Skip to main content

Functional Analysis of Neural Grafts in the Neostriatum

  • Chapter
Brain Repair

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

Abstract

In contrast to an earlier pessimism, contemporary brain research appears to offer new hope for neural repair after CNS injury. It is now recognised that synaptic and regenerative plasticity may represent normal processes in the mammalian CNS that permit a limited degree of spontaneous repair and recovery in the damaged brain. This has led to several strategies to promote neural repair. Firstly, the identification and isolation of neurotrophic factors that stimulate and guide axonal growth in development and that maintain neurones in maturity has led to their application to inhibit selective cell death and to promote regrowth of traumatized systems in the brain. Nevertheless, once cells do die, neurogenesis does not take place in the adult mammalian brain. Consequently, a second strategy has been the development of neural transplantation techniques for surgical replacement of lost populations of neurones within the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguayo, A.J., Bjorklund, A., Stenevi, U. and Carlstedt, T. (1984). Fetal mesencephalic neurones survíve and extend long axons across PNS grafts inserted into the adult rat neostriatum. Neurosci. Lett. 45, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Anand, B.K. and. Brobeck, J.R. (1951). Hypothalamic control of food intake in rats and cats. Yale J. Biol. Med 24, 123–140.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Annett, L.E., Dunnett, S.B., Rogers, D.C, Ridley, R.M., Baker, H.F., Jenner, P. and Marsden, C.D. (1989). A behavioural model for studying dopaminergic grafts in the marmoset. In Neural Mechanisms in Disorders of Movement (eds. A.R. Crossman and M.A. Sambrook). John Libbey, London, pp. 217–221.

    Google Scholar 

  • Arbuthnott, G., Dunnett, S.B. and MacLeod, N. (1985). The electrophysiological properties of single units in mesencephalic transplants in rat brain. Neurosci. Lett. 57, 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Bakay, R.A.E., Fiandace, M.S., Barrow, D.L., Schiff, A. and Collins, D.C. (1985) Preliminary report on the use of fetal tissue transplantation to correct MPTP-induced Parkinson-like syndrome in primates. Appl. Neurophysiol 48, 358–361.

    PubMed  CAS  Google Scholar 

  • Bjorklund, A. and Stenevi, U. (1979). Reconstruction of the nigrostriatal dopamine pathway by intracerebral transplants. Brain Res. 177, 555–560.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, A. and Stenevi, U. (1984). Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries. Ann. Rev. Neurosci. 7, 279–308.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, A., Dunnett, S.B., Stenevi, U., Lewis, M.E. and Iversen, S.D., (1980a). Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 199, 307–333.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, A., Schmidt, R.H. and Stenevi, U. (1980b). Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tiss. Res. 212, 39–45.

    Article  CAS  Google Scholar 

  • Bjorklund, A., Stenevi, U., Schmidt, R.H., Dunnett, S.B. and Gage, F.H. (1983). Intracerebral grafting of neuronal cell suspensions. II. Survival and growth of nigral cell suspensions. Acta Physiol. Scand suppl. 522, 9–18.

    PubMed  CAS  Google Scholar 

  • Bjorklund, A., Lindvall, O., Isacson, O., Brundin, P., Strecker, R.E. and Dunnett, S.B. (1987). Mechanisms of action of intracerebral neural implants. Trends Neurosci. 10, 509–516.

    Article  Google Scholar 

  • Bolam, J.P. (1984). Synapses of identified neurons in the neostriatum. In Functions of the Basal Ganglia (Ciba Foundation Symposium 107). Pitman, London, pp. 30–42.

    Google Scholar 

  • Carli, M., Evenden, J.L. and Robbins, T.W. (1985). Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature 313, 679–682.

    Article  PubMed  CAS  Google Scholar 

  • Chiodo, L.A., Antelman, S.M., Caggiula, A.R. and Lineberry, C.G (1980). Sensory stimuli alter the discharge rate of dopamine (DA) neurons: evidence for two functional types of DA cells in the substantia nigra. Brain Res. 189, 544–549.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, D.J., Brundin, P., Strecker, R.E., Nilsson, O.G., Bjorklund, A. and Lindvall, O. (1988a). Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Exp. Brain Res. 73, 115–126.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, D.J., Dunnett, S.B., Isacson, O., Sirinathsinghji, DJ.S. and Bjorklund, A. (1988b). Striatal grafts in rats with unilateral neostriatal lesions. I. Ultrastructural evidence of afferent synaptic inputs from the host nigrostriatal pathway. Neuroscience 24, 791–801.

    PubMed  CAS  Google Scholar 

  • Coyle, J.T. and Schwarcz, R. (1976). Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263, 244–246.

    Article  PubMed  CAS  Google Scholar 

  • David, S. and Aguayo, A J. (1981). Axonal elongation into peripheral nervous system ‘bridges’ after central nervous system injury in adult rats. Science 214, 931–933.

    Article  PubMed  CAS  Google Scholar 

  • Deckel, A.W., Robinson, R.G., Coyle, J.T. and Sanberg, P.R. (1983). Reversal of long-term locomotor abnormalities in the kainic acid model of Huntington’s disease by day 18 fetal striatal transplants. Eur. J. Pharmacol 93, 287–288.

    Article  PubMed  CAS  Google Scholar 

  • Deckel, A.W., Moran, T.H., Coyle, J.T., Sanberg, P.R. and Robinson, R.G. (1986). Anatomical predictors of behavioral recovery following fetal striatal implants. Brain Res. 365, 249–258.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia, M., Schiff, L. and Deckel, A.W. (1988). Neuronal organization of fetal striatal grafts in kainate-and sham-lesiöned rat caudate: light and electron microscopic observations. J. Neurosci. 8, 1112–1130.

    PubMed  CAS  Google Scholar 

  • Divac, I., Rosvold, H..E and Szwarcbart, M.K. (1967). Behavioral effects of selective ablation of the caudate nucleus. J. comp, physiol Psychol 63, 184–190.

    Article  CAS  Google Scholar 

  • Divac, I., Markowitsch, H.J. and Pritzel, M. (1978). Behavioral and anatomical consequences of small intrastriatal injections of kainic acid in the rat. Brain Res. 151, 523–532.

    Article  PubMed  CAS  Google Scholar 

  • Donoghue, J.P. and Herkenham, M. (1986). Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat. Brain Res. 365, 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Dubach, M., Schmidt, R.H., Martin, R., German, D.C. and Bowden, D.M. (1988) Transplant improves hemiparkinsonian syndrome in non-human primate: intracerebral injection, rotometry, tyrosine hydroxylase immunohistochemistry. Prog. Brain Res. 78, 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B. and Bjorklund, A. (1983). Conditioned turning: dopaminergic involvement in the initiation of movement rather than the movement itself. Neurosci. Lett. 41, 173–178.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B. and Iversen, S.D. (1981). Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behav. Brain Res. 2, 189–209.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B. and Iversen, S.D. (1982a). Sensorimotor impairments following localized kainic acid and 6-hydroxydopamine lesions of the neostriatum. Brain Res. 248, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B. and Iversen, S.D. (1982b). Spontaneous and drug-induced rotation following localized 6-hydroxydopamine and kainic acid lesions of the neostriatum. Neuropharmacology 21, 899–908.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Bjorklund, A., Stenevi, U. and Iversen, S.D., (1981a). Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Res. 215, 147–161.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Bjorklund, A., Stenevi, U. and Iversen, S.D. (1981b). Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensorimotor impairments and akinesia in rats with 6-OHDA lesions of the nigrostriatal pathway. Brain Res. 229, 209–217.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Bjorklund, A., Stenevi, U. and Iversen, S.D. (1981c). Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. II. Bilateral lesions. Brain Res. 229, 457–470.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Bjorklund, A., Schmidt, R.H., Stenevi, U. and Iversen, S.D. (1983a). Intracerebral grafting of neuronal cell suspensions. IV. Behavioural recovery in rats with unilateral implants of nigral cell suspensions in different forebrain sites. Acta Physiol. Scand. suppl. 522, 29–37.

    PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Bjorklund, A., Schmidt R, Stenevi, U. and Iversen, S.D. (1983b). Intracerebral grafting of neuronal cell suspensions. V. Behavioural recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions. Acta Physiol. Scand. suppl. 522, 39–46.

    PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Bunch, S.T., Gage, F.H. and Bjorklund, A. (1984). Dopamine-rich transplants in rats with 6-OHDA lesions in the ventral tegmental area. I. Effects on spontaneous and drug-induced locomotor activity. Behav. Brain Res. 13, 71–82.

    PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Lane, D. and Winn, P. (1985). Ibotenic acid lesions of the lateral hypothalamus: comparison with 6-hydroxydopamine-induced sensorimotor deficits. Neuroscience 14, 509–518.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Whishaw, I.Q., Jones, G.H. and Isacson, O. (1986). Effects of dopamine-rich grafts on conditioned rotation in rats with unilateral 6-OHDA lesions. Neurosci. Lett. 68, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Whishaw, I.Q., Rogers, D.C. and Jones, G.H. (1987). Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent skilled limb use in rats with 6-hydroxydopamine lesions. Brain Res. 415, 63–78.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Hernandez, T.D., Summerfield, A., Jones, G.H. and Arbuthnott, G. (1988a). Graft-derived recovery from 6-OHDA lesions: specificity of ventral mesencephalic graft tissues. Exp. Brain Res. 71, 411–424.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Isacson, O., Sirinathsinghji, D.J.S., Clarke, DJ and Bjorklund, A. (1988b). Striatal grafts in rats with unilateral neostriatal lesions. III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching. Neuroscience 24, 811–819.

    Google Scholar 

  • Dunnett, S.B., Rogers, D.C. and Richards, S.J. (1989). Reconstruction of the nigrostriatal pathway after 6-OHDA lesions by combination of dopamine-rich nigral grafts and nigrostriatal ‘bridge’ grafts. Exp. Brain Res. in press.

    Google Scholar 

  • Fibiger, H.C., Zis, A.P. and McGeer, E.G. (1973). Feeding and drinking deficits after 6-hydroxydopamine administration in the rat: similarities to the lateral hypothalamic syndrome. Brain Res. 55, 135–148.

    Article  PubMed  CAS  Google Scholar 

  • Fray, P.J., Dunnett, S.B., Iversen, S.D., Bjorklund, A. and Stenevi, U. (1983). Nigral transplants reinnervating the dopamine-depleted neostriatum can sustain intracranial self-stimulation. Science 219, 416–419

    Article  PubMed  CAS  Google Scholar 

  • Freed, W.J., Perlow, M.J., Karoum, F, Seiger, A., Olson, L., Hoffer, B.J. and Wyatt, R.J. (1980). Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioral, biochemical, and histochemical studies. Ann. Neurol. 8, 510–519.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T., Bolam, J.P., Bjorklund, A., Stenevi, U., Dunnett, S.B., Powell, J.F. and Smith, A.D., Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: a tyrosine hydroxylase immunocytochemical study. J. Neurosci. 5, 603–616.

    Google Scholar 

  • Gage, F.H., Stenevi, U., Carlstedt, T., Foster, G., Bjorklund, A. and Aguayo, A.J. (1985). Anatomical and functional consequences of grafting mesencephalic neurons into a peripheral nerve ‘bridge’ connected to the denervated striatum. Exp. Brain Res. 60, 584–589.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R. (1984). The neostriatal mosaic: compartmentalization of corticostriatal and nigrostriatal projections and their relationship to opiate receptor patches in the rat. Nature 311, 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Giordano, M., Hagenmeyer-Houser, S.H. and Sanberg, P.R. (1988). Intraparenchymal fetal striatal transplants and recovery in kainic acid lesioned rats. Brain Res. 446, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, P.S. and Nauta, W.J.H. (1977). An intricately patterned prefrontal-caudate projection in the rhesus monkey. J. comp. Neurol. 171, 369–386.

    Article  Google Scholar 

  • Graybiel, A.M. and Ragsdale, C.W. (1983). Biochemical anatomy of the striatum. In Chemical Neuroanatomy (ed. P.C. Emson). Raven Press, New York, pp. 427–504.

    Google Scholar 

  • Graybiel, A.M., Liu, F.-C. and Dunnett, S.B. (1989). Intrastriatal grafts derived from fetal striatal primordia. I. Phenotypy and modular organization. J. Neurosci. in press.

    Google Scholar 

  • Grossman, S.P., Dacey, D., Halaris, A.E., Collier, T. and Routtenberg, A. (1978). Aphagia and adipsia after preferential destruction of nerve cell bodies in hypothalamus. Science 202, 537–539.

    Article  PubMed  CAS  Google Scholar 

  • Hall, R.D., Bloom, F.E. and Olds, J. (1977). Neuronal and neurochemical substrates of reinforcement. Neurosci. Res. Prog. Bull. 15, 133–314.

    Google Scholar 

  • Herman, J.P., Choulli, K. and LeMoal, M. (1985). Hyper-reactivity to amphetamine in rats with dopaminergic grafts. Exp. Brain Res. 60, 521–526.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Brundin, P., Kelly, P.A.T., Gage, F.H. and Bjorklund, A. (1984). Functional neuronal replacement by grafted striatal neurones in the ibotenic acid lesioned rat striatum. Nature 311, 458–460.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Brundin, P., Gage, F.H. and Bjorklund, A. (1985). Neural grafting in a rat model of Huntington’s disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience 16, 799–817.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Dunnett, S.B. and Bjorklund, A. (1986). Graft-induced behavioral recovery in an animal model of Huntington disease. Proc. Natl Acad Sci USA 83, 2728–2732.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Isacson, O., Dawbarn, D., Brundin, P., Gage, F.H., Emson, P.C. and Bjorklund, A. (1987). Neural grafting in a rat model of Huntington’s disease: striosomal-like organization of striatal grafts as revealed by immunocytochemistry and receptor autoradiography. Neuroscience 22, 481–497.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, A.E., Domesick, V.B. and Nauta, W.J.H. (1982). The amygdalostriatal projection in the rat — an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7, 615–630.

    Article  PubMed  CAS  Google Scholar 

  • Laursen, A.M. (1963). Corpus striatum. Acta Physiol. Scand suppl. 211, 1–106.

    Google Scholar 

  • Lindvall, O., Backlund, E.-O., Farde, L., Sedvall, G., Freedman, R., Hoffer, B., Nobin, A., Seiger, A. and Olson, L. (1987). Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann. Neurol 22, 457–468.

    Article  PubMed  CAS  Google Scholar 

  • Lund, R.D., Harvey, A.R., Jaeger, C.B. and McLoon, S.C. (1982). Transplantation of embryonic neural tissue to the tectal region of newborn rats. In Changing Concepts of the Nervous System (eds. A.R. Morrison and P.L. Strick). Academic Press, New York, pp. 361–375.

    Google Scholar 

  • Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C. and Becerril, J.J. (1987). Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. New Eng J. Med 316, 831–834.

    Article  PubMed  CAS  Google Scholar 

  • Mahalik, T.J., Finger, T.E., Stromberg, I. and Olson, L. (1985). Substantia nigra transplants into denervated striatum of the rat: ultrastructure of graft and host interconnections. J. comp. Neurol 240, 60–70.

    Article  PubMed  CAS  Google Scholar 

  • Marsden, C.D. (1982). The mysterious motor function of the basal ganglia: the Robert Wartenberg lecture. Neurology 32, 514–539.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, J.F., Richardson, J.S. and Teitelbaum, P. (1974). Nigrostriatal bundle damage and the lateral hypothaalamic syndrome. J. comp. physiol. Psychol 87, 808–830.

    Article  PubMed  CAS  Google Scholar 

  • Mason, S.T. and Fibiger, H.C. (1979). Kainic acid lesions of the striatum in rats mimic the spontaneous motor abnormalities of Huntington’s disease. Neuropharmacology 18, 403–407.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, J.P., Cober, S.R., Schaible, E.R. and Walker, P.D. (1989). Minimal connectivity between six month neostriatal transplants and the host substantia nigra. Brain Res. 476, 345–350.

    Article  PubMed  Google Scholar 

  • Nadaud, D., Herman, J.P., Simon, M. and LeMoal, M. (1984). Functional recovery following transplantation of ventral mesencephalic dopaminergic cells in rats subjected to 6-OHDA lesion of the mesolimbic dopaminergic neurons. Brain Res. 304, 137–141.

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon, A., Cheramy, A. and Glowinski, J. (1977). Nigral and striatal dopamine release under sensory stimuli. Nature 269, 340–342.

    Article  PubMed  CAS  Google Scholar 

  • Oberg, R.G.E. and Divac, I. (1979). Cognitive functions of the neostriatum. In The Neostriatum (eds. I. Divac and R.G.E. Oberg). Pergamon Press, New York, pp. 291–313.

    Chapter  Google Scholar 

  • Olson, L., Bjorklund, H. and Hoffer, B.J. (1984). Camera bulbi anterior: new vistas on a classical locus for neural tissue transplantation. In Neural Transplants: Development and function (eds. J.R. Sladek and D.M. Gash). Plenum Press, New York, pp. 125–165.

    Chapter  Google Scholar 

  • Penn, R.D., Goetz, C.G., Tanner, C.M., Klawans, H.L., Shannon, K.M., Cornelia, C.L. and Witt, T.R. (1988). The adrenal medullary transplant operation for parkinson’s disease: clinical observation in five patients. Neurosurgery 22, 99–1004.

    Google Scholar 

  • Perlow, M.J., Freed, W.J., Hoffer, B.J., Seiger, A., Olson, L. and Wyatt, R.J. (1979). Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204, 643–647.

    Article  PubMed  CAS  Google Scholar 

  • Pisa, M. (1988). Motor functions of the striatum in the rat: critical role of the lateral region in tongue and forelimb reaching. Neuroscience 24, 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Pritzel, M., Isacson, O., Brundin, P., Wiklund, L. and Bjorklund, A. (1986). Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum in adult rats. Exp. Brain Res. 65, 112–126.

    Article  PubMed  CAS  Google Scholar 

  • Ranje, C. and Ungerstedt, U. (1977). Lack of acquisition in dopamine denervated animals tested in an underwater maze. Brain Res. 134, 95–111.

    Article  PubMed  CAS  Google Scholar 

  • Redmond, D.E., Sladek, J.R., Roth, R.H., Collier, T.J., Elsworth, J.D., Deutsch, A.Y. and Haber, S. (1987). Fetal neuronal grafts in monkeys given methylphenyltetrahydropyridine. Lancet i, 1125–1127.

    Google Scholar 

  • Rogers, D.C. and Dunnett, S.B. (1989). Dopamine-rich grafts in rats with neonatal 6-OHDA lesions: body weight regulation, activity, and effects of adult lesions. Behav. Brain Res. in press.

    Google Scholar 

  • Rogers, D.C, Martel, F.L. and Dunnett, S.B. (1989). Nigral grafts in neonatal rats protect from aphagia induced by subsequent adult 6-OHDA lesions: the importance of striatal location. Exp. Brain Res. in preparation.

    Google Scholar 

  • Rutherford, A., Garcia-Munoz, M., Dunnett, S.B. and Arbuthnott, G.W. (1987). Electrophysiological demonstration of host cortical inputs into striatal grafts. Neurosci. Lett. 83, 275–281.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R.H., Bjorklund, A. and Stenevi, U. (1981). Intracerebral grafting of dissociated CNS tissue suspensions: a new approach for neuronal transplantation to deep brain sites. Brain Res. 218, 347–356.

    Article  PubMed  CAS  Google Scholar 

  • Schultzberg, M., Dunnett, S.B., Bjorklund, A., Stenevi, U., Dockray, G. and Hokfelt, T. (1984). Dopamine and cholecystokinin immunoreactive neurones in mesencephalic grafts reinnervating the neostriatum. Neuroscience 12, 17–32

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Fuxe, K., Agnati, L.F., Hokfelt, T. and Coyle, J.T. (1979). Rotational behavior in rats with unilateral striatal kainic acid lesions: a behavioral model for studies on intact dopamine receptors. Brain Res. 170, 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, S.S. and Freed, W.J. (1987). Brain tissue transplantation in neonatal rats prevents a lesion-induced syndrome of aphagia, adipsia and akinesia. Exp. Brain Res. 65, 449–454.

    Google Scholar 

  • Sirinathsinghji, D.J.S., Dunnett, S.B., Isacson, O., Clarke, D.J. and Bjorklund, A. (1988). Striatal grafts in rats with unilateral neostriatal lesions. II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neuroscience 24, 803–810.

    PubMed  CAS  Google Scholar 

  • Sirinathsinghji, D.J.S. and Dunnett, S.B. (1989). Disappearance of the mu-opiate receptor patches in the rat neostriatum following nigrostriatal dopamine lesions and their restoration after implantation of nigral dopamine grafts. Brain Res. submitted.

    Google Scholar 

  • Stenevi, U., Bjorklund, A. and Svendgaard, N.-Aa. (1976). Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival. Brain Res. 114, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum, P. and Epstein, A.N. (1962). The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychol. Rev. 69, 74–80.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U. (1971a). Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol. Scand suppl. 367, 49–68.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U. (1971b). Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. suppl. 367, 69–93.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U. (1971c). Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol. Scand suppl. 367, 95–122.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U. and Arbuthnott, G.W. (1970). Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 485–493.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U., Ljungberg, T. and Ranje, C. (1977). Dopamine neurotransmission and the control of behaviour. In Psychobiology of the Striatum (eds. A.R. Cools, A.H.M. Lohman and J.H.L. van den Bercken). North-Holland, Amsterdam, pp. 85–97.

    Google Scholar 

  • Whishaw, I.Q. and Dunnett, S.B. (1985). Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behav. Brain Res. 18, 11–29.

    Article  PubMed  CAS  Google Scholar 

  • Whishaw, I.Q., O’Connor, W.T. and Dunnett, S.B. (1986). The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109, 805–843.

    Article  PubMed  Google Scholar 

  • Wictorin, K., Isacson, O., Fischer, W., Nothias, F., Peschanski, M. and Bjorklund, A. (1989a). Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum. I. Subcortical afferents. Neuroscience 27, 547–562.

    Google Scholar 

  • Wictorin, K. and Bjorklund, A. (1989b). Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum. II. Cortical afferents. Neuroscience in press.

    Google Scholar 

  • Wictorin, K., Simerly, R.B., Isacson, O., Swanson, L.W. and Bjorklund, A. (1989c). Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum. III. Efferent projecting graft neurons and their relation to host afferents within the grafts. Neuroscience in press.

    Google Scholar 

  • Winn, P., Tarbuck, A. and Dunnett, S.B. (1984). Ibotenic acid lesions of the lateral hypothalamus: comparison with the electrolytic lesion syndrome. Neuroscience 12, 225–240.

    Article  PubMed  CAS  Google Scholar 

  • Wright, A.K., Tulloch, I.F. and Arbuthnott, G.W. (1980). Possible links between hypothalamus and substantia nigra in the rat. Appetite 1, 43–51.

    Article  Google Scholar 

  • Yamamoto, B.K. and Freed, C.R. (1982). The trained circling rat: a model for inducing unilateral caudate dopamine metabolism. Nature 298, 467–468.

    Article  PubMed  CAS  Google Scholar 

  • Yeterian, E.H. and van Hoesen, G.W. (1978). Corticostriate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res. 139, 43–63.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond, M.J. and Strieker, E.M. (1972). Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats. Science 177, 1211–1213.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The contributors

About this chapter

Cite this chapter

Dunnett, S.B. (1990). Functional Analysis of Neural Grafts in the Neostriatum. In: Björklund, A., Aguayo, A.J., Ottoson, D. (eds) Brain Repair. Wenner-Gren Center International Symposium Series. Palgrave, London. https://doi.org/10.1007/978-1-349-11358-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11358-3_26

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11360-6

  • Online ISBN: 978-1-349-11358-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics