Skip to main content

Electroinjection and Electrofusion in Hypo-osmolar Solution

  • Chapter

Abstract

The discovery of the phenomenon of reversible breakdown of cell membranes in response to electric field pulses of high intensity and short duration paved the way for the development of new tools in bioprocessing and genetic engineering.1 Electroinjection (electropermeabilization or electroporation) of membrane-impermeable molecules of low and high molecular weight into living cells was the first application of this field pulse technique.2–4 Research at the Nuclear Research Center, Jülich, in the 1970s showed that dyes, proteins, DNA, RNA, and also latex particles could be injected into mammalian cells without deterioration of cellular or membrane functions.2–9 This method is now used in many laboratories for injection of plasmids into cells and for the formation of transformants.10–14 The potential of the electric field pulse technique further increased when the first report on fusion of cells at high densities with electrical breakdown pulses was published.15 This electrofusion method was, however, only fully explored when the required membrane contact between freely suspended cells was achieved by cell alignment in an alternating inhomogeneous field.16

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zimmermann, U., Schulz, J., and Pilwat, G. 1973. Transcellular ion flow in E. coli B and electrical sizing of bacterias, Biophys. J. 13:1005–1013.

    Article  Google Scholar 

  2. Zimmermann U., Pilwat, G., and Riemann, F. 1974. Patent for electroinjection of macro-molecules into living cells, filed in Feb. 1974, no. 2405119 (F.R.G.), no. 1481480 (U.K.), no. 4081340 (USA) and other countries.

    Google Scholar 

  3. Zimmermann, U., Pilwat, G., and Riemann, F. 1974. Reversible dielectric breakdown of cell membranes by electrostatic fields. Z. Naturforsch. 29c:304–310.

    Google Scholar 

  4. Zimmermann, U., Riemann, F., and Pilwat, G. 1976. Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielectric breakdown. Biochim. Biophys. Acta 436:460–474.

    Article  Google Scholar 

  5. Zimmerman, U., Pilwat, G. and Esser, B. 1978. The effect on encapsulation in red blood cells on the distribution of methotrexate in mice. J. Clin. Chem. Clin. Biochem. 16:135–141.

    Google Scholar 

  6. Vienken, J., Jeltsch, E., and Zimmermann, U. 1978. Penetration and entrapment of large particles in erythrocytes by electrical breakdown techniques. Cytobiology 17:182–198.

    Google Scholar 

  7. Zimmermann, U. 1983. Cellular drug carrier systems and their possible targeting. In Targeted drugs. E. P. Goldberg, ed., John Wiley-Verlag, New York. pp. 153–200.

    Google Scholar 

  8. Auer, D., Brandner, G., and Bodemer, W. 1976. Dielectric breakdown of the red blood cell membrane and uptake of SV 40 DNA and mammalian cell RNA. Naturwissenschaften 63 (8):391.

    Article  Google Scholar 

  9. Schüssler, W., and Ruhenstroth-Bauer, G. 1984. Stomatocytosis of Latex particles (0.26 μm) by rat erythocytes by the electrical breakdown technique. Blut 49:213–217.

    Article  Google Scholar 

  10. Neumann, E., Schaeffer-Ridder, M., Wang, Y., and Hofschneider, P. H. 1982. Gene transfer into mouse lyoma cells by electroporation in high electric field. EMBO J. 1:841–845.

    Google Scholar 

  11. Calvin, N. M., and Hanawalt, P. C. 1988. High-efficiency transformation of bacterial cells by electroporation. J. Bacteriol. 170 (6):2796–2801.

    Google Scholar 

  12. Hibi, T., Kano, H., Sugiura, M., Katamu, T., and Kimura, S. 1986. High efficiency electrotrans-fection of tobacco mesophyll protoplasts with TMV RNA. J. Gen. Virol. 67:2037–2042.

    Article  Google Scholar 

  13. Hama-Inaba, H., Shiomi, T., Sato, K., Ito, A., and Kasai, M. 1986. Electric pulse-mediated gene transfer in mammalian cells grown in suspension culture. Cell Struct. Funct. 11:191–197.

    Article  Google Scholar 

  14. Stopper, H., Zimmermann, U., and Neil, G. A. 1988. Increased efficiency of transfection of murine hybridoma cells with DNA by electropermeabilization. J. Immun. Meth. 109:145–151.

    Article  Google Scholar 

  15. Zimmermann, U., and Pilwat, G. 1978. The relevance of electric field induced changes in the membrane structure to basic membrane research and clinical therapeutics and diagnosis. In: Abstracts of the sixth International Biophysics Congress, Kyoto, Japan, p. 140.

    Google Scholar 

  16. Zimmermann, U., and Scheurich, P. 1981. Fusion of Avena sativa mesophyll cell protoplasts by electrical breakdown. Biochim. Biophys. Acta 641:160–165.

    Article  Google Scholar 

  17. Zimmermann, U., Scheurich, P., Pilwat, G., and Benz, R. 1981. Cells with manipulated functions: New perspectives for cell-biology, medicine and technology. Angew. Chemie, Int. Ed. Engl. 20:325–344.

    Article  Google Scholar 

  18. Zimmermann, U. 1982. Electric field-mediated fusion and related electrical phenomena. Biochim. Biophys. Acta 694:227–277.

    Article  Google Scholar 

  19. Zimmermann, U. 1983. Electrofusion of cells: Principles and industrial potential. Trends Biotechnol. 1:149–155.

    Article  Google Scholar 

  20. Zimmermann, U. 1986. Electrical breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105:175–256.

    Google Scholar 

  21. Zimmermann, U. Electrofusion of cells. In Methods of Hybridoma Formation. A. H. Bartal, Y. Hirshaut, eds., Humana Press, New York, 1987.

    Google Scholar 

  22. Zimmermann, U., Urnovitz, H. B. 1987. Principles of electrofusion and electropermeabilization. Meth. Enzym. 151:194–221.

    Article  Google Scholar 

  23. Zimmermann, U. Electrofusion and electrotransfection of cells. In Molecular Mechanisms of Membrane Fusion, S. Ohki, D. Doyle, T. D. Flanagan, S. W. Hui, E. Mayhew, eds., Plenum Press, New York and London, 1988.

    Google Scholar 

  24. Zimmermann, U., Schmitt, J. J., and Kleinhans, P. The potential of electrofusion for hybridoma production. In Clinical Applications of Monoclonal Antibodies, R. Hubbard and V. Marks, eds., Plenum Press, New York and London, 1988.

    Google Scholar 

  25. Schmitt, J. J., Zimmermann, U., and Gessner, P. 1989. Electrofusion of osmotically treated cells: high and reproducible yields of hybridoma cells. Naturwissenschaften 76:122–123.

    Article  Google Scholar 

  26. Schmitt, J. J., and Zimmermann, U. 1989. Enhanced hybridoma production by electrofusion in strongly hypo-osmolar solutions. Biochim. Biophys. Acta 938:47–50.

    Google Scholar 

  27. Däumler, R., and Zimmermann, U. 1989. High yields of stable transformants by hypo-osmolar plasmid electroinjection. J. Immun. Meth. 122:203–210.

    Article  Google Scholar 

  28. Chapter 3.

    Google Scholar 

  29. Southern, P. J., and Berg, P. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV 40 early region promoter. J. Mol. Appl. Gen. 1:327–341.

    Google Scholar 

  30. Stopper, H., Zimmermann, U., and Wecker, E. 1985. High yields of DNA-transfer into mouse L-cells by electropermeabilisation. Z. Naturforsch. 40c:929–932

    Google Scholar 

  31. Stopper, H., Jones, H., and Zimmermann, U. 1987. Large scale transfection of mouse L-cells by electropermeabilisation. Biochim. Biophys. Acta 900:38–44.

    Article  Google Scholar 

  32. Schmitt, J. J., Zimmermann, U., and Neil, G. 1989. Efficient generation of stable antibody forming hybridoma cells by electrofusion. Hybridoma 8:107–115.

    Article  Google Scholar 

  33. Jeltsch, E., and Zimmermann, U. 1979. Particles in a homogeneous electrical field: A model for the electrical breakdown of living cells in a Coulter Counter. Bioelectrochem. Bioenerg. 6:349–384.

    Article  Google Scholar 

  34. Broda, H.-G., Schnettler, R., and Zimmermann, U. 1987. Parameters controlling yeast hybrid yield in electrofusion: The relevance of pre-incubation and skewness of the size distributions of both fusion partners. Biochim. Biophys. Acta 899:25–34.

    Article  Google Scholar 

  35. Coster, H. G. L., and Zimmermann, U. 1975. The mechanism of electrical breakdown in the membranes of Valonia utricularis. J. Membrane Biol. 22:73–90.

    Article  Google Scholar 

  36. Benz, R., and Zimmermann, U. 1981. The resealing process of lipid bilayers after reversible electrical breakdown. Biochim. Biophys. Acta 640:169–178.

    Article  Google Scholar 

  37. Benz, R., and Zimmermann, U. 1980. Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. Biochim. Biophys. Acta 597:637–642.

    Article  Google Scholar 

  38. Mehrle, W., Zimmermann, U., and Hampp, R. 1985. Evidence for asymmetrical uptake of fluorescent dyes through electro-permeabilised membranes of Avena mesophyll protoplasts. FEBS Lett. 185:89–94.

    Article  Google Scholar 

  39. Mehrle, W., Hampp, R., and Zimmermann, U. 1989. Electric pulse induced membrane per-meabilisation. Spatial orientation and kinetics of solute efflux in freely suspended and dielec-trophoretically aligned plant mesophyll protoplasts. Biochim. Biophys. Acta 978:267–275.

    Google Scholar 

  40. Holzapfel, C., Vienken, J., and Zimmermann, U. 1982. Rotation of cells in an alternating field: Theory and experimental proof. J. Membr. Biol. 67:13–26.

    Article  Google Scholar 

  41. Bertsche, U., Mader, A., and Zimmermann, U. 1988. Nuclear membrane fusion in electrofused mammalian cells. Biochim. Biophys. Acta 939:509–522.

    Article  Google Scholar 

  42. Pohl, H. A. Dielectrophoresis. Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  43. Mehrle, W., Hampp, R., Zimmermann, U., and Schwan, H. P. 1988. Mapping of the field distribution around dielectrophoretically aligned cells by means of small particles as field probes. Biochim. Biophys. Acta 939:561–568.

    Article  Google Scholar 

  44. Ahkong, Q. F., and Lucy, L. A. 1986. Osmotic forces in artificially induced cell fusion. Biochim. Biophys. Acta 858:206–216.

    Article  Google Scholar 

  45. Lucy, J. A., and Ahkong, Q. F. 1986. An osmotic model for the fusion of biological membranes. FEBS Lett. 3548:1–11.

    Article  Google Scholar 

Download references

Authors

Editor information

Carl A. K. Borrebaeck Inger Hagen

Copyright information

© 1989 Palgrave Macmillan, a division of Macmillan Publishers Limited

About this chapter

Cite this chapter

Zimmermann, U., Gessner, P., Wander, M., Foung, S.K.H. (1989). Electroinjection and Electrofusion in Hypo-osmolar Solution. In: Borrebaeck, C.A.K., Hagen, I. (eds) Electromanipulation in Hybridoma Technology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-11339-2_1

Download citation

Publish with us

Policies and ethics