Advertisement

Brain Repair pp 113-131 | Cite as

Functions of NGF on Central Cholinergic Neurons

  • Fred H. Gage
  • Karen S. Chen
  • Mark H. Tuszynski
  • Anne M. Fagan
Chapter
Part of the Wenner-Gren Center International Symposium Series book series (WGS)

Abstract

A number of studies have shown that NGF occurs in and is produced by both the developing and adult CNS. Supporting results obtained from in vitro developmental studies, NGF infusion to neonatal rats increases ChAT content in the basal forebrain and septum (Mobley et al. 1985, 1986; Johnson et al. 1987). NGF also appears to play a prominent role in the development of the septohippocampal cholinergic projection. The septohippocampal projection in the rat develops from embryonic day 20 to postnatal day 14 (Milner et al. 1983), providing the source of all extrinsic cholinergic innervation to the hippocampal formation. Total NGF content and NGF mRNA in the hippocampal formation rise just prior to developmental rises in ChAT activity during development, however, suggesting a role for NGF in the guidance and support of approaching septal cholinergic fibers (Large et al. 1986; Whiltemore et al. 1986). NGFr content (total protein; Eckenstcin, 1988; Yan and Johnson, 1988), NGFr mRNA (Buck et al. 1987), total NGF content, but not NGF mRNA (Whittemore et al. 1986), rise during embryonic and neonatal basal forebrain development, suggesting that these regions might be preparing to contact a source of, and retrogradely transport, NGF.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral, D.G. and Kurz, J. (1985). An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J. Comp. Neurol., 240, 37–59.PubMedCrossRefGoogle Scholar
  2. Arimatsu, Y., Miyamoto, M., Tsukui, H. and Hatanaka, H. (1988). Nerve growth factor enhances survival of identified projection neurons in the rat septal and diagonal band regions in vitro. Soc. Neurosci. Abstr., 14, 1114.Google Scholar
  3. Armstrong, D.M., Terry, R.D., Deteresa, R.M., Bruce, G., Hersh, L.B. and Gage, F.H. (1987). Response of septal cholinergic neurons to axotomy. J. Comp. Neurol., 264, 421–436.PubMedCrossRefGoogle Scholar
  4. Ayer LeLievre, C.S., Ebendal, T., Olsen, L. and Seiger, A. (1983). Localization of NGF-like immunoreactivity in rat neurons tissue. Med. Biol., 61, 296–304.PubMedGoogle Scholar
  5. Banker, G.A. (1980). Tropic interactions between astroglial cells and hippocampal neurons in cultures. Science, 209, 809–810.PubMedCrossRefGoogle Scholar
  6. Barde, Y.A., Edgar, D. and Thoenen, H. (1983). New neurotrophic factors. Annu. Rev. Physiol., 45., 601–612.PubMedCrossRefGoogle Scholar
  7. Bartus, R., Dean, R.L., Beer, C. and Lippa, A.S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408–417.PubMedCrossRefGoogle Scholar
  8. Batchelor, P.E., Armstrong, D.M., Blaker, S.M. and Gage, F.H. (1989). Nerve growth factor receptor and choline acetyltransferase colocalization in neurons within the rat forebrain: Response to fimbria-fornix transection. J. Comp. Neurol., 284, 2, 187–204.PubMedCrossRefGoogle Scholar
  9. Bernd, P. and Greene, L.A. (1984). Association of 125 I-nerve growth factor with PC12 pheochromocytoma cells. Evidence for internalization via high-affinity receptors only and for long term regulation by nerve growth factor. J. Biol. Chem., 259, 15509–15516.PubMedGoogle Scholar
  10. Blaker, S.N., Armstrong, D.M. and Gage, F.H. (1988). Cholinergic neurons within the rat hippocampus: Response to fimbria-fornix transection. J. Comp. Neurol., 272, 127–138.PubMedCrossRefGoogle Scholar
  11. Buck, C.R., Martinex, H.J., Black, I.B. and Chao, M.V. (1987). Developmentally regulated expression of the nerve growth factor receptor gene in the periphery and brain. Proc. Natl. Acad. Sci. USA, 84, 3060–3063.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Buzsaki, G., Bickford, R.G., Varon, S., Armstrong, D.M. and Gage, F.H. (1987). Reconstruction of the damaged septohippocampal circuitry by a combination of fetal grafts and transient NGF infusion. Soc. Neurosci. Abst., 13, 568.Google Scholar
  13. Collins, F. and Dawson, A. (1983). An effect of nerve growth factor on parasympathetic neurite outgrowth. PNAS, 80, 2091–2094.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Collins, F. sand Crutcher, K.A. (1985). Neurotrophic activity in the adult rat hippocampal formation: Regional distribution and increase after septal lesion. J. Neurosci., 5, 2809–2814.PubMedGoogle Scholar
  15. Crutcher, K.A. and Collins, F. (1982). In vitro evidence for two distinct hippocampal growth factors: basis of neuronal plasticity? Science, 217, 67–68.PubMedCrossRefGoogle Scholar
  16. Crutcher, K.A. (1987). Sympathetic sprouting in the central nervous system: A model for studies of axonal growth in the mature mammalian brain. Brain. Res. Rev., 12, 203–233.CrossRefGoogle Scholar
  17. Cuello, A.C., Maysinger, D., Garofalo, L., Tagari, P., Stephens, P.H., Pioro, E. and Piotte, M. (1987). Influence of gangliosides and nerve growth factor on the plasticity of forebrain cholinergic neurons. In Receptor-Receptor Interactions (Proceedings of the Wenner-Gren Symposium) (eds. K. Fuxe and L.F. Agnati),pp. 62–77. Macmillan, BasingstokGoogle Scholar
  18. Cunningham, T.J. (1982). Naturally occurring neuron death and its regulation by developing neural pathways. Int. Rev. Cytol., 74, 163–186.PubMedCrossRefGoogle Scholar
  19. Daitz, H.M. and Powell, T.P.S. (1954). Studies on the connexions of the fornix system. J. Neurol. Neurosurg. Psychiatry, 7, 75–82.CrossRefGoogle Scholar
  20. Eckenstein, F. (1988). Transient expression of NGF-receptor-like immunoreactivity in postnatal rat brain and spinal cord. Brain Res., 446, 149–154.PubMedCrossRefGoogle Scholar
  21. Fagan, A.M., Robertson, R. and Gage, F.H. (1988). Degeneration and regeneration in the outer molecular layer of the dentate gyrus after perforant path lesions: role of astrocytes, microglia and Interleukin-1. Soc. Neurosci. Abstr., 14, 116.Google Scholar
  22. Fischer, W., Wictorin, K., Bjorklund, A., Williams, L.R., Varon, S. and Gage, F.H. (1987). Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature, 329, 65–8.PubMedCrossRefGoogle Scholar
  23. Friedman, P.L., Larhammar, D., Holets, V.R., Gonzalez-Cavajal, M., Yu, Z.Y., Persson, H. and VVhittcmore, S.R. (1988). Rat B-NGF sequence and sites of synthesis in adult CNS. Soc. Neurosci. Abstr., 14, 827.Google Scholar
  24. Friedman, T. (1989). Progress toward human gene therapy. Science, 244, 1275–1281.CrossRefGoogle Scholar
  25. Gage, F.H., Bjorklund, A., Stenevi, U. and Dunnett, S.B. (1983). Functional correlates of compensatory collateral sprouting by aminergic and cholinergic afferents in the hippocampal formation. Brain Res., 268, 39–47.PubMedCrossRefGoogle Scholar
  26. Gage, F.H., Bjorklund, A. and Stenevi, U. (1984). Denervation releases a neuronal survival-factor in adult rat hippocampus. Nature, 308, 12, 637–639.PubMedCrossRefGoogle Scholar
  27. Gage, F.H. and Bjorklund, A. (1986a). Neural grafting in the aged rat brain. Ann. Res. Physiol., 48, 447–459.CrossRefGoogle Scholar
  28. Gage, F.H. and Bjorklund, A. (1986b). Cholinergic septal grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atropine sensitive mechanism. J. Neurosci., 6, 10, 2837–2847.PubMedGoogle Scholar
  29. Gage, F.H., Wictorin, K., Ficher, W., Wiliams, L.R., Varon, S. and Bjorklund, A. (1986c). Life and death of cholinergic neurons: In the septal and diagonal band region following complete fimbria fornix transection. Neuro Sci., 19, 241–255.Google Scholar
  30. Gage, F.H., Armstrong, D.M., Williams, L.R. and Varon, S. (1988). Morphologic response of axotomized septal neurons to nerve growth factor. J. Comp. Neurol., 269, 147–155.PubMedCrossRefGoogle Scholar
  31. Gage, F.H., Blaker, S.N., Davis, G.E., Engvall, E., Varon, S. and Manthorpe, M. (1988b). Human amnion membrane matrix as a substratum for axonal regeneration in the central nervous system. Exp. Brain Res., 72, 371–380.PubMedCrossRefGoogle Scholar
  32. Gage, F.H., Olinechek, P. and Armstrong, D.M. (1988). Astrocytes are important for NGF-mediated hippocampal sprouting. Exp. Neurol., 102, 2–13.PubMedCrossRefGoogle Scholar
  33. Gage, F.H., Batchelor, P., Chen, K.S., Chin, D., Higgins, G.A., Koh, S., Deputy, S., Rosenberg, M.B., Fischer, W. and Bjorklund, A. (1989). NGF receptor re-expression and NGF mediated cholinergic neuronal hypertrophy in the damaged adult neostriatum. Neuron, 2, 1177–1184.PubMedCrossRefGoogle Scholar
  34. Gall, C., Rose, G. and Lynch, G. (1979). Proliferative and migratory activities of glial cells in the partially deafferented hippocampus. J. Comp. Neurol., 183, 539–50.PubMedCrossRefGoogle Scholar
  35. Garofalo, L., Maysingcr, D. and Cuello, A.C. (1988). In vivo effects of GM1 and NGF administered in combination, following CNS retrograde degeneration. Soc. Neurosci. Abstr., 14, 826.Google Scholar
  36. Giulian, D., Baker, T.J., Shih, L.N. and Lachman, L.B. (1986). Interleukin-1 of the central nervous system is produced by ameboid microglia. J. Exp. Med., 164, 594–604.PubMedCrossRefGoogle Scholar
  37. Giulian, D., Woodward, J., Young, D.G., Krebs, J.F. and Lachman, L.B. (1988). Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization, J. Neurosci., 8, 2485–2490.PubMedGoogle Scholar
  38. Gnahn, H., Hefti, F., Heumann, R., Schwab, M.E. and Thoenen, H. (1983). NGF-mediated increase in choline acetyltransferase (ChAT) in the neonatal rat forbrain; evidence for physiological role of NGF in the brain? Dev. Brain Res., 9, 45–52.CrossRefGoogle Scholar
  39. Gomez-Pinilla, F., Guthrie, K., Leon, M. and Nieto-Sampedro, M. (1988). NGF receptor increase in the olfactory bulb after early odor deprivation in rats. Soc. Neursci. Abstr., 14, 685.Google Scholar
  40. Grady, S., Reeves, T. and Steward, O. (1984). Time course of retrograde degeneration of the cells of origin of the septohippocampal pathway after fimbria-fornix transections. Soc. Neurosci. Abstr., 10, 463.Google Scholar
  41. Greene, L.A. and Shooter, E.M. (1980). The nerve growth factor: Biochemistry, synthesis, and mechanism of action. Ann. Rev. Neurosci., 3, 353–402.PubMedCrossRefGoogle Scholar
  42. Hagg, T., Manthorpe, M., Vahlsing, H.L., and Varon, S. (1988). Delayed treatment with nerve growth factor reverses the apparent loss of cholinergic neurons after acute brain damage. Exp. Neurol., 101, 303–312.PubMedCrossRefGoogle Scholar
  43. Haroutunian, V., Kanof, P.D. and Davis, K.L. (1986). Partial reversal of lesion-induced deficits in cortical cholinergic markers by nerve growth factor. Brain. Res., 386, 397–399.PubMedCrossRefGoogle Scholar
  44. Hatten, M.E. and Liem, R.H.K. (1981). Astroglial cells provide a template for the positioning of developing cerebellar neurons in vitro. J. Cell. Biol., 90, 622–30.PubMedCrossRefGoogle Scholar
  45. Hayes, R.C., Rosenberg, M.B., Higgins, G.A., Chen, K.S., Gage, F.H. and Armstrong, D.M. (1988). In situ hybridization of NGF mRNA in adult rat brain. Soc. Neurosci. Abst., 14, 684.Google Scholar
  46. Hefti, F., Dravid, A. and Hartikka, J.J.(1984). Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. J. Brain Res., 293, 305–311.CrossRefGoogle Scholar
  47. Hefti, F., Hartikka, J.J., Eckenstein, F., Gnahn, H., Heumann, R. and Schwab, M. (1985). Nerve growth factor increases choline acetyl-transferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neurosci., 14, 55–68.CrossRefGoogle Scholar
  48. Hefti, F. (1986). Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transection. J. Neurosci., 6, 2155–2162.PubMedGoogle Scholar
  49. Hefti, F., Hartikka, J. and Knusel, B. (1986). Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative diseases. Neurobiol. Aging, in press.Google Scholar
  50. Heumann, R., Korshing, S. and Thoenen, H. (1987). Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J. Cell. Biol., 104, 1623–31.PubMedCrossRefGoogle Scholar
  51. Higgins, G.A., Koh, S., Chen, K.S. and Gage, F.H. (1989). Nerve growth Factor induces NGF-receptor gene expression in basal forebrain neurons of adult rat Brain. Exp. Neurol., in press.Google Scholar
  52. Honegger, P. and Lenoir, D. (1982).Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Dev. Brain Res., 3, 229–238.CrossRefGoogle Scholar
  53. Johnston, M.V., McKinney, M. and Coyle, J.T. (1981). Neocortical cholinergic innervation: A description of extrinsic and intrinsic components in the rat. Exp. Brain Res., 43, 159–172.PubMedCrossRefGoogle Scholar
  54. Johnston, M.V., Rutkowski, J.L., Wainer, B.H., Long, J.B. and Mobley, W.C. (1987). NGF effects on developing forebrain cholinergic neurons are regionally specific. Neurochem. Res., 12, 985–994.PubMedCrossRefGoogle Scholar
  55. Korsching, S., Heumann, R., Thocnen, H. and Hefti, F. (1986). Cholinergic denervation of the rat hippocampus by fimbrial transection leads to a transient accumulation of nerve growth factor (NGF) without change in mRNA (NGF) content. Neurosci. Lett., 66, 175–180PubMedCrossRefGoogle Scholar
  56. Kromer, L.F., Bjorklund, A. and Stenevi, U. (1981). Regeneration of the septohippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implants with bridges. Brain Res., 210, 173–200.PubMedCrossRefGoogle Scholar
  57. Kromer, L.R. and Cornbrooks, C. (1984). Laminin and a Schwann cell surface antigen present within transplants of cultured CNS cells colocalize with CNS axons regenerating in vivo. Soc. Neurosci. Abstr., 10, 1084.Google Scholar
  58. Kromer, L.F. (1987). Nerve growth factor treatment after brain injury prevents neuronal death. Science, 235, 214–16.PubMedCrossRefGoogle Scholar
  59. Large, T.H., Bodary, S.C., Clegg, D.O., Weskamp, G., Otten, U. and Reichardt, L.F. (1986). Nerve growth factor gene expression in the developing rat brain. Science, 234, 352–355.PubMedCrossRefGoogle Scholar
  60. Larkfors, L., Ebendal, T., Whittemore, S.R., Persson, H., Hoffer, B. and Olson, L. (1987). Decreased level of nerve growth factor (NGF) and its messenger RNA in the aged rat brain. Mol. Brain. Res., 3, 55–60.CrossRefGoogle Scholar
  61. Lewis, P.R., Shute, C.C.D. and Silver, A. (1967). Confirmation from cholineacetylase of a massive cholinergic innervation to the rat hippocampus. J. Physiol., 191, 215–224.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liesi, P., Kaakkola, S., Dahl, D. and Vaheri, A. (1984). Laminin is induced in astrocytes of adult brain injury. EMBO J., 683–686.Google Scholar
  63. Lindholm, D., Heumann, R., Meyer, M. and Thoenen, H. (1987). Interleukin-1 regulates synthesis of nerve growth factor in nonneuronal cells of rat sciatic nerve. Nature, 330, 658–660.PubMedCrossRefGoogle Scholar
  64. Lindsay, R.M. (1979). Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurons. Nature, 282, 80–82.PubMedCrossRefGoogle Scholar
  65. Loy, R. and Moore, R.Y. (1977). Anamalous innervation of the hippocampal formation by peripheral synpathetic axons following mechanical injury. Exp. Neurol., 57, 2, 645–650.PubMedCrossRefGoogle Scholar
  66. Martinez, H.J., Dreyfus, C.F., Jonakait, G.M. and Black, I.B. (1985). Nerve growth factor promotes cholinergic development in brain striatal cultures. PNAS, 82, 7777–7781.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Milner, T.A., Loy, R. and Amaral, D.G. (1983). An anatomical study of the development of the septohippocampal projection in the rat. Dev. Brain Res., 8, 343–371.CrossRefGoogle Scholar
  68. Mobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Buchanan, K. and Johnston, M.W. (1985). Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor. Science, 229, 284–287.PubMedCrossRefGoogle Scholar
  69. Mobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Gemski, J., Buchanan, K. and Johnston, M.V. (1986). Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Mol. Brain Res., 1, 53–62.CrossRefGoogle Scholar
  70. Montero, C.N. and Hcfti, F. (1988). Rescue of lesioned septal cholinergic neurons by nerve growth factor: Specificity and requirement for chronic treatment. J. Neurosci., 8, 2986–2999.PubMedGoogle Scholar
  71. Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Varon, S. and Cotman, C.W. (1983). Injury-induced neuronotrophic activity in adult rat brain: Correlation with survival delayed implants in the wound cavity. J. Neurosci., 3, 2219–2229.PubMedGoogle Scholar
  72. Peterson, G.M., Williams, L.R., Varon, S. and Gage, F.H. (1987). Loss of GABAergic neurons in the medial septum after fimbria-fornix transection. Neurosci, Lett. 76, 140–144.CrossRefGoogle Scholar
  73. Pioro, E.P., Ribeiro-da-Silva, A. and Cuello, A.C. (1988). Electron microscopy of nerve growth factor receptor immunoreactivity in cerebellar Purkinje cells of adult rats pretreated with colchicine. Soc. Neurosci. Abst., 14, 903.Google Scholar
  74. Raivich, G. and Kreutzberg, G.W. (1987). The localisation and distribution of high affinity beta-nerve growth factor binding sites in the central nervous system of the adult rat. A light microscopic study using 125I-beta nerve growth factor. Neurosci., 20, 23–36.Google Scholar
  75. Richardson, P.M., Verge Isse, V.M.K. and Riopelle, R.J. (1986). Distribution of neuronal receptors for nerve growth factor in the rat. J. Neurosci., 6, 2312–2321.PubMedGoogle Scholar
  76. Riopelle, R.J., Verge, V.M.K. and Richardson, P.M. (1987). Properties of receptors for nerve growth factor in the mature rat nervous system. Mol. Brain Res., 3, 45–53.CrossRefGoogle Scholar
  77. Rohrer, H. and Barde, Y.A. (1982). Presence and disappearance of nerve growth factor receptors on sensory neurons in culture. Dev. Biol., 89, 309–315.PubMedCrossRefGoogle Scholar
  78. Schwab, M.E., Otten, U., Agid, Y. and Thoenen, H. (1979). Nerve growth factor (NGF) in the rat CNS: Absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res., 168, 473–483.PubMedCrossRefGoogle Scholar
  79. Scott, S.M., Tarris, R., Eveleth, D., Mansfield, H., Weichsel, M.E. and Fisher, D.A. (1984). Bioassay detection of nouse nerve growth factor (mNGF) in brain of adult mice. J Neurosci. Res., 6, 653–658.CrossRefGoogle Scholar
  80. Seiler, M. and Schwab, M.E.(1984). Specific retrograde transport of nerve growth factor (NGF) from cortex to nucleus basalis in the rat. Brain Res., 300, 33–39PubMedCrossRefGoogle Scholar
  81. Shelton, D.L. and Reichardt, L.F. (1986). Studies on the expression of beta NGF gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several neuronal populations. Proc. Natl. Acad. Sci. USA, 83, 2714–2718.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sofroniew, M.V., Pearson, R.C.A., Eckenstein, F., Cuello, A.C. and Powell, T.P.S. (1983). Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Res., 289, 370–374.PubMedCrossRefGoogle Scholar
  83. Sofroniew, M.V., Pearson, R.C.A. and Powell, T.P.S. (1987). The cholinergic nuclei of the basal forebrain of the rat: normal structure, development, and experimentally induced degeneration. Brain Res., 411, 310–331.PubMedCrossRefGoogle Scholar
  84. Springer, J.E., Koh, S., Tayrien, M.W. and Loy, R. (1987). Basal forebrain magnoccllular neurons stain for nerve growth factor receptor: Correlation with cholinergic cell bodies and effects of axotomy. J. Neurosci. Res., 17, 111–118.PubMedCrossRefGoogle Scholar
  85. Stenevi, U. and Bjorklund, A. (1978). Growth of vascular sympathetic axons into the hippocampus after lesions of the septohippcampal pathway: A pitfall in brain lesion studies. Neurosci. Lett., 7, 219–224.PubMedCrossRefGoogle Scholar
  86. Stephens, P.H., Cuello, A.C., Sofroniew, M.V., Pearson, R.C.A. and Tagari, P. (1985). The effect of unilateral decortication upon choline acetyltransferase and glutamate decarboxylase activities in the nucelus basalis and other areas of the rat brain. J. Neurochem., 45, 1021–1026.PubMedCrossRefGoogle Scholar
  87. Storm-Mathisen, J. (1974). Choline acetyltransferase and acetylcholinesterase in fascia dentata following lesions of the entorhinal afferent. J. Brain Res., 80, 119–181.CrossRefGoogle Scholar
  88. Taniuchi, M. and Johnson, E.M. (1985). Characterization of the binding properties and retrograde axonal transport of monoclonal antibody directed against the rat nerve growth factor receptor. J. Cell. Biol., 101, 1100–1106PubMedCrossRefGoogle Scholar
  89. Taniuchi, ML, Schweizer, J.B. and Johnson, E.M. (1986). Nerve growth factor receptor molecules in rat brain. Proc. Natl. Acad. Sci. USA, 83, 1950–1954.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Tarris, R.H., Wieschsel, M.E. Jr. and Fisher, D.A. (1986). Synthesis and secretion of a nerve growth-stimulating factor by neonatal mouse astrocyte cells in vitro. Ped. Res., 20, 367–72.CrossRefGoogle Scholar
  91. Thoenen, H. and Barde, Y.A. (1980). Physiology of nerve growth factor. Physiol. Rev., 60, 1284–1335PubMedGoogle Scholar
  92. Tuszynski, M.H., Buzsaki, G., Stearns, G. and Gage, F.H. (1988). Septal cell death following fimbria/fornix transection, and hippocampal cholinergic regeneration following nerve growth factor infusion plus grafting of synthetic and neuronal bridges. Soc. Neurosci. Abstr.Google Scholar
  93. Vijayan, V.K. (1983). Lysosomal enzyme changes in young and aged control and entorhinal-lesioned rats. Neurobiol. Aging, 4, 13–23.PubMedCrossRefGoogle Scholar
  94. Wainer, B.H., Levey, A.I., Rye, D.B., Mesulam, M. and Mufson, E.J. (1985). Cholinergic and non-cholinergic septohippocampal pathways. Neurosci. Lett., 54, 45–52.PubMedCrossRefGoogle Scholar
  95. Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and DeLong, M.R. (1982). Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215, 1237–1239PubMedCrossRefGoogle Scholar
  96. Whittemore, S.R., Ebendal, T., Larkfors, L., Olson, L., Seiger, A., Stromberg, I. and Persson, H. (1986). Developmental and regional expression of B nerve growth factor messenger RNA and protein in the rat central nervous system. Proc. Natl. Acad. Sci. USA, 83, 817–821PubMedPubMedCentralCrossRefGoogle Scholar
  97. Williams, L.R., Varon, S., Peterson, G.M., Wictorin, K., Fisher, W., Bjorklund, A. and Gage, F.H. (1986). Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection. Proc. Natl. Acad. Sci. USA, 83, 9231–9235.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yan, Q. and Johnson, E.M. (1988). An immunohistochemical study of the nerve growth factor receptor in developing rats. J. Neurosci., 8, 3481–3498.PubMedGoogle Scholar

Copyright information

© The contributors 1990

Authors and Affiliations

  • Fred H. Gage
  • Karen S. Chen
  • Mark H. Tuszynski
  • Anne M. Fagan

There are no affiliations available

Personalised recommendations