Skip to main content

Neural Ontogeny of Higher Brain Function: Implications of Some Recent Neurophysiological Findings

  • Chapter
Information Processing in the Somatosensory System

Abstract

Despite substantial experimental interest in the processes of “development” of the nervous system, there is surprisingly little direct understanding of neurophysiological processes underlying cognition and its ontogeny. There are several obvious reasons for this lack of progress. First, neuroscience has largely dealt with the issues of development in the terms of prenatal or early postnatal maturation of anatomical structures and connections, and of the origins of response primitives principally within “primary” cortical fields as they relate to anatomical maturation. Second, studies in animals beyond the first weeks of life have largely focused on examination of static anatomical and functional properties of sensory and motor systems. There has been very little study of the young or adult mammalian forebrain through a period of acquisition of new behaviors. Third, examination of complexly coupled flesh and blood neuronal networks, in which dynamic processes underlying progressive development of new perceptual abilities and motoric skills are resident, has been very limited. The dynamics of the complexly interconnected forebrain machinery cannot be reconstructed from data generated by the predominant neurophysiological method, i.e., by recording the activity of usually-unidentified network elements one at a time (see Mountcastle, this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  • Allard, R.A., S. A. Clark, W. M. Jenkins and M. M. Merzenich (1990) Reorganization of somatosensory area 3b representation in adult owl monkeys following digital syndactyly. J. Neurophysiol. (in press).

    Google Scholar 

  • Buchhalter, J., Brons, J., and C. Woody (1978) Changes in cortical neuronal excitability after presentations of a compound auditory stimulus. Brain Res. 156: 162–167.

    Article  CAS  PubMed  Google Scholar 

  • Brugge, J. F., and M. M. Merzenich (1973) Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J. Neurophysiol. 36: 1138–1158.

    CAS  PubMed  Google Scholar 

  • Clark, S.A., Allard, T., Jenkins, W.M., and M. M. Merzenich (1988) Syndactyly results in the emergence of double digit receptive fields in somatosensory cortex in adult owl monkeys. Nature 332: 444–445.

    Article  CAS  PubMed  Google Scholar 

  • Clark, S.A., Allard, T., Jenkins, W.M., and M. M. Merzenich (1986) Cortical map reorganization following neurovascular island skin transfers on the hands of adult owl monkeys. Soc. Neurosci. Abstr. 12: 391.

    Google Scholar 

  • Cole, J., and P. Glees (1954) Effects of small lesions in sensory cortex in trained monkeys. J. Neurophysiol. 1: 1–13.

    Google Scholar 

  • Crick, F., and Mitchison, G. (1983) The function of dream sleep. Nature 304: 111–114.

    Article  CAS  PubMed  Google Scholar 

  • Diamond, M.C., Greer, E.R., York, A., Lewis, D., Barton, T., and Lin, J. (1987) Rat cortical morphology following crowded-enriched living conditions. Exptl. Neurol. 96: 241–247.

    Article  CAS  Google Scholar 

  • Diamond, D.M., and Weinberger, N.M. (1989) Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behav. Neurosci. 103: 471–494.

    Article  CAS  PubMed  Google Scholar 

  • Dinse, H.R., Recanzone, G.H., and M. M. Merzenich (1990) Direct observation of neural assemblies during neocortical representational reorganization. IN: Parallel Processing in Neural Systems and Computers. (eds. R. Eckmitler, G. Hartmann and G. Hauske). Elsevier, North Holland, pp. 65–70.

    Google Scholar 

  • Disterhof, J. F. and D. K. Stuart (1976) Trial sequence of changed unit activity in auditory system of alert rat during conditioned response acquisition and extinction. J. Neurophysiol. 39: 266–281

    Google Scholar 

  • Edelman, G.M. (1987) Neuronal Darwinism: The Theory of Neuronal Group Selection. Basic Books, New York.

    Google Scholar 

  • Edelman, G.M. (1981) Group selction as the basis for higher brain function. IN: Organization of the Cerebral Cortex. (eds. F. O. Schmitt, F. G. Worden, G. Adelman and S. G. Dennis). MIT Press, Cambridge, pp. 51–100.

    Google Scholar 

  • Edelman, G. M., and Finkel, L. H. (1984) Neuronal group selection in the cerebral cortex. IN: Dynamic Aspects of Neocortical function. (eds. G. M. Edelman, W. E. Gall and W. M. Cowan). Wiley, New York, pp. 653–695.

    Google Scholar 

  • Edelman, G.M. and V.B. Mountcastle, (1978) The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function. MIT Press, Cambridge, MA.

    Google Scholar 

  • Franck, J.I. (1980) Functional reorganization of cat somatic sensory-motor cortex (SmI) after selective dorsal root rhizotomies. Brain Res. 186: 458–462.

    Article  CAS  PubMed  Google Scholar 

  • Felleman, D. J., and D. C. Van Essen (1990) Distributed hierarchical processing in primate cerebral cortex. Cerebral Cortex (in press).

    Google Scholar 

  • Fleschig, P. (1920) Anatomie des menschlichen Gehirns und Ruckenmarks auf myelogeneti-schen Grundlage. Georg Thieme, Liepzig.

    Google Scholar 

  • Graham Brown, T., and C. S. Sherrington (1912) On the instability of a cortical point. Proc. Royal Soc. Lond. B. 85: 250–277.

    Article  Google Scholar 

  • Graham Brown, T. (1915) Studies in the physiology of the nervous system. XXII: On the phenomenon of facilitation. 1: Its occurence in reactions induced by stimulation of the motor cortex of the cerebrum in monkeys. Quart. J. Exp. Physiol. 9: 6–99.

    Google Scholar 

  • Grajski, K.A., and M. M. Merzenich (1990) Hebb-type dynamics is sufficient to account for the inverse magnification rule in cortical somatotopy. Neural Computation 2: 74–81.

    Article  Google Scholar 

  • Grajski, K.S., and M. M. Merzenich (1990) Neuronal network simulation of somatosensory representational plasticity. IN: Neural Information Processing Systems. Vol. 2. (ed. D. L. Touretzky). Morgan Kaufman, San Mateo, CA (in press)

    Google Scholar 

  • Hopson, J.A. (1990) Sleep and Dreaming. J. Neurosci. 10: 371–382

    Google Scholar 

  • Hopson, J.A. (1989) The Dreaming Brain. Basic Books, New York.

    Google Scholar 

  • Hunt, J. McV. (1969) The impact and limitations of the giant of developmental psychology. IN: Studies of Cognitive Development. (eds. D. Elkind and J. H. Flavell). Oxford U. Press, New York, pp. 3–66.

    Google Scholar 

  • Jenkins, W.M., and M. M. Merzenich (1987) Reorganization of neocortical representations after brain injury: A neurophysiological model of the bases of recovery from stroke. Prog. Brain Res. 71: 249–266.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, W.M., Merzenich, M.M., Ochs, M., Allard, T.T., and E. Guic-Robles (1990) Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J. Neurophysiol. 63: 82–104.

    CAS  PubMed  Google Scholar 

  • Kaas, J.H. (1988) Why does the brain have so many visual areas? J. Cogn. Neurosci. 1: 121–135.

    Article  Google Scholar 

  • Kaas, J.H., Krubitzer, L.A., Chino, Y.M., Langston, A.L., Polley, E.H., and N. Blair (1990) Reorganization of retinotopic maps in adult mammals after lesions of the retina. Science 228: 229–231.

    Article  Google Scholar 

  • Kalaska, J., and B. Pomeranz (1979) Chronic paw denervation causes an age-dependent appearance of novel responses from forearm in “paw cortex” of kittens and adult cats. J. Neurophysiol. 42: 618–633.

    CAS  PubMed  Google Scholar 

  • Kelahan, A.M., and G. S. Deutsch (1984) Time-dependent changes in the functional organization of somatosensory cerebral cortex following digit amputation in adult raccoons. Somatosens. Res. 2: 49–81.

    CAS  PubMed  Google Scholar 

  • Kitzes, L.M., Farley, G.R., and K. A. Starr. (1978) Modulation of auditory cortex unit activity during the performance of a conditioned response. Exptl. Neurol. 2: 678–697.

    Article  Google Scholar 

  • Lashley, K.S. (1951) The problem of serial order in behavior. IN: Cerebral Mechanisms in Behavior. (ed. L. Jeffress). Wiley, New York.

    Google Scholar 

  • Leyton, A.S. F., and C. S. Sherrington (1917) Observations on the excitable cortex of the chimpanzee, orang-utan, and gorilla. Quart. J. Exp. Physiol. 11: 135–222.

    Article  Google Scholar 

  • Merzenich, M.M. (1987) Dynamic neocortical processes and the origins of higher brain functions. IN: Neural and Molecular Bases of Learning. (eds. J. P. Changeux and M. Konishi). Wiley, New York, pp. 337–358.

    Google Scholar 

  • Merzenich, M.M., and J. H. Kaas (1980) Principles of organization of sensory-perceptual systems in mammals. Prog. Psychobiol. Physiol. Psychol. 9: 1–42

    Google Scholar 

  • Merzenich, M.M., Kaas, J.H., Sur, M., and C.-S. Lin (1978) Double representation of the body surface with cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus) J. Comp. Neurol. 181: 41–74.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich, M.M., Kaas, J.H., Wall, J.T., Nelson, R.J., Sur, M., and D. J. Felleman (1983a) Topographic reorganization of somatosensory cortical areas 3b and 2 in adult monkeys following restricted deafferentation. Neurosci. 10: 33–55

    Article  Google Scholar 

  • Merzenich, M.M., Kaas, J.H., Wall, J.T., Sur, M., Nelson, R.J., and D. J. Felleman (1983b) Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neurosci. 10: 639–665.

    Article  CAS  Google Scholar 

  • Merzenich, M.M., Jenkins, W.M., and J. C. Middlebrooks (1984a) Observations and hypotheses on special organizational features of the central auditory nervous system. IN: Dynamic Aspects of Neocortical Function. (eds. G. M. Edelman, W. E. Gall and W. M. Cowan). Wiley, New York, pp. 397–424.

    Google Scholar 

  • Merzenich, M.M., Nelson, R.J., Stryker, M.P., Cynader, M.S., Schoppmann, A., and J. M. Zook (1984b) Somatosensory cortical map changes following digital amputation in adult monkey. J. Comp. Neurol. 224: 591–605.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich, M.M., Nelson, R.J., Kaas, J.H., Stryker, M.P., Jenkins, W.M., Zook, J.M. Cynader, M.S., and A. Schoppmann (1987) Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. J. Comp. Neurol. 258: 281–296.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich, M.M., Recanzone, G.H., Jenkins, W.M., Allard, T.T., and R. J. Nudo (1988) Cortical representational plasticity. IN: Neurobiology of Neocortex. (eds. P. Rakic and W. Singer). Wiley, New York, pp. 41–67.

    Google Scholar 

  • Merzenich, M.M., Recanzone, G.H., and Jenkins, W.M. (1990) How the brain functionally constructs its representations. IN: Natural and Artificial Parallel Computations. (eds. M. Arbib and J. A. Robinson) MIT Press, New York (in press)

    Google Scholar 

  • Merzenich, M.M., Grajski, K.A., Jenkins, W.M., Recanzone, G.H., and B. Peterson (1991) Functional cortical plasticity. Cortical network origins of representational changes. Cold Spring Harbor Symp. Quant. Biol. 55 (submitted, 9/90)

    Google Scholar 

  • Miyashita, Y (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335: 817–820.

    Article  CAS  PubMed  Google Scholar 

  • Miyashita, Y., and H. S. Chang (1988) Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331: 68–70

    Article  CAS  PubMed  Google Scholar 

  • Mountcastle, V.B. (1978) IN: The Mindful Brain: Cortical Organization and the Group Selective Theory of Higher Brain Function. G. M. Edelman and V. B. Mountcastle, MIT Press, Cambridge, MA.

    Google Scholar 

  • Nelson, R. J., and V. D. Douglas (1989) Changes in premovement activity in primary somatosensory cortex differ when monkeys make hand movements in response to visual vs vibratory cues. Brain Res. 484: 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Nudo, R.J., W. M. Jenkins and M. M. Merzenich (1990) Repetitive microstimulation alters the cortical representation of movements in adult rats. Somatosen. Motor Res. (in press)

    Google Scholar 

  • Pearson, J.C., Finkel, L.H., and G. M. Edelman (1987) Plasticity organization of adult cerebral cortical maps: a computer simulation based on neuronal group selection. J. Neurosci. 7: 4209–4233.

    CAS  PubMed  Google Scholar 

  • Pons, T.P., Garraghty, P.E., and M. Mishkin (1988) Lesion-induced plasticity in the second somatosensory cortex of adult macaques. Proc. Natl. Acad. Sci. 85: 4279–5281.

    Article  Google Scholar 

  • Rakic, P., Bourgeois, J.P., Eckenhoff, M.F., Zecevic, N., and P. S. Goldman-Rakic (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232: 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone, G., Allard, T.T., Jenkins, W.M., and M. M. Merzenich (1990) Receptive field changes induced by peripheral nerve stimulation in S1 of adult cats. J. Neurophysiol. 63: 1213–1225

    CAS  PubMed  Google Scholar 

  • Recanzone, G.H., Jenkins, W.M., Hradek, G.H., and M.M. Merzenich (1991a) Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task. J. Neurophysiol. (submitted)

    Google Scholar 

  • Recanzone, G.H., M.M. Merzenich, W. M. Jenkins, Grajski, K.A., and H. A. Dinse (1991b) Topographic reorganization of the hand representational zone in cortical area 3b paralleling improvements in frequency discrimination performance. J Neurophysiol. (submitted)

    Google Scholar 

  • Recanzone, G.H., M.M. Merzenich and W.M. Jenkins (1991c) Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a. J. Neurophysiol. (submitted)

    Google Scholar 

  • Recanzone G.H., M.M. Merzenich and C. S. Schreiner (1991d) Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally-based tactile discrimination task. J. Neurophysiol. (submitted)

    Google Scholar 

  • Recanzone, G.H., H.A. Dinse and M. M. Merzenich (1991e) Expansion of the cortical representation of a restricted skin field in primary somatosensory cortex following intracortical microstimulation. Cerebral Cortex (submitted)

    Google Scholar 

  • Robertson, D., and D. R. F. Irvine (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J. Comp. Neurol. 282: 456–471

    Article  CAS  PubMed  Google Scholar 

  • Rolls, E.T., Baylis, G.C., Hasselmo, M.E., and V. Nalwa (1989) The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. Exptl. Br. Res. 76: 153–64.

    CAS  Google Scholar 

  • Rollwarg, H.P., Muzio, J.N., and W. C. Dement (1966) Ontogenetic development of the human sleep-dream cycle. Science 152: 604–607.

    Article  Google Scholar 

  • Sakamoto, T., Porter, L., and H. Asanuma (1987) Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain Res. 413: 360–364.

    Article  CAS  PubMed  Google Scholar 

  • Sanes, J.N., Sunder, S., and J. P. Donaghue (1990) Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exptl. Br. Res. 79: 479–491.

    CAS  Google Scholar 

  • Scheibel, A., Conrad, T., Perdue, S., Tomiyasu, U., and A. Wechsler (1990) A quantitative study of dendrite complexity in selected areas of the human cerebral cortex. Brain and Cognition 12: 85–101

    Article  CAS  PubMed  Google Scholar 

  • Sirevaag, A.M., and W. T. Greenough (1987) Differential rearing effects on rat visual cortex synapses. III. Neuronal and glial nuclei, boutons, dendrites and capillaries. Brain Res. 424: 320–332.

    Article  CAS  PubMed  Google Scholar 

  • Spitzer, H., Desimone, R., and Moran, J. (1988) Increased attention enhances both behavioral and neuronal performance. Science 140: 338–340.

    Article  Google Scholar 

  • Van Essen, D., Felleman, D.J., DeYoe, E.A., Olavarria, J., and J. Knierim (1990) Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. Cold Spring Harbor Symp. Quant. Biol. 55 (in press)

    Google Scholar 

  • Venable, N., Fernandez, V., Diaz, E., and T. Pinto-Hamuy (1989) Effects of preweaning environmental enrichment on basilar dendrites of pyramidal cells in occcipital cortex: A Golgi study. Devel. Br. Res. 49: 140–144.

    Article  CAS  Google Scholar 

  • von der Malsburg, C., and W. Singer (1988) Principles of cortical network organization. IN: Neurobiology of Neocortex. (eds. P. Rakic and W. Singer) John Wiley and Sons, New York. pp. 69–99.

    Google Scholar 

  • Weinberger, N. M. and D. M. Diamond (1988) Dynamic modulation of the auditory system by associative learning. IN: Auditory Function: Neurobiological Bases of Hearing. (eds. G. M. Edelman, W. E. Gall and W. M. Cowan). Wiley, New York, pp. 485–512

    Google Scholar 

  • Wilshaw, D.J., and C. von der Malsburg (1975) How patterned neural connections can be set up by self-organization. Proc. Royal Soc. Lond. B 194: 432–445.

    Google Scholar 

  • Woody, C.D., and J. Engel (1972) Changes in unit activity and thresholds to electrical microstimulation at coronal-pericruciate cortex of cat with classical conditioning of different facial movements. J. Neurophysiol. 35: 230–241.

    CAS  PubMed  Google Scholar 

  • Yakolev, P.I., and A. R. Lecours (1967) The myelogenetic cycles of regional maturation of the brain. IN: Regional Development of the Brain in Early Life. (ed. A. Minkowski). Blackwell Sci., Oxford, pp. 3–70.

    Google Scholar 

  • Zecevic, N., Bourgeois, J.P. and P. Rakic (1989) Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Devel. Brain Res. 50: 11–32.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 Macmillan Publishers Limited

About this chapter

Cite this chapter

Merzenich, M.M., Allard, T.T., Jenkins, W.M. (1991). Neural Ontogeny of Higher Brain Function: Implications of Some Recent Neurophysiological Findings. In: Franzén, O., Westman, J. (eds) Information Processing in the Somatosensory System. Wenner-Gren Center International Symposium Series. Palgrave, London. https://doi.org/10.1007/978-1-349-11597-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11597-6_14

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11599-0

  • Online ISBN: 978-1-349-11597-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics