G. and Simmons, W.H. (1983). Peptides and the blood-brain barrier. Life Sci., 32, 2611–2633

    Article  PubMed  CAS  Google Scholar 

  • Mess, B. and Trentini, G.P. (1974). 3H-melatonin level in cerebrospinal fluid and choroid plexus following intravenous administration of the labeled compound. Acta Physiol. Acad. Sci. Hung., 45, 225–231

    PubMed  CAS  Google Scholar 

  • Milhorat, T.H., Davis, D.A. and Lloyd, B.J. (1973). Two morphologically distinct blood-brain barriers preventing entry of cytochrome c into cerebrospinal fluid. Science, 180, 76–78

    Article  CAS  Google Scholar 

  • Møllgard, K., Balslev, Y. and Saunders, N. (1988). Structural aspects of the blood-brain and blood-CSF barriers with respect to endogenous proteins. In Rakić, Lj., Begley, D.J., Davson, H. and Zloković, B.V. (Eds). Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 93–101

    Chapter  Google Scholar 

  • Møllgard, K. and Saunders, N.R. (1977). A possible transepithelial pathway via endoplas-mic reticulum in foetal sheep choroid plexus. Proc. Roy. Soc. B, 199, 321–326

    Article  Google Scholar 

  • Møllgard, K. and Saunders, N.R. (1986). The development of the human blood-brain and blood-CSF barriers. Neuropath. Appl. Neurobiol., 12, 337–358

    Article  Google Scholar 

  • Moody, T.W., O’Donohue, T.L. and Jacobowitz, D.M. (1981). Biochemical localization and characterization of bombesin-like peptides in discrete regions of rat brain. Peptides, 2, 75–79

    Article  CAS  Google Scholar 

  • Morimoto, S., Nishimura, J., Miyauchi, A., Takai, S.I., Okada, Y., Onishi, T., Fukuo, K., Lee, S. and Kumahara, Y. (1982). Calcitonin in plasma and cerebrospinal fluid from normal subjects and patients with medullary thyroid carinoma: possible restriction of calcitonin by blood-brain barrier. J. Clin. Endocrinol. Metab., 55, 597–596

    Article  Google Scholar 

  • Morley, J.E., Levine, A., Oken, M.M., Grace, M. and Kneip, J. (1982). Neuropeptides and thermoregulation: the interactions of bombesin, neurotensin, TRH, somatostatin, nalox-one and prostaglandins. Peptides, 3, 1–6

    Article  CAS  Google Scholar 

  • Neuwelt, E.A. and Rapoport, S.I. (1984). Modification of the blood-brain barrier in the chemotherapy of malignant brain tumors. Fed. Proc., 43, 214–221

    PubMed  CAS  Google Scholar 

  • Niewoehner, D.E., Levine, A.S. and Morley, J.E. (1983). Central effects of neuropeptides on ventilation in the rat. Peptides, 4, 277–281

    Article  CAS  Google Scholar 

  • North, A.R. (1986). Electrophysiological effects of neuropeptides. In Martin, J.B. and Broebes, J.D. (Eds), Neuropeptides in Neurologic and Psychiatric Disease. Raven Press, New York, pp. 71–77

    Google Scholar 

  • Ohno, K., Pettigrew, K.D. and Rapoport, S.I. (1978). Lower limits of cerebrovascular permeability to non-electrolytes in conscious rat. Am. J. Physiol., 235, H299–H307

    Google Scholar 

  • Oldendorf, W.M. (1981). Blood-brain barrier permeability to peptides, pitfalls in measure-ment. Peptides, 2 (Suppl. 2), 109–111

    Article  CAS  Google Scholar 

  • Ommaya, A. (1963). A subcutaneous reservoir and pump for sterile access to ventricular cerebrospinal fluid. Lancet ii, 983–984

    Article  Google Scholar 

  • Pardridge, W.M. (1979). Carrier-mediated transport of thyroid hormones through the rat blood-brain barrier: Primary role of albumin-bound hormone. Endocrinol., 105, 605–612

    Article  CAS  Google Scholar 

  • Pardridge, W.M. (1981). Transport of protein-bound hormones into tissues in vivo. Endocrin. Rev., 2, 103–123

    Article  CAS  Google Scholar 

  • Pardridge, W.M. (1985). Strategies for drug delivery through the blood-brain barrier. In Borchardt, R.T., Repta, A.J. and Stella, V.J. (Eds), Directed Drug Delivery: A Multidisci-plinary Problem. Humana Press Inc., Clifton, N.J. p. 83

    Chapter  Google Scholar 

  • Pardridge, W.M. (1986a). Receptor-mediated peptide transport through the blood-brain barrier. Endocr. Rev., 7 (3), 31–33

    Google Scholar 

  • Pardridge, W.M. (1986b). Blood-brain barrier: interface between internal medicine and the brain. Ann. Intern. Med., 105, 82–95

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M. (1987). Plasma protein mediated transport of steroid and thyroid hormones. Am. J. Physiol., 252, E157–E164

    Google Scholar 

  • Pardridge, W.M. (1988). Recent advances in blood-brain barrier transport. Ann. Rev. Pharmacol. Toxicol., 28, 25–39

    Article  CAS  Google Scholar 

  • Pardridge, W.M., Eisenberg, J. and Cefalu, W.T. (1985a). Absence of albumin receptor on brain capillaries in vivo or in vitro. Am. J. Physiol., 249, E264

    Google Scholar 

  • Pardridge, W.M., Eisenberg, J. and Yang, J. (1985b). Human blood-brain barrier insulin receptor. J. Neurochem., 44, 1771

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M., Eisenberg, J. and Yang, J. (1987). Human blood-brain barrier transferrin receptor. J. Neurochem., 49, 1394–1401

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M. and Oldendorf, W.H. (1975). Kinetic analysis of blood-brain barrier transport of amino acids. Biochim. Biophys. Acta, 401, 128–136

    Article  CAS  Google Scholar 

  • Pardridge, W.M., Triguero, D. and Buciak, J.L. (1990). β-Endorphin chimeric peptides: transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain. Endocrinology, 126 (2), 977–984

    Article  CAS  Google Scholar 

  • Patel, H.M. (1984). Liposomes: bags of challenge. Biochem. Soc. Trans., 12, 333

    Article  PubMed  CAS  Google Scholar 

  • Peterson, J.S., Kalivas, P.W. and Prasad, C. (1984). Cyclo (His-Pro) (cHP) regulates striatal dopaminergic function. Soc. Neurosci. Abstr., 10, 1123

    Google Scholar 

  • Posner, B.I., van Houten, M., Patel, B. and Walsh, R.J. (1983). Characterization of lactogen binding sites in choroid plexus. Exp. Brain, 49, 300–306

    Article  CAS  Google Scholar 

  • Prange, A.J., Gazzbutt, J., Loosen, P.T., Bissette, G. and Nemeroff, C.B. (1987). The role of peptides in affective disorders: a review. Prog. Brain Res., 72, 235–279

    Article  PubMed  CAS  Google Scholar 

  • Prange Jr, AJ., Wilson, I.C., Lara, P.P., Alltop, L.B. and Breese, G.R. (1972). Effects of thyroptropin releasing hormone in depression. Lancet, ii, 999–1002

    Article  Google Scholar 

  • Rap, Z.M. (1981). Inhibitory effect of antidiuretic hormone on outflow of the cerebrospinal fluid in vasogenic brain edema induced by cold lesion. In Cervos-Navarro, J. and Fritschke, E. (Eds), Cerebral Microcirculation and Metabolism. Raven Press, New York, pp. 171–175

    Google Scholar 

  • Rap, Z.M., Kozniewska, E. and Skolasinska, K. (1980). Effect of vasopressin on cerebral blood flow and cerebrospinal fluid outflow. In Betz, E., Grobe, J. and Hauser, D. (Eds), Pathophysiology and Pharmacotherapy of Cerebrovascular Disorders. Verlag G. Witzstrock, Köln, pp. 12–14

    Google Scholar 

  • Rapoport, S.I., Klee, W.A., Pettigrew, K.D. and Olmo, K. (1980). Entry of opioid peptides into the central nervous system. Science, 207, 84–86

    Article  CAS  Google Scholar 

  • Reese, T.S., Feder, N. and Brightman, M.W. (1971). Electron microscopic study of the blood-brain and blood-cerebrospinal fluid barriers with microperoxidase. J. Cell. Biol, 34, 207–217

    Article  Google Scholar 

  • Reese, T.S. and Karnovsky, M.J. (1967). Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol., 34, 207–217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reichlin, S. (1983a). Somatostatin. New Engl. J. Med., 309, 1495–1501

    Article  PubMed  CAS  Google Scholar 

  • Reichlin, S. (1983b). Somatostatin. New Engl. J. Med., 309, 1556–1562

    Article  PubMed  CAS  Google Scholar 

  • Reith, J., Ermisch, A., Diemer, N.H. and Gjedde, A. (1987). Saturable retention of vasopressin by hippocampus vessels in vivo, associated with inhibition of blood-brain transfer of large neutral amino acids. J. Neurochem., 49, 1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Rivier, C. and Vale, W. (1985). Effects of corticotropin-releasing factor, neurohypophyseal peptides and catecholamines on pituitary function. Fed. Proc., 44, 189–195

    PubMed  CAS  Google Scholar 

  • Rogers, R.C. and Hermann, G.E. (1985). Dorsal medullary oxytocin, vasopressin, oxytocin antagonist, and TRH effects on gastric acid secretion and heart rate. Peptides, 6, 1143–1148

    Article  CAS  Google Scholar 

  • Sandman, C.A., Beckwith, B.E. and Kastin, A.J. (1980). Are learning and attention related to the sequence of amino acids in ACTH/MSH peptides? Peptides, 1, 277–280

    Article  CAS  Google Scholar 

  • Sarna, G.S., Bradbury, M.W.B. and Cavanagh, J. (1978). Permeability of the blood-brain barrier after porto-caval anastomosis in the rat. Brain Res., 138, 550–554

    Article  Google Scholar 

  • Schaffer, M.M. and Moody, T.W. (1986). Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide. Peptides, 7, 283–286

    Article  Google Scholar 

  • Schivers, B.D., Harlan, R.E., Romano, J.G., Howills, R.D. and Phaff, G.W. (1986). Cellular localization of pre-enkephalin in RNA in rat brain: gene expression in the caudate putamen and cerebral cortex. Proc. Natl Acad. Sci. USA, 83, 6221–6225

    Article  Google Scholar 

  • Schutz, W., Steuer, G. and Tuisl, E. (1982). Functional identification of adenylate cyclase-coupled adenosine receptors in rat brain microvessels. Eur. PharmacoL, 85, 177–184

    Article  CAS  Google Scholar 

  • Schwartz, J.C. (1983). Metabolism of enkephalins and the inactivating peptide concept. Trends Neursci., 6, 5–8

    Article  Google Scholar 

  • Schwartz, J.C., Malfroy, B. and De La Baume, S. (1981). Biological inactivation of enkephalins and the role of enkephalin dipeptidyl-carboxypeptidase (‘Enkephalinase’) as neuropeptidase. Life Sci., 29, 1715–1740

    Article  PubMed  CAS  Google Scholar 

  • Segal, M.B. and Pollay, M. (1977). The secretion of cerebrospinal fluid. Exp. Eye Res., 25 (Suppl.), 205–228

    Google Scholar 

  • Segal, M.B. and Zloković, B.V. (1990). The Blood-Brain Barrier, Amino Acids and Peptides, Kluwer, Dordrecht, Boston, London

    Google Scholar 

  • Siggins, G.R. and Groul, D.L. (1986). Synaptic mechanisms in the vertebrate central nervous system. In Bloom, F.E. (Ed.), Handbook of Physiology. Volume on Intrinsic Regulatory Systems of the Brain. American Physiological Society, Bethesda, Maryland, pp. 1–114

    Google Scholar 

  • Simantov, R. and Snyder, S.H. (1976). Morphine-like peptides in mammalian brain: isolation, structure, elucidation, and interactions with opiate receptors. Proc. Natl Acad. Sci. USA, 73 (7), 2515–2519

    Article  CAS  Google Scholar 

  • Smith, Q.R., Momma, S., Aoyagi, M. and Rapoport, S.I. (1987). Kinetics of neutral amino acid transport across the blood-brain barrier. J. Neurochem., 49, 1651–1658

    Google Scholar 

  • Smith, Q.R., Takasato, Y. and Rapoport, S. (1984). Kinetic analysis of L-leucine transport across the blood-brain barrier. Brain Res., 311, 167–170

    Article  PubMed  CAS  Google Scholar 

  • Spector, R. (1977). Vitamin homeostasis in the central nervous system. New Engl. J. Med., 296, 1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Spector, R. (1982). Nucleoside transport in choroid plexus: Mechanism and specificity. Arch. Biochem. Biophys., 216, 693–703

    Article  PubMed  CAS  Google Scholar 

  • Speth, R.C. and Harik, S.I. (1985). Angiotensin II receptor binding sites in brain microvessels. Proc. Natl Acad. Sci USA, 82, 6340–6343

    Article  CAS  Google Scholar 

  • Strikant, C.B. and Patel, Y.C. (1981). Somatostatin receptors: identification and character-ization in rat brain membranes. Proc. Natl Acad. Sci. USA, 78, 3930–3934

    Article  Google Scholar 

  • Stephenson, S.L. and Kenny, A.J. (1987). The hydrolysis of alpha-human atrial natriuretic peptide by pig kidney microvillar membranes is initiated by endopeptidase 24.11. Biochem. J., 243, 183–187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stewart, P.A. and Wiley, M.J. (1981). Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev. Biol, 84, 183–192

    Article  CAS  Google Scholar 

  • Stickrod, G., Kimble, D.P. and Smotherman, W.P. (1982). Met-enkephalin effects on associations formed in utero.Peptides, 3, 881–883

    Article  CAS  Google Scholar 

  • Susic, V. and Masirevic, G. (1988). In Rakić, Lj., Begley, D.J., Davson, H. and Zloković, B.V. (Eds), Peptide and Amino Acid Transport Mechanisms in the Central Nervous System. Macmillan, London, pp. 141–147

    Chapter  Google Scholar 

  • Susic, V., Masirevic, G. and Totic, S. (1987). The effects of delta sleep inducing peptides (DSIP) on wakefulness and sleep patterns in the cat. Brain Res., 414, 262–270

    Article  PubMed  CAS  Google Scholar 

  • Tache, Y., Vale, W., Rivier, J. and Brown, M. (1981). Brain regulation of gastric acid secretion in rats by neurogastrointestinal peptides. Peptides, 2 (Suppl. 2), 51–55

    Article  CAS  Google Scholar 

  • Takasato, J., Momma, S. and Smith, QR. (1985). Kinetic analysis of cerebrovascular isoleucine transport from saline and plasma. J. Neurochem., 45, 1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Takasato, Y., Rapoport, S.I. and Smith, QR. (1984). An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol., 247, H484–H493

    Google Scholar 

  • Tenner, T.E.J., Yang, C.M., Chang, J.K., Schimizu, M. and Pang, P.K.T. (1980). Pharmacological comparison of bPTH-(1–34) and other hypotensive peptides in the dog. Peptides, 1, 285–288

    Article  CAS  Google Scholar 

  • Triguero, D.J., Buciak, J.B., Yang, J. and Pardridge, W.M. (1989). Blood-brain barrier transport of cationized inununoglobulin G: enhanced delivery compared to native protein. Proc. Natl Acad. Sci. USA, 86, 4761–4765

    Article  CAS  Google Scholar 

  • Uddman, R., Edvinsson, L., Owman, C. and Sundler, F. (1981). Perivascular substance P: occurrence and distribution in mammalian pial vessels. J. Cereb. Blood Flow Metab., 1, 227–232

    Article  PubMed  CAS  Google Scholar 

  • Uddman, R., Edvinsson, L., Owman, C. and Sundler, F. (1983). Nerve fibres containing gastrin-releasing peptide around pial vessels. J. Cereb. Blood Flow Metab., 3, 386–390

    Article  PubMed  CAS  Google Scholar 

  • Urban, I.J.A. (1981). Brain vasopressin: from electrophysiological effects to neurophysio-logical function. In de Kloet, E.R., Wiegant, V.M. and de Wied, D. (Eds), Neuropeptides and Brain Function. Progress in Brain Research, Vol. 72, pp. 163–172

    Chapter  Google Scholar 

  • Van der Velde, C.D. (1983). Rapid clinical effectiveness of MIF-1 in the treatment of major depressive illness. Peptides, 4, 297–300

    Article  Google Scholar 

  • van Deurs, B. (1977). Vesicular transport of horseradish peroxidase from brain to blood in segments of the cerebral microvasculature in adult mice. Brain Res., 124, 1–8

    Article  PubMed  CAS  Google Scholar 

  • van Deurs, B. (1980). Structural aspects of brain barriers, with special reference to the permeability of the cerebral endothelium and choroidal epithelium. Intern. Rev. Cytol., 63, 117–191

    Article  Google Scholar 

  • van Deurs, B., von Bülow, F. and Meller, M. (1981). Vesicular transport of cationized ferritin by the epithelium of the rat choroid plexus. J. Cell Biol., 89, 131–139

    Article  PubMed  Google Scholar 

  • Van Dijk, A., Richards, J.G., Trzeeiak, A., Gillessen, D. and Mohler, H. (1984). Cholecystokinin receptors: biochemical demonstration and autoradiographical localiza-tion in rat brain and pancreas using 3H-cholecystokinin as radioligand. J. Neurosci., 4, 1021–1033

    PubMed  Google Scholar 

  • van Houten, M. and Posner, B.I. (1983). Circumventricular organs: receptors and mediators of direct peptide hormone action on brain. In Szabo, A. (Ed.), Advances in Metabolic Disorders, Vol. 10. Academic Press, New York, pp. 269–289

    Google Scholar 

  • Van Ree, J.M., Caffe, A.M. and Wolterink, G. (1982). Non-opiate beta-endorphin fragments and dopamine. III. γ-Type endorphins and various neuroleptics counteract the hypoactivity elicited by injection of apomorphine into the nucleus accumbens. Neuropharmacology, 21, 1111–1117

    Article  Google Scholar 

  • Van Ree, J.M., Verhoven, Z.K. and de Wied, D. (1987). Animal and clinical research on neuropeptides and schizophrenia. Prog. Brain Res., 72, 249–267

    Article  PubMed  Google Scholar 

  • Varagic, V.M., Stojanovic, V. and Dzoljic, E. (1988). The effect of enkephalins and enkephalinase inhibitors on the central cholinergic mechanisms participating in the peripheral adrenergic activation. In Rakić, Lj., Begley, D.j., Davson, H. and Zloković, B.V. (Eds),Peptide and Amino Acid Transport Mechanisms in the Central Nervous System.Macmillan, London, pp. 157–166

    Chapter  Google Scholar 

  • Vistica, D.T. (1983). Cellular pharmacokinetics of the phenylalanine mustards. Pharmac. Ther., 22, 379–406

    Article  CAS  Google Scholar 

  • Walsh, R.J., Slaby, F. and Posner, B.I. (1987). Prolactin transport from blood to cerebrospinal fluid: a receptor mediated process. Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Naturmiss. R., 36 (1), 119–120

    Google Scholar 

  • Wenger, T. (1987). The role of organum vasculosum of the lamina terminals in the regulation of pituitary gonadotrophic hormone secretion. Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Naturroiss. R., 36 (1), 52–55

    Google Scholar 

  • Westergaard, E. and Brightman, M.W. (1973). Transport of proteins across normal cerebral arterioles. J. Comp. Neurol., 152, 17–44

    Article  PubMed  CAS  Google Scholar 

  • Wilson, K.M. and Fregley, M.J. (1985). Factors affecting angiotensin II-induced hypother-mia in rats. Peptides, 6, 695–701

    Article  CAS  Google Scholar 

  • Winokur, A., Amsterdam, J., Caroff, S., Snyder, P.J. and Brunswich, D. (1982). Variability of hormonal responses to a series of neuroendocrine challenges in depressed patientsAm. J Psychiatr., 139, 39–44

    Article  PubMed  CAS  Google Scholar 

  • Wolf, B.A., Turk, J., Sherman, W.R. and McDaniel, M.L. (1986). Intracellular Ca2+ mobilization by arachidonic acid. J. Biol. Chem., 261, 3501–3511

    PubMed  CAS  Google Scholar 

  • Woods, S.C. and Porte, D. Jr. (1977). Relationship between plasma and cerebrospinal fluid insulin levels of dogs. Am. J. Physiol., 233, E331–E334

    Google Scholar 

  • Yarbrough, G.G. (1976). TRH potentiates excitatory actions of acetylcholine in cerebral cortical neurons. Nature, 263, 523–524

    Article  CAS  Google Scholar 

  • Zadina, J.E., Banks, W.A. and Kastin, J.E. (1986). Central nervous system effects of peptides 1980–1985. Peptides, 7, 497–537

    Article  CAS  Google Scholar 

  • Zerbe, R.L., Kirtland, S., Faden, A.I. and Feuerstein, G. (1983). Central cardiovascular effects of mammalian neurohypophysical peptides in conscious rats. Peptides, 4, 627–630

    Article  CAS  Google Scholar 

  • Zloković, B.V. (1990). In vivo approaches for studying peptide interactions at the blood-brain barrierJ.Control. Rel., 13, 185–202

    Article  Google Scholar 

  • Zloković, B.V., Begley, D.J. and Chain, D.G. (1983). Blood-brain barrier permeability to di-peptides and their constituent amino acids. Brain Res., 271, 66–71

    Article  Google Scholar 

  • Zloković, B.V., Begley, D.J. and Chain-Eliash, D.G. (1985a). Blood-brain barrier per-meability to leucine-enkephalin, D-alanine2 D-leucine5 -enkephalin and their N-terminal amino acid (tyrosine). Brain Res., 336 125–132

    Article  PubMed  Google Scholar 

  • Zloković, B.V., Hyman, S., McComb, J.G., Tang, G., Davson, H. and Lipovać, M.N. (1990a). Kinetics of arginine-vasopressin uptake at the blood-brain barrier. Biochim. Biophys. Acta, 1025, 191–198

    Article  Google Scholar 

  • Zloković, B.V., Lipovac, N.M., Begley, D.J., Davson, H. and Rakić, Lj. (1987). Transport of leucine-enkephalin across the blood-brain barrier in the perfused guinea pig brain. J. Neurochem., 49, 310–315

    Article  PubMed  Google Scholar 

  • Zloković, B.V., Lipovac, M.N., Begley, D.J., Davson, H. and Rakić, Lj. (1988a). Slow penetration of thyrotropin releasing hormone across the blood-brain barrier of in situ perfused guinea-pig brain. J. Neurochem., 51, 252–257

    Article  PubMed  Google Scholar 

  • Zloković, B.V., McComb, J.G., Perlmutter, L. and Davson, H. (1991). Neuroactive Peptides and Amino Acids at the Blood-Brain Barrier: Possible Implications to Drug Abuse. NIDA Research Monographs, Washington, D.C. (in press)

    Google Scholar 

  • Zloković, B.V., Mackić, J.B., Duricić, B. and Davson, H. (1989a). Kinetic analysis of leucine-enkephalin cellular uptake by the blood-brain barrier of an in situ perfused guinea-pig brain. J. Neurochem., 53, 1333–1340

    Article  PubMed  Google Scholar 

  • Zloković, B.V., Segal, M.B., Begley, D.J., Davson, D.J. and Rakić, Lj. (1985b). Permeabil-ity of the blood-cerebrospinal fluid and blood-brain barriers to thyrotropin releasing hormone. Brain Res., 358, 191–199

    Article  PubMed  Google Scholar 

  • Zloković, B.V., Segal, M.B., Davson, H. and Jankov, R.M. (1988b). Passage of delta sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier. Peptides, 9, 533–538

    Article  Google Scholar 

  • Zloković, B.V., Skundrić, D., Segal, M.B., Lipovac, M.N., Mackić, J.B. and Davson, H. (1990b). A saturable mechanism for transport of immunoglobulin G across the blood-brain barrier of the guinea-pig. Exp. Neural., 107, 263–270

    Article  Google Scholar 

  • Zloković, B.V., Susić, V.T., Davson, H., Begley, D.J., Jankov, R.M., Mitrović, D.M. and Lipovac, M.N. (1989b). Saturable mechanisms for delta-sleep inducing peptide (DSIP) at the blood-brain barrier of the vascularly perfused guinea-pig brain. Peptides, 10, 249–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1993 The authors

About this chapter

Cite this chapter

Davson, H., Zloković, B., Rakić, L., Segal, M.B. (1993). Peptides and Proteins. In: An Introduction to the Blood-Brain Barrier. Palgrave, London. https://doi.org/10.1007/978-1-349-11882-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11882-3_3

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11884-7

  • Online ISBN: 978-1-349-11882-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics