Skip to main content

The Role of Neuronal Dynamics and Positional Cues in the Patterning of Nerve Connections

  • Chapter
Brain Repair

Abstract

One of the most striking features of the nervous system is the topography of most of its interconnections. During development, neurons navigate over relatively long distances to connect in a predictable orientation and order. Understanding the genesis of these topographic connections is central not only to research on neural development, but also to efforts to regenerate a working set of connections following injury. Unfortunately, the events that are critical to the ordering of neuronal projections are difficult to observe directly; therefore, most attempts to study these processes in the vertebrate central nervous system rely upon a neuroanatomical examination of populations of axons in fixed tissue. Based upon such data, some of the principles important for neuronal patterning have been elucidated. Furthermore, the data has been used to infer the single cell behaviors that might be responsible for the formation of patterned nerve connections. The challenge now facing the field is to test experimentally the predictions made for the cellular dynamics and positional cues proposed to underlie the formation of neuronal maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnett, D.W. (1978). Statistical dependence between neighboring retinal ganglion cells in goldfish. Exp. Brain Res. 32, 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Ascher, P. and Nowak, L. (1987). Electrophysiological studies of NMDA receptors. Trends in Neurosci. 10, 284–288.

    Article  CAS  Google Scholar 

  • Cline, H.T., Debski, E.A. and Constantine-Paton, M. (1987) N-Methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. Proc. Natl. Acad. Sci. (USA) 84, 4342–4345.

    Article  CAS  Google Scholar 

  • Fine, A., Amos, W. B., Durbin, R. M., and McNaughton, P. A. (1988). Confocal microscopy: applications in neurobiology. Trends in Neuroscience 11, 346–351.

    Article  CAS  Google Scholar 

  • Fraser, S.E. (1985). Cell interactions involved in neuronal patterning: An experimental and theoretical approach. In Molecular Bases of Neural Development, G.M. Edelman, W.E. Gall, W.M. Cowan, eds., pp.481–507, Wiley, New York.

    Google Scholar 

  • Fraser, S.E. (1987). Intrinsic positional information guides the early formation of the retinotectal projection of Xenopus. Soc. Neurosci. Abst. 13, 368.

    Google Scholar 

  • Harris, W.A. (1980). The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders. J. Comp. Neurol. 194, 303–317.

    Article  PubMed  CAS  Google Scholar 

  • Holt, C.E. (1984). Does timing of axon outgrowth influence initial retinotectal topography in Xenopus? J. Neurosci. 4, 1130–1152

    PubMed  CAS  Google Scholar 

  • Holt, C.E. and Harris, W.A. (1983). Order in the initial retinotectal map in Xenopus: A new technique for labeling growing nerve fibers. Nature 301, 150–152.

    Article  PubMed  CAS  Google Scholar 

  • Honig, M. G., and Hume, R. I. (1986). Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term culture. J. Cell Biol. 103, 171–186.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, R.L. (1983). Tetrodotoxin inhibits the formation of the refined retinotopography in goldfish. Dev. Brain Res. 6, 293–298.

    Article  Google Scholar 

  • O’Rourke, N.A. and Fraser, S.E. (1986). Dynamic aspects of retinotectal map formation revealed by a vital-dye fiber-tracing technique. Devel. Biol. 114, 265–276.

    Article  Google Scholar 

  • O’Rourke, N.A., Fox, B.E.S. and Fraser, S.E. (1987). Changes in optic fiber morphology during development. Soc. Neurosci. Abst. 13, 368.

    Google Scholar 

  • Sakaguchi, D.S. and Murphey, R.K. (1985). Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations. J. Neurosci. 5, 3228–3245.

    PubMed  CAS  Google Scholar 

  • Schmidt, J.T. (1985). Factors involved in retinotectal map formation: Complementary roles for membrane recognition and activity-dependent synaptic stabilization. In Molecular Bases of Neural Development, G.M. Edelman, W.E. Gall and W.M. Cowan, eds., pp. 453–480, Wiley, New York.

    Google Scholar 

  • Schmidt, J.T. and Edwards, D.L. (1983). Activity sharpens the map during the regeneration of the retinotectal projection in goldfish. Brain Res. 269, 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J.T. and Eisele, L.E. (1985). Stroboscopic illumination and dark rearing block the sharpening of the regenerated retinotectal map in goldfish. Neuroscience 14, 535–546.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, R.W. (1963). Chemoaffinity in the orderly growth of nerve fibers and connections. Proc. Natl. Acad. Sci. (USA). 50, 703–710.

    Article  CAS  Google Scholar 

  • Sperry, R.W. (1965). Embryogenesis of behavioral nerve nets. In Organogenesis, R.L. DeHaan and H. Ursprung, eds., pp 161–186, Saunders, Philadelphia.

    Google Scholar 

  • Stuermer, C. A. O. (1988). Retinotopic organization of the developing retinotectal projection in the zebrafish embryo. J. Neurosci. 8, 4513–4530.

    PubMed  CAS  Google Scholar 

  • Udin, S.B. and Fawcett, J.W. (1988). Formation of topographic maps. Ann. Rev. Neurosci. 11, 289–327.

    Article  PubMed  CAS  Google Scholar 

  • White, J. G., Amos, W. B., and Fordham, M. (1987). An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Bio. 105, 41–48.

    Article  CAS  Google Scholar 

  • Yoon, M. (1973). Retention of the original topographic polarity by the 180 degree rotated tectal reimplant in young adult goldfish. J. Physiol. (Lond.) 233, 575–588.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The contributors

About this chapter

Cite this chapter

Fraser, S.E., O’Rourke, N.A. (1990). The Role of Neuronal Dynamics and Positional Cues in the Patterning of Nerve Connections. In: Björklund, A., Aguayo, A.J., Ottoson, D. (eds) Brain Repair. Wenner-Gren Center International Symposium Series. Palgrave, London. https://doi.org/10.1007/978-1-349-11358-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11358-3_18

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11360-6

  • Online ISBN: 978-1-349-11358-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics