Skip to main content

Ontogenetic and Phylogenetic Perspectives on Somatic Sensory Cortex and Tactile function

  • Chapter
Information Processing in the Somatosensory System

Abstract

“Embryos undergo development; ancestors have undergone evolution, but in their day they also were the products of development. Our first task must therefore be to define these two sets of events to which living things are subject.” (from Embryos and Ancestors, G. de Beer, 1958)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brockes, J.P. (1989). Retinoids, homeobox genes and limb morphogenesis. Neuron, 2, 1285–1294.

    Article  CAS  PubMed  Google Scholar 

  • Burton, H. and Carlson, M. (1986). Second somatic sensory area (SII) in the prosimian primate, Galago crassicaudatus, J.Comp.Neurol., 247, 200–220.

    Article  CAS  PubMed  Google Scholar 

  • Caminiti, R. and Innocenti, G. M. (1981). The postnatal development of somatosensory callosal connections after partial lesions of somatosensory cortex. Exp. Brain Res., 42, 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, C.B.G. and Hodos, W. (1970). The concept of homology and the evolution of the nervous system, Brain Behav. Evol., 3, 353–367.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, M. (1984a). Development of tactile discrimination capacity in Macaca mulatta I. Normal infants, Devel.Brain Res., 16., 69–82.

    Article  CAS  Google Scholar 

  • Carlson, M. (1984b). Development of tactile discrimination capacity in Macaca mulatta II. Effects of partial removal of primary somatic sensory cortex (SmI) in infants and juveniles, Devel. Brain Res., 16, 83–101.

    Article  Google Scholar 

  • Carlson, M. (1984c). Development of tactile discrimination capacity in Macaca mulatta III. Effects of total removal of primary somatic sensory cortex (SmI) in infants and juveniles, Devel. Brain Res., 16, 103–117.

    Article  Google Scholar 

  • Carlson, M. (1990). The role of somatic sensory cortex in tactile discrimination in primates, in Cerebral Cortex, Volume 8b (eds. E.G. Jones and A. Peters) Plenum Press, New York.

    Google Scholar 

  • Carlson, M., and Burton, H. (1988). Recovery of tactile function after damage to primary or secondary somatic sensory cortex in infant Macaca mulatta. J.Neurosci., 8, 833–859.

    CAS  PubMed  Google Scholar 

  • Carlson, M. and FitzPatrick, K. A. (1982). Organization of the hand area in the primary somatic sensory cortex (SmI) of the prosimian primate, Nycticebus coucang, J. Comp.Neurol., 204, 280–295.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, M., Heurta, M.F., Cusick, C.G. and Kaas, J.H. (1986). Studies on the evolution of multiple somatosensory representations in primates: The organization of anterior parietal cortex in the New World Callitrichid, Saguinus, J. Comp. Neurol., 246, 409–426.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, M., Hubel, D.H. and Wiesel, T.N. (1986). Effects of monocular exposure to oriented lines on monkey striate cortex, Devel.Brain Res., 25, 71–81.

    Article  Google Scholar 

  • Carlson, M., and Nystrom, P. (1986). Significance of topography in primary somatic sensory cortex (SI) for tactile discrimination capacity in Old and New World primates, Soc. Neurosci. Abstr., 12, 386.2.

    Google Scholar 

  • Carlson, M., O’Leary, D.D.M., and Burton, H. (1987). Potential role of thalamocortical connections in recovery of tactile function following somatic sensory cortex lesions in infant primates, Soc. Neurosci. Abstr., 13, 25.2.

    Google Scholar 

  • Carlson, M and Pearce, M. (1989). Normal tactile function following early sensory deprivation in infant Macaca, Soc. Neurosci.Abstr., 15, 124.7.

    Google Scholar 

  • Carlson, M. and Welt, C. (1980). Somatic sensory cortex (SmI) of the prosimian primate, Galago crassicaudatus Organization of mechanoreceptive input from the hand in relation to cytoarchitecture, J. Comp. Neurol., 189, 249–271.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, M. and Welt, C. (1981). Somatic sensory cortex (SmI) in prosimian primates, in Cortical Sensory Organization. Volume 1 (ed, C.N. Woolsey). Humana Press, Clifton, NJ, pp 1–27.

    Chapter  Google Scholar 

  • Clark, W.E.L. (1959). The Antecedents of Man. Quadrangle Books, New York.

    Google Scholar 

  • Changeux, J.-P. (1985) Neuronal Man: The Biology of the Mind. Oxford Univ. Press, Oxford.

    Google Scholar 

  • deBeer, G., (1958). Embryos and Ancestors. Claredon Press, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Ebbesson, S.O.E. (1984). Evolution and ontogeny of neural circuits. Behav.Brain Sci., 7, 321–66.

    Article  Google Scholar 

  • Edelman, G.M. (1987). Neural Darwinism. Basic Books, New York.

    Google Scholar 

  • Felleman, D.J., Nelson, R.J., Sur, M. and Kaas, J. (1983). Organziation of the somatosensory cortex in cebus monkeys. Brain Res.268. 15–26.

    Article  CAS  PubMed  Google Scholar 

  • FitzPatrick, K.A., Carlson, M. and Charlton, J., (1982). Topography, cytoarchitecture and sulcal patterns in primary somatic sensory cortex (SmI) of the prosimian primate, Perodicticus potto. J. Comp. Neurol., 204, 296–310.

    Article  CAS  PubMed  Google Scholar 

  • Gottleib, G. (1972). Ontogenesis of sensory function in birds and mammals. In The Biopsychology of Development (eds. E. Tobach, L.A. Ronson and E. Shaw). Academic Press, New York.

    Google Scholar 

  • Gould, S.J. (1977). Ontogeny and Phylogeny, Belknap Press, Cambridge.

    Google Scholar 

  • Haeckel, E. (1866). Generalle Morphologie der Organismen Georg Reimer, Berlin.

    Book  Google Scholar 

  • LeVay, S., Wiesel, T.N. and Hubel, D.H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. J.Comp.Neurol., 191, 1–51.

    Article  CAS  PubMed  Google Scholar 

  • Killackey, H.P. (1989). Static and dynamic aspects of cortical somatotopy: a critical evaluation J.Cog.Neurosci., 1, 3–11

    Article  CAS  Google Scholar 

  • Krubitzer, L. A. and Kaas, J.H. (1988). Responsiveness and somatotopic organization of anterior parietal field 3b and adjoining cortex in newborn and infant monkeys, Somatosensor.Motor Res., 6, 179–205.

    Article  CAS  Google Scholar 

  • Merzenich, M.M., Kaas, J.H., Sur, M., and Lin, C.-H., (1978). Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey Aotus trivirgatus, J.Comp.Neurol., 181, 41–74.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich, M.M., Nelson, R.J., Kaas, J.H., Stryker, M.P., Jenkins, W.M. Zook, J.M., Cynader, M.S. and Schoppmann, A. (1987). Variability in hand surface representation in areas 3b and 1 in adult owl and squirrel monkeys, J.Comp.Neurol., 258, 281–296.

    Article  CAS  PubMed  Google Scholar 

  • O’Leary, D.D.M. (1989). Do cortical areas emerge from protocortex?, Trends Neurosci., 12, 400–406.

    Article  PubMed  Google Scholar 

  • Paul, R.L., Merzenich, M. and Goodman, H. (1972). Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann’s areas 3 and 1 of Macaca mulatta. Brain Res., 36, 229–249.

    Article  CAS  PubMed  Google Scholar 

  • Powell, T.P.S. and Mountcastle, V.B. (1959a). The cytoarchitecture of the postcentral gyrus of the monkey, Macaca mulatta. Bull.Johns Hopkins Hosp., 105, 108–131.

    CAS  PubMed  Google Scholar 

  • Powell, T.P.S. and Mountcastle, V.B. (1959b). Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull.Johns Hopkins.Hosp., 105, 133–162.

    CAS  PubMed  Google Scholar 

  • Purves, D. (1988). Body and Brain; A Trophic Theory of Neural Connections. Harvard Univ. Press, Cambridge.

    Google Scholar 

  • Randolph, M. and Semmes, J. (1974). Behavioral consequences of selective subtotal ablations in the postcentral gyrus of Macaca mulatta. Brain Res., 70, 55–70.

    Article  CAS  PubMed  Google Scholar 

  • Sur, M., Nelson, R.J. and Kaas, J.H. (1982). Representation of the body surface in cortical areas 3b and 1 of squirrel monkeys: Comparisons with other primates. J.Comp.Neurol., 211, 177–192.

    Article  CAS  PubMed  Google Scholar 

  • Woolsey, C.N., Marshall, W.H. and Bard, P. (1942). Representation of cutaneous tactile sensibility in the cerebral cortex of the monkey as indicated by evoked potentials. Bull.Johns Hopkins Hosp., 70, 399–441.

    Google Scholar 

  • Young, J.Z. (1973). Memory as a selective process. In Australian Academy of Science Report: Symposium on Biological Memory. Australian Acad. Science, Canberra, pp. 25–45.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 Macmillan Publishers Limited

About this chapter

Cite this chapter

Carlson, M. (1991). Ontogenetic and Phylogenetic Perspectives on Somatic Sensory Cortex and Tactile function. In: Franzén, O., Westman, J. (eds) Information Processing in the Somatosensory System. Wenner-Gren Center International Symposium Series. Palgrave, London. https://doi.org/10.1007/978-1-349-11597-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11597-6_13

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11599-0

  • Online ISBN: 978-1-349-11597-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics