Generating Immortalized Immunoglobulin-secreting Human Lymphocytes by Recombinant DNA Technology

  • Martin I. Mally
  • Mark C. Glassy


The classical technique of producing hybridomas involves the fusion of B lymphocytes, albeit at a low efficiency (approximately 1 hybrid per 105–106 cells), with an appropriate fusion partner, typically a myeloma or lymphoblastoid cell line, via the cumbersome and somewhat unpredictable polyethylene glycol (PEG) procedure.1 The fusion partner simply acts as a vector, supplying immortalization functions to an immunoglobulin-secreting lymphocyte. Recently, however, other approaches have become available that have the potential to generate immortalized, immunoglobulin-secreting lymphocytes with a higher efficiency. The aim of this chapter is to provide an introduction to an alternative method of generating immortalized lymphocytes—that of a form of DNA-mediated gene transfer known as electroporation.


Electric Field Strength Mycophenolic Acid Conical Centrifuge Tube Electroporation Buffer Electroporation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohler, G., and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497.CrossRefGoogle Scholar
  2. 2.
    Graham, F. L., and Van der Eb, A. J. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467.CrossRefGoogle Scholar
  3. 3.
    Robins, D. M., Ripley, S., Henderson, A. S., and Axel, R. 1981. Transforming DNA integrates into the host chromosome. Cell 23:29–39.CrossRefGoogle Scholar
  4. 4.
    Wigler, M., Silverstein, S., Lee, L-S., Pellicer, A., Cheng, Y.-C., and Axel, R. 1977. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11:223–232.CrossRefGoogle Scholar
  5. 5.
    Oi, V. T., Morrison, S. L., Herzenberg, L. A., and Berg, P. 1983. Immunoglobulin gene expression in transformed lymphoid cells. Proc. Natl. Acad. Sci. USA 80:825–829.CrossRefGoogle Scholar
  6. 6.
    Farber, F. E., Melnick, J. L., and Butel, J. S. 1975. Optimal conditions for uptake of exogenous DNA by Chinese hamster lung cells deficient in hypoxanthine guanine phosphoribosyltrans-ferase. Biochim. Biophys. Acta 390:298–311.CrossRefGoogle Scholar
  7. 7.
    McCutchan, J. H., and Pagano, J. S. 1968. Enhancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran. J. Natl. Cancer Inst. 41:351–357.Google Scholar
  8. 8.
    Miller, A. D., Jolly, D. J., Friedmann, T., and Verma, I. M. 1983. A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): Gene transfer into cells obtained from humans deficient in HPRT.Proc. Natl. Acad. Sci. USA 80:4709–4713.CrossRefGoogle Scholar
  9. 9.
    Mulligan, R. C., Howard, B. H., and Berg, P. 1979. Synthesis of rabbit β-globin in cultured monkey kidney cells following infection with a SV40 β-globin recombinant genome. Nature 277:108–114.CrossRefGoogle Scholar
  10. 10.
    Fraley, R., Subramani, S., Berg, P., and Papahadjopoulos, D. 1980. Introduction of liposome-encapsulated SV40 DNA into cells. J. Biol. Chem. 255:10431–10435.Google Scholar
  11. 11.
    Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. 1982. Liposomes as gene carriers: Efficient transformation of mouse L cells by thymidine kinase gene. Science 215:166–168.CrossRefGoogle Scholar
  12. 12.
    Feigner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M. 1987. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84:7413–7417.CrossRefGoogle Scholar
  13. 13.
    de Saint Vincent, B. R., Delbruck, S., Eckhart, W., Meinkoth, J., Vitto, L., and Wahl, G. 1981. The cloning and reintroduction into animal cells of a functional CAD gene, a dominant amplifiable genetic marker. Cell 27:267–277.CrossRefGoogle Scholar
  14. 14.
    Schaffner, W. 1980. Direct transfer of cloned genes from bacteria to mammalian cells. Proc. Natl. Acad. Sci. USA 77:2163–2167.CrossRefGoogle Scholar
  15. 15.
    Sugden, B., Marsh, K., and Yates, J. 1985. A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol. Cell. Biol. 5:410–413.CrossRefGoogle Scholar
  16. 16.
    Rassoulzadegan, M., Binetruy, B., and Cuzin, F. 1982. High frequency of gene transfer after fusion between bacteria and eukaryotic cells. Nature 295:257–259.CrossRefGoogle Scholar
  17. 17.
    Sandri-Goldin, R. M., Goldin, A. L., Levine, M., and Glorioso, J. C. 1981. High-frequency transfer of cloned herpes simplex virus type 1 sequences to mammalian cells by protoplast fusion. Mol. Cell. Biol. 1:743–752.CrossRefGoogle Scholar
  18. 18.
    Anderson, W. F., Killos, L., Sanders-Haigh, L., Kretschmer, P. J., and Diacumakos, E. G. 1980. Replication and expression of thymidine kinase and human globin genes microinjected into mouse fibroblasts. Proc. Natl. Acad. Sci. USA 77:5399–5403.CrossRefGoogle Scholar
  19. 19.
    Capecchi, M. R. 1980. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479–488.CrossRefGoogle Scholar
  20. 20.
    Thomas, K. R., Folger, K. R., and Capecchi, M. R. 1986. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–428.CrossRefGoogle Scholar
  21. 21.
    Zimmermann, U. 1982. Electric field-mediated fusion and related electrical phenomena. Biochim. Biophys. Acta 694:227–277.CrossRefGoogle Scholar
  22. 22.
    Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. 1982. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1:841–845.Google Scholar
  23. 23.
    Wong, T-K., and Neumann, E. 1982. Electric field mediated gene transfer. Biochem. Biophys. Res. Commun. 107:584–587.CrossRefGoogle Scholar
  24. 24.
    Potter, H., Weir, L., and Leder, P. 1984. Enhancer-dependent expression of human κ immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA 81:7161–7165.CrossRefGoogle Scholar
  25. 25.
    Zimmermann, U., and Vienken, J. 1982. Electric field-induced cell-to-cell fusion. J. Memb. Biol. 67:165–182.CrossRefGoogle Scholar
  26. 26.
    Chu, G., Hayakawa, H., and Berg, P. 1987. Electroporation for the efficient transfection of mammalian cells with DNA. Nucl. Acids Res. 15:1311–1326.CrossRefGoogle Scholar
  27. 27.
    Knutson, J. C., and Yee, D. 1987. Electroporation: Parameters affecting transfer of DNA into mammalian cells. Anal. Biochem. 164:44–52.CrossRefGoogle Scholar
  28. 28.
    Toneguzzo, F., Hayday, A. C., and Keating, A. 1986. Electric field-mediated DNA transfer: Transient and stable gene expression in human and mouse lymphoid cells. Mol. Cell. Biol. 6:703–706.CrossRefGoogle Scholar
  29. 29.
    Knight, D. E. 1981. Rendering cells permeable by exposure to electric fields. Tech. Cell. Physiol. 113:1–20.Google Scholar
  30. 30.
    Knight, D. E., and Scrutton, M. C. 1986. Gaining access to the cytosol: The technique and some applications of electropermeabilization. Biochem. J. 234:497–506.CrossRefGoogle Scholar
  31. 31.
    Toneguzzo, F., and Keating, A. 1986. Stable expression of selectable genes introduced into human hematopoietic stem cells by electric field-mediated DNA transfer. Proc. Natl. Acad. Sci. USA 83:3496–3499.CrossRefGoogle Scholar
  32. 32.
    Tur-Kaspa, R., Teicher, L., Levine, B. J., Skoultchi, A. I., and Shafritz, D. A. 1986. Use of electroporation to introduce biologically active foreign genes into primary rat hepatocytes. Mol. Cell. Biol. 6:716–718.CrossRefGoogle Scholar
  33. 33.
    Bradshaw, H. D., Jr., Parson, W. W., Sheffer, M., Lioubin, P. J., Mulvihill, E. R., and Gordon, M. P. 1987. Design, construction, and use of an electroporator for plant protoplasts and animal cells. Anal. Biochem. 166:342–348.CrossRefGoogle Scholar
  34. 34.
    Hama-Inaba, H., Takahashi, M., Kasai, M., Shiomi, T., Ito, A., Hanaoka, F., and Sato, K. 1987. Optimum conditions for electric pulse-mediated gene transfer to mammalian cells in suspension. Cell Struct. Funct. 12:173–180.CrossRefGoogle Scholar
  35. 35.
    Spandidos, D. A. 1987. Electric field-mediated gene transfer (electroporation) into mouse Friend and human K562 erythroleukemic cells. Gene Anal. Techn. 4:50–56.CrossRefGoogle Scholar
  36. 36.
    Kinosita, K., Jr., and Tsong, T. Y. 1977. Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim. Biophys. Acta 471:227–242.CrossRefGoogle Scholar
  37. 37.
    Kinosita, K., Jr., and Tsong, T. Y. 1977. Formation and resealing of pores of controlled sizes in human erythrocyte membranes. Nature 268:438–441.CrossRefGoogle Scholar
  38. 38.
    Stopper, H., Jones, H., and Zimmermann, U. 1987. Large scale transfection of mouse L-cells by electropermeabilization. Biochim. Biophys. Acta 900:38–44.CrossRefGoogle Scholar
  39. 39.
    Bertling, W., Hunger-Bertling, K., and Cline, M. J. 1987. Intranuclear uptake and persistence of biologically active DNA after electroporation of mammalian cells. J. Biochem. Biophys. Meth. 14:223–232.CrossRefGoogle Scholar
  40. 40.
    Boggs, S. S., Gregg, R. G., Borenstein, N., and Smithies, O. 1986. Efficient transformation and frequent single-site, single-copy insertion of DNA can be obtained in mouse erythroleukemia cells transformed by electroporation. Exp. Hematol. 14:988–994.Google Scholar
  41. 41.
    Jastreboff, M. M., Ito, E., Bertino, J. R., and Narayanan, R. 1987. Use of electroporation for high-molecular-weight DNA-mediated gene transfer. Exp. Cell Res. 171:513–517.CrossRefGoogle Scholar
  42. 42.
    Miller, C. K., and Temin, H. M. 1983. High-efficiency ligation and recombination of DNA fragments by vertebrate cells. Science 220:606–609.CrossRefGoogle Scholar
  43. 43.
    Michel, M. R., Elgizoli, M., Koblet, H., and Kempf, C. 1988. Diffusion loading conditions determine recovery of protein synthesis in electroporated P3X63Ag8 cells. Experientia 44:199–203.CrossRefGoogle Scholar
  44. 44.
    Colbere-Garapin, F., Horodniceanu, F., Kourilsky, P., and Garapin, A.-C. 1981. A new dominant hybrid selective marker for higher eukaryotic cells. J. Mol. Biol. 150:1–14.CrossRefGoogle Scholar
  45. 45.
    Southern, P. J., and Berg, P. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327–341.Google Scholar
  46. 46.
    Davies, J., and Jimenez, A. 1980. A new selective agent for eukaryotic cloning vectors. Am. J. Trop. Med. Hyg. 29:1089–1092.Google Scholar
  47. 47.
    Chen, C., and Okayama, H. 1987. High-efficiency transformation of mammalian cells by Plasmid DNA. Mol. Cell. Biol. 7:2745–2752.CrossRefGoogle Scholar
  48. 48.
    Mulligan, R. C., and Berg, P. 1980. Expression of a bacterial gene in mammalian cells. Science 209:1422–1427.CrossRefGoogle Scholar
  49. 49.
    Mulligan, R. C., and Berg, P. 1981. Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc. Natl. Acad. Sci. USA 78:2072–2076.CrossRefGoogle Scholar
  50. 50.
    Franklin, T. J., and Cook, J. M. 1969. The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem. J. 113:515–524.CrossRefGoogle Scholar
  51. 51.
    Houweling, A., Van den Elsen, P. J., and Van der Eb, A. J. 1980. Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105:537–550.Google Scholar
  52. 52.
    Ruley, H. E. 1983. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304:602–606.CrossRefGoogle Scholar
  53. 53.
    Land, H., Parada, L. F., and Weinberg, R. A. 1983. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602.CrossRefGoogle Scholar
  54. 54.
    Rassoulzadegan, M., Cowie, A., Carr, A., Glaichenhaus, N., Kamen, R., and Cuzin, F. 1982. The roles of individual polyoma virus early proteins in oncogenic transformation. Nature 300:713–718.CrossRefGoogle Scholar
  55. 55.
    Rassoulzadegan, M., Naghashfar, Z., Cowie, A., Carr, A., Grisoni, M., Kamen, R., and Cuzin, F. 1983. Expression of the large T protein of polyoma virus promotes the establishment in culture of “normal” rodent fibroblast cell lines. Proc. Natl. Acad. Sci. USA 80:4354–4358.CrossRefGoogle Scholar
  56. 56.
    Jenkins, J. R., Rudge, K., and Currie, G. A. 1984. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312:651–654.CrossRefGoogle Scholar
  57. 57.
    Eliyahu, D., Raz, A., Gruss, P., Givol, D., and Oren, M. 1984. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312:646–649.CrossRefGoogle Scholar
  58. 58.
    Khoury, G., and Gruss, P. 1983. Enhancer elements. Cell 33:313–314.CrossRefGoogle Scholar
  59. 59.
    Atchison, M. L., and Perry, R. P. 1986. Tandem kappa immunoglobulin promoters are equally active in the presence of the kappa enhancer: Implications for models of enhancer function. Cell 46:253–262.CrossRefGoogle Scholar
  60. 60.
    Ptashne, M. 1988. How eukaryotic transcriptional activators work. Nature 335:683–689.CrossRefGoogle Scholar
  61. 61.
    Schmidt, E. V., Pattengale, P. K., Weir, L., and Leder, P. 1988. Transgenic mice bearing the human c-myc gene activated by an immunoglobulin enhancer: A pre-B-cell lymphoma model. Proc. Natl. Acad. Sci. USA 85:6047–60CrossRefGoogle Scholar
  62. 62.
    Langdon, W. Y., Harris, A. W., Cory, S., and Adams, J. M. 1986. The c-myc oncogene perturbs B lymphocyte development in Eμ-myc transgenic mice. Cell 47:11–18.CrossRefGoogle Scholar
  63. 63.
    Alexander, W. S., Schrader, J. W., and Adams, J. M. 1987. Expression of the c-myc oncogene under control of an immunoglobulin enhancer in Eμ-myc transgenic mice. Mol. Cell. Biol. 7:1436–1444.CrossRefGoogle Scholar
  64. 64.
    Adams, J. M., Harris, A. H., Pinkert, C. A., Corcoran, L. M., Alexander, W. S., Cory, S., Palmiter, R. D., and Brinster, R. L. 1985. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538.CrossRefGoogle Scholar
  65. 65.
    Gaffar, S. A., and Glassy, M. C. Applications of human monoclonal antibodies in non-isotopic immunoassays. In Reviews on Immunoassay Technology, Vol. I, S. B. Pal, ed., Macmillan Press, Basingstoke, United Kingdom, 1988.Google Scholar
  66. 66.
    Stopper, H., Zimmermann, U., and Neil, G. A. 1988. Increased efficiency of transfection of murine hybridoma cells with DNA by electropermeabilization. J. Immunol. Meth. 109:145–151.CrossRefGoogle Scholar
  67. 67.
    Glassy, M. C., and Dillman, R. O. 1988. Molecular biotherapy with human monoclonal antibodies. Mol. Biother. 1:7–13.Google Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1989

Authors and Affiliations

  • Martin I. Mally
  • Mark C. Glassy

There are no affiliations available

Personalised recommendations