Advertisement

Brain Repair pp 185-197 | Cite as

Laminin Receptors: From PC12 Cells to PNS

Chapter
  • 10 Downloads
Part of the Wenner-Gren Center International Symposium Series book series (WGS)

Abstract

The spatial and functional organization of individual cells into tissues is an event at the heart of metazoan development. This organization attains extraordinary complexity in the nervous system where inputs and outputs are matched at the level of single neurons. For example, in the visual system of frogs the axons of retinal ganglion cells form an array of synaptic connections in the tectum that reflects, with elegant precision, the positions of their somata in the retina. This topographic projection of the retina onto the tectum led Sperry (1963) to propose the now-famous chemoaffinity hypothesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheson, A., Edgar, D., Timpl, R. and Thoenen, H. (1986). Laminin increases both levels and activity of tyrosine hydroxylase in calf adrenal chromaffin cells. J. Cell Biol., 102, 151–159.PubMedCrossRefGoogle Scholar
  2. Beug, H., Gerisch, G., Kempff, S., Reidel, V. and Cremer G. (1970). Specific inhibition of cell contact in Dictyostelium by univalent antibodies. Exp. Cell Res. 63: 147–158.PubMedCrossRefGoogle Scholar
  3. Bevilaogua, M.P., Stengelin, S., Gimbrone, M.A. and Seed, B. Jr. (1989). Mouse lymph node homing receptor cDNA done encodes a glycoprotein revealing tandem interaction domain clones. Science, 243, 1160–1162.CrossRefGoogle Scholar
  4. Bronner-Fraser, M. and Lallier, T. (1988). A monoclonal antibody against a laminin-heparan sulfate proteoglycan complex perturbs cranial neural crest migration in vivo. J. Cell Biol., 106, 1321–1329.PubMedCrossRefGoogle Scholar
  5. Buck, C.A. and Horwitz, A.F. (1987). Cell surface receptors for extracellular matrix molecules. Ann. Rev. Cell Biol., 3, 179–205.PubMedCrossRefGoogle Scholar
  6. Carbonetto, S., Evans, D. and Cochard, P. (1987). Nerve fibre growth in culture on tissue substrata from central and peripheral nervous system. J. Neurosci., 7, 610–620.PubMedGoogle Scholar
  7. Caroni, P. and Schwab, M.E. (1988a). Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol., 106, 1281–1288.PubMedCrossRefGoogle Scholar
  8. Caroni, P. and Schwab, M.E. (1988b). Antibody against myelin-associated inhibitor of neurite growth neutralizes non-permissive substrate properties of CNS white matter. Neuron, 1, 85–96.PubMedCrossRefGoogle Scholar
  9. Cohen, J., Burne, J.R., Winter, J. and Bartlett, P. (1986). Retinal ganglion cells lose response to laminin with maturation. Nature, 322, 465–467.PubMedCrossRefGoogle Scholar
  10. Cohen, J., Burne, J.F., McKinlay, C. and Winter, J. (1987). The role of laminin and the laminin/fibronectin receptor complex in the out-growth of retinal ganglion cell axons. Dev. Biol., 122, 407–418.PubMedCrossRefGoogle Scholar
  11. Douville, P. and Carbonetto, S. (1989). Extracellular matrix adhesive glycoproteins and their receptors in the nervous system. In Neurobiology of Glyooconiuqates. (eds. R.V. Margolis and R.K. Marjolis). Plenum, New York.Google Scholar
  12. Edelman, G.M. (1986). Cell adhesion molecules in the regulation of animal form and tissue pattern. Ann. Rev. Cell Biol., 2, 81–116.PubMedCrossRefGoogle Scholar
  13. Edgar, D., Timpl, R. and Thonen, H. (1984). The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMDO J., 3, 1436–1468.Google Scholar
  14. Edgar, D. (1989). Neuronal laminin receptors. TINS, 12, 248–251.PubMedGoogle Scholar
  15. Engvall, E., Davis, G.E., Dickerson, K., Ruoslahti, E., Varon, S. and Manthorpe, M. (1987). Mapping of domains in human laminin using monoclonal antibodies: Localization of neurite promoting site. J. Cell Biol. 103, 2457–2465.CrossRefGoogle Scholar
  16. Gehlsen, K.R., Dillner, L., Engvall, E. and Ruoslahti, E. (1988). The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science, 241, 1228–1230.PubMedCrossRefGoogle Scholar
  17. Greene, L.A. and Tischler, A.S. (1982). PC12 pheochixxnocytoma cultures in neurobiological research. Adv. Cell Neurobiol. 3, 373–414.CrossRefGoogle Scholar
  18. Hall, D.E., Neugebauer, K.M. and Reichardt, L.R. (1987). Embryonic neural retina cell response to extracellular matrix proteins: Developmental changes and effects of the cell substratum attachment antibody (CSAT). J. Cell Biol., 104, 623–634.PubMedCrossRefGoogle Scholar
  19. Hemler, M.E. (1988). Adhesive receptors on hematopoietic cells. Immunol. Today, 9, 109–113.PubMedCrossRefGoogle Scholar
  20. Houde, M., Tawil, N., Blacher, R., Esch, F., Reichardt, L.F., Turner, D.C. and Carbonetto, S. (1989). Partial sequence of a rat laminin/collagen receptor identifies it as a VLA-1 type of integrin. J. Cell Biol. (Abst.), in press.Google Scholar
  21. Hynes, R.O. (1987). Integrins: A family of cell surface receptors. Cell, 48, 549–554.PubMedCrossRefGoogle Scholar
  22. Ide, C., Tohyama, K., Yokota, R., Nitatori, T. and Onodera, S. (1983). Schwann cell basal lamina and nerve regeneration. Brain Res., 288, 61–75.PubMedCrossRefGoogle Scholar
  23. Ignatius, M.J. and Reichardt, L.R. (1988) Identification of a neuronal laminin receptor: An Mr 200K/120K integrin heterodimer that binds laminin in a divalent cation-dependent manner. Neuron., 1, 713–725.PubMedCrossRefGoogle Scholar
  24. Kleinman, H.K., McGarvey, M.L., Hassell, J.R., Martin, G.R., Baron van Evercooren, A. and Dubois-Dalcq, M. (1984) The role of laminin in basement membranes and in the growth, adhesion, and differentiation of cells. In The Role of Extracellular Matrix in Development, (ed. R.L. Trelstad). Liss, New York, pp. 123–143.Google Scholar
  25. Lander, A.D., Fujii, D. and Reichardt, L.F. (1985). Laminin is associated with the “neurite outgrowth-promoting factors” found in conditioned media. Proc. Natl. Acad. Sci. (USA), 82, 2183–2187.CrossRefGoogle Scholar
  26. Leptin, M., Bogaert, T., Lehmann, R. and Wilcox, M. (1989). The function of PS integrins during drosophila embryogenesis. Cell, 56, 401–408.PubMedCrossRefGoogle Scholar
  27. Liesi, P. (1985a). Do neurons in the vertebrate CNS migrate on laminin? EMBO J., 4, 1163–1170.PubMedPubMedCentralGoogle Scholar
  28. Liesi, P. (1985b). Laminin-immunoreactive glia distinguish adult CNS systems from non-regenerative ones. EMBO J., 4, 2505–2511.PubMedPubMedCentralGoogle Scholar
  29. Madison, R.D., DaSilva, G., Dikkes, P., Sidman, R.L. and Chiu, T.H. (1987). Peripheral nerve regeneration with entubulation repair: Comparison of biodegradable nerve guide versus polyethylene tubes and the effects of a laminin-containing gel. Exp. Neurol., 95, 378–390.PubMedCrossRefGoogle Scholar
  30. Manthorpe, M., Engvall, E., Ruoslahti, E., Longo, F.M., Davis, G.E. and Varon, S. (1983). Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J. Cell Biol. 97, 1882–1890.PubMedCrossRefGoogle Scholar
  31. Martin, G.R. and Timpl, R., (1987). Laminin and other basement membrane components. Ann. Rev. Cell Biol., 3, 57–85.PubMedCrossRefGoogle Scholar
  32. Panayotou, G., End, P., Aumailley, M., Timpl, R. and Engel. J. (1989). Domains of laminin and growth-factor activity. Cell, 56, 93–101.PubMedCrossRefGoogle Scholar
  33. Rabacchi, S.A., Neve, R.L. and Fraga, V.C. (1988). Molecular cloning of the “dorsal eye antigen”: Homology to the high-affinity lamimin receptor. Soc. Neurosci. Abst. 14, 769.Google Scholar
  34. Reh, T.A., Nagy, T. and Gretton, H. (1987). Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin. Nature, 330, 68–71.PubMedCrossRefGoogle Scholar
  35. Rogers, S.L., Letourneau, P.C., Palm, S.L., McCarthy, J. and Furcht, L.T. (1983) Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin. Dev. Biol. 98, 212–220.PubMedCrossRefGoogle Scholar
  36. Ruoslahti, E. and Pierschbacher, M.D. (1987) New perspectives in cell adhesion: RGD and integrins. Science, 238, 491–497.PubMedCrossRefGoogle Scholar
  37. Rutishauser, U. (1986). Differential cell adhesion through spatial and temporal variations of NORM. TINS, 9, 374–378.Google Scholar
  38. Sandrock, A.W. Jr. and Matthew, W.D. (1987a) A in vitro neurite-promoting antigen functions in axonal regeneration in vivo. Science, 237, 1605–1608.PubMedCrossRefGoogle Scholar
  39. Sandrock, A.W. Jr. and Matthew, W.D. (1987b). Identification of a peripheral nerve neurite growth-promoting activity by development and use of an in vitro bioassay. Proc. Natl. Acad. Sci. (USA), 84, 6934–6938.CrossRefGoogle Scholar
  40. Santoro, S.A. (1986). Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen. Cell, 46, 913–920.PubMedCrossRefGoogle Scholar
  41. Savio, T. and Schwab, M.E. (1989). Rat CNS white matter, but not gray matter, is nonpermissive for neuronal cell adhesion and fiber outgrowth. J. Neurosci., 9, 1126–1133.PubMedGoogle Scholar
  42. Schwab, M.E. and Caroni, P. (1988). Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J. Neurosci., 8, 2371–2393.Google Scholar
  43. Schwab, M.E. and Thoenen, H. (1985). Dissociated neurons regeneration into sciatic nerve but not optic nerve expiants in culture irrespective of neurotrophic factors. J. Neurosci., 5, 2415–2423.PubMedGoogle Scholar
  44. Sperry, R.W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. (USA) 50, 703–707.CrossRefGoogle Scholar
  45. Takeichi, M. (1987). Cadherins: A molecular family essential for selective cell-cell adhesion and animal morphogenesis. Trends in Genetics, 3, 213–217.CrossRefGoogle Scholar
  46. Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F. and Hynes, R.O. (1986) Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell, 46, 271–282.PubMedCrossRefGoogle Scholar
  47. Tomaselli, K.J., Damsky, C.H. and Reichardt, L.F. (1988). Purification and characterization of mammalian integrins expressed by a rat neuronal cell line (PC12): Evidence that they function as a α/β heterodimeric receptors for laminin and Type IV collagen. J. Cell Biol. 107, 1241–1252.PubMedCrossRefGoogle Scholar
  48. Tomaselli, K.J., Damsky, C.H. and Reichardt, L.F. (1987). Interactions of a neuronal cell line (PC12) with laminin, collagen IV, and fibronectin: Identification of integrin-related glycoproteins involved in attachment and process outgrowth. J. Cell Biol. 105, 2347–2358.PubMedCrossRefGoogle Scholar
  49. Tomaselli, K.J., Hall, D.E., Reichardt, L.F., Flier, L.A., Turner, D.C. and Carbonetto, S. (1989). A neuronal cell line (PC12) expresses two β1-class integrins that recognize different cell attachment sites in laminin. Soc. Neurosci. Abst. 15, in press.Google Scholar
  50. Tawil, N.J., Houde, M. and Carbonetto, S. (1989). Isolation and partial characterization of a laminin/collagen receptor on astrocytes. Soc. Neurosci. Abst. 15, in press.Google Scholar
  51. Toyota, B., Carbonetto, S. and David, S. (1988). Involvement of laminin in nerve regeneration in vivo. Soc. Neurosci. Abst., 14, 498.Google Scholar
  52. Turner, D.C., Flier, L.A. and Carbonetto, S. (1987). Magnesium-dependent attachment and neurite outgrowth by PC12 cells on collagen and laminin substrata. Dev. Biol. 121, 510–525.PubMedCrossRefGoogle Scholar
  53. Turner, D.C., Flier, L.A. and Carbonetto, S. (1989). Identification of a cell-surface protein involved in PC12 cell-substratum adhesion and neurite outgrowth on laminin and collagen. J. Neurosci., 9, (in press).Google Scholar
  54. Wilson, H.V. (1907). On some phenomena of coalesence and regeneration in sponges. J. Exp. Zool. 5, 243–258.CrossRefGoogle Scholar
  55. Yamamoto, T., Iwasaki, Y., Yamamoto, H., Konno, H. and Isemura, M. (1988). Intraneuronal laminin-like molecule in the central nervous system: Demonstration of its unique differential distribution. J. Neurol. Science, 84, 1–13.CrossRefGoogle Scholar

Copyright information

© The contributors 1990

Authors and Affiliations

There are no affiliations available

Personalised recommendations