Skip to main content

The Role of Primate Spinothalamic Neurons in Hyperalgesia

  • Chapter
  • 60 Accesses

Abstract

Hyperalgesia resulting from damage to the skin is characterized by a lowered threshold for pain and an increased degree of painfulness for a given suprathreshold stimulus. The same area of skin may also give rise to spontaneous pain. Two forms of cutaneous hyperalgesia have been emphasized (Lewis, 1942; Hardy, et al., 1952): primary and secondary hyperalgesia. Primary hyperalgesia occurs in the region of damage, whereas secondary hyperalgesia develops over a period of time in an area surrounding the damaged region. A related term is allodynia, which refers to a condition in which normally innocuous stimuli produce pain (Merskey, 1986). Although much of the experimental work on hyperalgesia involves the skin, there are similarities between cutaneous hyperalgesia and the pain associated with damage to viscera and to other deep structures, such as muscle and joints. For example, visceral damage can result in pain that is referred to the body wall; there may also be referred tenderness (Head, 1897; Lewis, 1942). Referred tenderness is a type of allodynia and is comparable to secondary hyperalgesia.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumann, T.K., Simone, D.A., Shain, C.N. and LaMotte, R.H. (1990). Neurogenic hyperalgesia: The search for the primary cutaneous afferent fibers that contribute to capsaicin-induced pain and hyperalgesia. J. Neurophysiol., Submitted.

    Google Scholar 

  • Beck, P.W. and Handwerker, H.O. (1974). Bradykinin and serotonin effects on various types of cutaneous nerve fibres. Pfluegers Arch., 347, 209–222.

    Article  CAS  Google Scholar 

  • Beck, P.W., Handwerker, H.O. and Zimmermann, M. (1974). Nervous outflow from the cat’s foot during noxious radiant heat stimulation. Brain Res., 67, 373–386.

    Article  CAS  PubMed  Google Scholar 

  • Bessou, P. and Perl, E.R. (1969). Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J. Neurophysiol., 32, 1025–1043.

    CAS  PubMed  Google Scholar 

  • Campbell, J.N., Raja, S.N., Meyer, R.A. and Mackinnon, S.E. (1988). Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain, 32, 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, J.N. (1990). Plasticity of the neural signal for pain. This volume.

    Google Scholar 

  • Chung, J.M., LaMotte, R.H., Oh, U., Owens, C., Simone, D., Sorkin, L.S. and Willis, W.D. (1989). Spinothalamic neurones and hyperalgesia; evidence from anaesthetized macaques. J. Physiol. (Lond.), 412, 13P.

    Google Scholar 

  • Ferrington, D.G., Sorkin, L.S. and Willis, W.D. (1987). Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord. J. Physiol. (Lond.), 388, 681–703.

    Article  CAS  PubMed Central  Google Scholar 

  • Fitzgerald, M. and Lynn, B. (1977). The sensitization of high threshold mechanoreceptors with myelinated axons by repeated heating. J. Physiol. (Lond.), 265, 549–563.

    Article  CAS  Google Scholar 

  • Hardy, J.D., Wolff, H.G and Goodell, H. (1967). Pain Sensations and Reactions. Hafner, New York (Facsimile of 1952 ed., Williams and Wilkins, New York).

    Google Scholar 

  • Head, H. (1893). On disturbances of sensation with especial reference to the pain of visceral disease. Brain, 16, 1–132.

    Article  Google Scholar 

  • Kenshalo, D.R., Jr., Leonard, R.B., Chung, J.M. and Willis, W.D. (1979). Responses of primate spinothalamic neurons to graded and to repeated noxious heat stimuli. J. Neurophysiol., 42, 1370–1389.

    PubMed  Google Scholar 

  • Kenshalo, D.R., Jr., Leonard, R.B., Chung, J.M. and Willis, W.D. (1982). Facilitation of the responses of primate spinothalamic cells to cold and to tactile stimuli by noxious heating of the skin. Pain, 12, 141–152.

    Article  PubMed  Google Scholar 

  • Kumazawa, T. and Perl, E.R. (1977). Primate cutaneous sensory units with unmyelinated (C) afferent fibers. J. Neurophysiol., 40, 1325–1338.

    CAS  PubMed  Google Scholar 

  • LaMotte, R.H., Shain, C., Simone, D. and Tsai, E.F. (1990). Neurogenic hyperalgesia: Psychophysical studies of underlying mechanisms. J. Neurophysiol., Submitted.

    Google Scholar 

  • LaMotte, R.H., Thalhammer, J.G. and Robinson, C.J. (1983). Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: a comparison of neural events in monkey with sensory judgments in human. J. Neurophysiol., 50, 1–26.

    CAS  PubMed  Google Scholar 

  • LaMotte, R.H., Thalhammer, J.G., Torebjork, H.E. and Robinson, C.J. (1982). Peripheral neural mechanisms of cutaneous hyperalgesia following mild injury by heat. J. Neurosci., 2, 765–781.

    CAS  PubMed  Google Scholar 

  • Lewis, T. (1942). Pain. Macmillan Press, London.

    Google Scholar 

  • Merskey, H. (ed.) (1986). Classification of Chronic Pain. Pain Supplement, 3, S1–S226.

    Google Scholar 

  • Meyer, R.A. and Campbell, J.N. (1981). Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science, 213, 1527–1529.

    Article  CAS  PubMed  Google Scholar 

  • Simone, D.A., Baumann, T.K. and LaMotte, R.H. (1989). Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injections of capsaicin. Pain, 38, 99–107.

    Article  CAS  PubMed  Google Scholar 

  • Simone, D.A., Oh, U.T., Sorkin, L.S., Chung, J.M., Willis, W.D. and LaMotte, R.H. (1988). Spinothalamic tract (STT) cells signal the pain and hyperalgesia following intradermal capsaicin. Neurosci. Abstr., 14, 559.

    Google Scholar 

  • Simone, D.A., Oh, U.T., Sorkin, L.S., Chung, J.M., Owens, C., LaMotte, R.H. and Willis, W.D. (1990). Neurogenic hyperalgesia: Central neural correlates in responses of spinothalamic tract neurons. J. Neurophysiol., Submitted.

    Google Scholar 

  • Torebjork, H.E. (1990). Encoding and projection of pain. This volume.

    Google Scholar 

  • Torebjork, H.E., LaMotte, R.H. and Robinson, C.J. (1984). Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: simultaneous recordings in humans of sensory judgments of pain and evoked responses in nociceptors with C-fibers. J. Neurophysiol., 51, 325–339.

    CAS  PubMed  Google Scholar 

  • Woolf, C.J. (1983). Evidence for a central component of postinjury pain hypersensitivity. Nature, 308, 686–688.

    Article  Google Scholar 

  • Woolf, C.J. (1990). Is reactive receptive field plasticity in the dorsal horn a contribution to pain hypersensitivity states? This volume.

    Google Scholar 

  • Woolf, C.J., Thompson, S.W.N. and King, A.E. (1989). Prolonged primary afferent induced alterations in dorsal horn neurones, an intracellular analysis in vivo and in vitro. J. Physiol. (Paris), In press.

    Google Scholar 

  • Yaksh, T.L. and Hammond, D.L. (1982). Peripheral and central substrates in the rostral transmission of nociceptive information. Pain, 13, 1–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 Macmillan Publishers Limited

About this chapter

Cite this chapter

Willis, W.D. (1991). The Role of Primate Spinothalamic Neurons in Hyperalgesia. In: Franzén, O., Westman, J. (eds) Information Processing in the Somatosensory System. Wenner-Gren Center International Symposium Series. Palgrave, London. https://doi.org/10.1007/978-1-349-11597-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11597-6_30

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11599-0

  • Online ISBN: 978-1-349-11597-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics