Skip to main content

GAP-43: A Gene for Neuronal Remodeling

  • Chapter
Book cover Brain Repair

Abstract

The mammalian neuron is post-mitotic for most of the animal’s life. The brain’s adaptation to its microenvironment during these many years does not rely upon selective expansion of appropriate clones, as occurs with lymphocytes, but rather is due to changes in connectivity, often with physical changes in synaptic structure. This “plasticity” is most evident during development (Bailey and Chen, 1983; Cotman and Nieto-Sampedro, 1984; Greenough et al., 1986), but persists for the life of the animal (Purves and Lichtman, 1980; Purves et al., 1987). It is reasonable to presume that particular sets of genes are expressed coordinately during these long-term changes in nerve terminal structure. Growth of the neuron during development and repair also involves structural changes in the nerve, and is likely to depend upon sets of “growth-associated” genes (Skene, 1984, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, C.H., and Chen, M. Morphological basis of long-term habituation and sensitization in aplysia. (1983) Science 220, 91–93.

    Article  PubMed  CAS  Google Scholar 

  • Baizer, L., and Fishman, M.C. (1987). Recognition of specific targets by cultured dorsal root ganglion neurons. J. Neurosci. 7, 2305–2311.

    PubMed  CAS  Google Scholar 

  • Basi, G.S., Jacobson, R.D., Virag, I., Schilling, J., and Skene, J.H.P. (1987). Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth. Cell 49, 785–791.

    Article  PubMed  CAS  Google Scholar 

  • Benowitz, L.I., and Lewis, E.R. (1983). Increased transport of 44,000-49,000 dalton acidic proteins during regeneration of the goldfish optic nerve: a two dimensional gel analysis. J. Neurosci. 3, 2153–2163.

    PubMed  CAS  Google Scholar 

  • Benowitz, L.I., Apostolides, P.J., Perrone-Bizzozero, N., Finklestein, S.P., and Zwiers, H. (1988). Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain. J. Neurosci. 8, 339–352.

    PubMed  CAS  Google Scholar 

  • Benowitz, L.I., Perrone-Bizzozero, N.I., Finklestein, S.P., and Bird, E.D. (1989). Localization of the growth-associated phosphoprotein GAP-43 (B-50, F1) in the human cerebral cortex. J. Neurosci. 9, 990–995.

    PubMed  CAS  Google Scholar 

  • Benowitz, L.I., and Routtenberg, A. (1987). A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism, and synaptic plasticity. T.I.N.S. 10, 527–532.

    CAS  Google Scholar 

  • Bray, D. and Hollenbeck, P.J. (1988). Growth cone motility and guidance. Ann. Rev. Cell Biol. 4, 43–61.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S.Y., Murakami, K., and Routtenberg, A. (1986). Phosphoprotein Fl: Purification and characterization of a brain kinase C substrate related to plasticity. J. Neurosci. 6, 3618–3627.

    PubMed  CAS  Google Scholar 

  • Chow, M., Newman, J.F.E., Filman, D., Hogle, J.M., Rowlands, D.J., and Brown, F. (1987). Myristylation of Picornavirus capsid protein VP4 and its structural significance. Nature 327, 482–486.

    Article  PubMed  CAS  Google Scholar 

  • Cimier, B.M., Andreasen, T.J., Andreasen, K.I., and Storm, D.R. (1985). P-57 is a neural specific calmodulin-binding protein. J. Biol. Chem. 260, 10784–10788.

    Google Scholar 

  • Cimier, B.M., Giebelhaus, D.H., Wakim, B.T., Storm, D.R., and Moon, R.T. (1987). Characterization of murine cDNAs encoding P-57, a neural-specific calmodulin-binding protein. J. Biol. Chem. 262, 12158–12163.

    Google Scholar 

  • Cotman, C.W., and Nieto-Sampedro, M. (1984). Cell biology of synaptic plasticity. Science 225, 1287–1294.

    Article  PubMed  CAS  Google Scholar 

  • de la Monte, S.M., Federoff, H.J., Ng, S.-C, Grabczyk, E., and Fishman, M.C. (1989). GAP-43 gene expression during development: persistence in a distinctive set of neurons in the mature central nervous system. Develop. Brain Res. 46, 161–168.

    Article  Google Scholar 

  • Federoff, H.J., Grabczyk, E., and Fishman, M.C. (1988). Dual regulation of GAP-43 gene expression by nerve growth factor and glucocorticoids. J. Biol. Chem. 263, 19290–19295.

    PubMed  CAS  Google Scholar 

  • Goslin, K., Schreyer, D.J., Skene, J.H.P., and Banker, G. (1988). Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature 336, 672–674.

    Article  PubMed  CAS  Google Scholar 

  • Greenough, W.T., McDonald, J.W., Parnisari, R.M., and Camel, J.E. (1986). Environmental conditions modulate degeneration and new dendrite growth in cerebellum of senescent rats. Brain Res. 380, 136–143.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, P.N. (1989). Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons. J. Neurosci. 9, 893–897.

    PubMed  CAS  Google Scholar 

  • Kalil, K., and Skene, J.H.P. (1986). Elevated synthesis of an axonally-transported protein correlates with axon outgrowth in normal and injured pyramidal tracts. J. Neurosci. 6, 2563–2570.

    PubMed  CAS  Google Scholar 

  • Karns, L.R., Ng, S.-C., Freeman, J.A., and Fishman, M.C. (1987). Cloning of complementary DNA for GAP-43, a neuronal growth-related protein. Science 236, 597–600.

    Article  PubMed  CAS  Google Scholar 

  • Lovinger, D.M., Akers, R.F., Nelson, R.B., Barnes, C.A., McNaughton, B.L., and Routtenberg, A. (1985). A selective increase in phosphorylation of protein F1, a protein kinase C substrate, directly related to three-day growth of long-term synaptic enhancement. Brain Res. 343, 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, L., and Letourneau, P.C. (1984). Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J. Cell Biol. 99, 2041–2047.

    Article  PubMed  CAS  Google Scholar 

  • Matlin, K.S. (1986). The sorting of proteins to the plasma membrane in epithelial cells. J. Cell Biol. 103, 2565–2568.

    Article  PubMed  CAS  Google Scholar 

  • Neve, R.L., Finch, E.A., Bird, E.D., and Benowitz, L.I. (1988). Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain. Proc. Natl. Acad. Sci. USA 85, 3638–3642.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Neve, R.L., Perrone-Bizzozero, N.I., Finklestein, S., Zwiers, H., Bird, E., Kurnit, D.M., and Benowitz, L.I. (1987). The neuronal growth-associated protein GAP-43 (B-50, Fl): neuronal specificity, developmental regulation and regional distribution of the human and rat mRNAs. Mol. Brain Res. 2, 177–183.

    Article  CAS  Google Scholar 

  • Ng, S.-C., de la Monte, S.M., Conboy, G.L., Karns, L.R., and Fishman, M.C. (1988). Cloning of human GAP-43: growth association and ischemic resurgence. Neuron 1, 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher, A.B., Van Dongen, C.J., Zwiers, H., and Gispen, W.H. (1983). Affinity-purified anti-B-50 protein antibody: Interference with the function of the phosphoprotein B-50 in synaptic plasma membranes. J. Neurochem. 41, 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Perrone-Bizzozero, N.I., Weiner, D., Hauser, G., and Benowitz, L.I. (1988). Extraction of major acidic Ca2+-dependent phosphoproteins from synaptic membranes. J. Neurosci. Res. 20, 346–350.

    Article  PubMed  CAS  Google Scholar 

  • Pfenninger, K.P., Ellis, L., Johnson, M.P., Friedman, L.B., and Somlo, S. (1983). Nerve growth cones isolated from fetal rat brain: subcellular fractionation and characterization. Cell 35, 573–584.

    Article  PubMed  CAS  Google Scholar 

  • Purves, D., and Lichtman, J.W. (1980). Elimination of synapses in the developing nervous system. Science 210, 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Purves, D., Voyvodic, J.T., Magrassi, L., and Yawo, H. (1987). Nerve terminal remodeling visualized in living mice by repeated examination of the same neuron. Science 238, 1120–1126.

    Article  Google Scholar 

  • Rosenthal, A., Chan, S.Y., Henzel, W., Haskell, C., Kuang, W.-J., Chen, E., Wilcox, J.N., Ullrich, A., Goeddel, D.V., and Routtenberg, A. (1987). Primary structure and mRNA localization of protein F1, a growth-related protein kinase C substrate associated with synaptic plasticity. EMBO J. 6, 3641–3646.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schultz, A.M., Henderson, L.E. and Oroszlan, S. (1988). Fatty acylation of proteins. Ann. Rev. Cell Biol. 4, 611–647.

    Article  PubMed  CAS  Google Scholar 

  • Simkowitz, P., Ellis, L., and Pfenninger, K.H. (1989). Membrane proteins of the nerve growth cone and their developmental regulation. J. Neurosci. 9, 1004–1017.

    PubMed  CAS  Google Scholar 

  • Skene, J.H.P. (1984). Growth-associated proteins and the curious dichotomies of nerve regeneration. Cell 37, 697–700.

    Article  PubMed  CAS  Google Scholar 

  • Skene, J.H.P. (1989). Axonal growth-associated proteins. Ann. Rev. Neurosci. 12, 127–156.

    Article  PubMed  CAS  Google Scholar 

  • Skene, J.H.P., and Virag, I. (1989). Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J. Cell Biol. 108, 613–624.

    Article  PubMed  CAS  Google Scholar 

  • Skene, J.H.P., and Willard, M. (1981a). Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J. Cell Biol. 89, 86–95.

    Article  PubMed  CAS  Google Scholar 

  • Skene, J.H.P., and Willard, M., (1981b). Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J. Cell Biol. 89, 96–103.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skene, J.H.P., Jacobson, R.D., Snipes, G.J., McGuire, C.B., Norden, J.J., and Freeman, J.A. (1986). A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 233, 783–786.

    Article  PubMed  CAS  Google Scholar 

  • Van Hooff, C.O.M., De Graan, P.N.E., Oestreicher, A.B., and Gispen, W.H. (1988). B-50 phosphorylation and polyphosphoinositide metabolism in nerve growth cone membranes. (1988). J. Neurosci. 8, 1789–1795.

    PubMed  Google Scholar 

  • Verhaagen, J., Oestreicher, A.B., Gispen, W.H., and Margolis, F.L. (1989). The expression of the growth associated protein B50/GAP43 in the olfactory system of neonatal and adult rats. J. Neurosci. 9, 683–691.

    PubMed  CAS  Google Scholar 

  • Wickner, W.T., and Lodish, H.F. (1985). Multiple mechanisms of protein insertion into and across membranes. Science 230, 400–407.

    Article  PubMed  CAS  Google Scholar 

  • Zuber, M.X., Goodman, D.W., Karns, L.R., and Fishman, M.C. (1989). The neuronal growth-associated protein GAP-43 induces filopodia in non-neuronal cells. Science 244, 1193–1195.

    Article  PubMed  CAS  Google Scholar 

  • Zwiers, H., Schotman, P., and Gispen, W.H. (1980). Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membranes. J. Neurochemistry 34, 1689–1699.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The contributors

About this chapter

Cite this chapter

Fishman, M.C., Zuber, M.X. (1990). GAP-43: A Gene for Neuronal Remodeling. In: Björklund, A., Aguayo, A.J., Ottoson, D. (eds) Brain Repair. Wenner-Gren Center International Symposium Series. Palgrave, London. https://doi.org/10.1007/978-1-349-11358-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11358-3_14

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11360-6

  • Online ISBN: 978-1-349-11358-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics