Skip to main content

Electrometric immunoassay

  • Chapter

Abstract

The diagnostics markets accounted for sales of US $8500 million worldwide in 1989 (1). Within these markets, immunodiagnostics accounted for $3000 million (2). This is estimated to rise to over $5000 million in 1995 (3). There is a trend towards simple, easy-to-use tests, suitable for the doctor’s surgery, hospital ward or even for the home user. These applications are collectively known as ‘decentralised testing’, a term which emphasises the departure from traditional hospital laboratory testing, with its attendant difficulties in speed of response and misplaced prioritisation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clinica April 4 1989 p2.

    Google Scholar 

  2. Clinica February 14 1990 p6.

    Google Scholar 

  3. Clinica December 6 1989 p16.

    Google Scholar 

  4. Bard, A.J., Faulkner, L.R. (1980) Electrochemical Methods Fundamentals and Applications. Wiley, New York

    Google Scholar 

  5. Southampton Electrochemistry Group (1985) Instrumental Methods in Electrochemistry. Ellis Horwood, Chichester.

    Google Scholar 

  6. Janata, J. (1975) An Immunoelectrode. J. Amer. Chem. Soc. 97, 2914–6.

    Article  CAS  Google Scholar 

  7. Yamamoto, N., Nagasawa, Y., Sawai, M., et al. (1978) Potentiometric investigations of antigen-antibody and enzyme-enzyme inhibitor reactions using chemically modified metal electrodes. J. Immunol. Method. 22, 309–17.

    Article  CAS  Google Scholar 

  8. Aizawa, M., Suzuki, S., Nagamura, Y., et al. (1977) An immunosensor for specific protein. Chem. Lett. 799–82.

    Google Scholar 

  9. Keating, M.Y. and Rechnitz, G.A. (1984) Potentiometric digoxin antibody measurements with antigen ionophore based membrane electrodes. Anal. Chem. 56, 801–6.

    Article  PubMed  CAS  Google Scholar 

  10. Solsky, R.L. and Rechnitz, G.A. (1981) Preparation and properties of an antibody-selective membrane electrode. Anal. Chim. Acta. 23, 135–41.

    Article  Google Scholar 

  11. Connell, G.R. and Sanders, K.M. (1987) Electroimmunoassay of PGE2: An antibody-sensitive electrode based competitive protein-binding assay. In: Electrochemical Sensors In Immunological Analysis. (ed Ngo T.T.) p 35–45, Plenum Press, New York

    Chapter  Google Scholar 

  12. Bush, D.L. and Rechnitz, G.A. (1986) Antibody-sensing polymer membrane electrode using a proton carrier. Fres. Z. Anal. Chem. 323, 491.

    Article  CAS  Google Scholar 

  13. Weheymer, K.R., Halsall, H.B., Heineman, W.R. (1982) Electrochemical investigation of hapten-antibody interactions by differential pulse polarography. Clin. Chem. 28, 1968–72.

    Google Scholar 

  14. Doyle, M.J., Halsall, H.B., Heineman, W.R. (1982) Heterogeneous immunoassay for serum proteins by differential pulse anodic stripping voltammetry. Anal. Chem. 54, 2318–22.

    Article  PubMed  CAS  Google Scholar 

  15. Weber, S.G. and Purdy, W.C. (1979) Homogeneous voltammetric immunoassay: a preliminary study. Anal. Leu. 12, 1–9.

    Article  CAS  Google Scholar 

  16. Ikariyama, Y., Kunoh, H., Aizawa, M. (1985) Electrochemical luminescence based homogenous immunoassay. Biochem. Biophys. Res. Commun. 128, 987–92.

    Article  PubMed  CAS  Google Scholar 

  17. Boitieux, J.-L., Desmet, G, Thomas, D. (1979) An ‘antibody electrode’, preliminary report on a new approach in enzyme immunoassay. Clin. Chem. 25, 318–21.

    PubMed  CAS  Google Scholar 

  18. Keating, M.Y. and Rechnitz, G.A. (1985) Potentiometric enzyme immunoassay for digoxin using polystyrene beads. Anal. Lett. 18, 110.

    Article  Google Scholar 

  19. Gebauer, C.R. and Rechnitz, G.A. (1982) Deaminating enzyme labels for potentiometric enzyme immunoassay. Anal. Biochem. 124, 338–48.

    Article  PubMed  CAS  Google Scholar 

  20. Bergveld, P. (1970) Development of an ion-selective solid-state device for neurophysiological measurements. IEE Trans. Biomed. Eng. BME. 17, 70–1.

    Article  CAS  Google Scholar 

  21. Blackburn, G.F. (1987) Chemically sensitive field effect transistors. In Biosensors Fundamentals and Application. (eds Turner, A.P.F., Karube, I., Wilson, G.S.,) p 481–530, OUP, Oxford.

    Google Scholar 

  22. Blackburn, G.F. and Janata, J. (1982) The suspended mesh ion selective field effect transistor. J. Electrochem. Soc. 129, 2580–4.

    Article  CAS  Google Scholar 

  23. Hafeman, D.G., Parce, J.W., McConnell, H.M., (1986) Light-addressable potentiometric sensor for biochemical systems. Science. 240, 1182–5.

    Article  Google Scholar 

  24. Hafeman, D.G., Parce, J.W., McConnell, H.M., (1986) Device having photoresponsive electrode for determining analytes including ligands and antibodies. US Patent No. 4591550.

    Google Scholar 

  25. Ting, C.C., (1990) Assay for host cell protein contaminants in bFGF using the Threshold System. ANYL52, 199th ACS National Meeting, Boston, MA, April 22–27, 1990.

    Google Scholar 

  26. Aizawa, M., Morioka, A., Suzuki, S., Nagamura, Y. (1979) Enzyme immunosensors, III. Amperometric determination of human chorionic gonadotropin by membrane-bound antibody. Anal. Biochem. 94, 22–28.

    Article  PubMed  CAS  Google Scholar 

  27. Aizawa, M. (1987) Immunosensors. Phil. Trans. R. Soc. Lond. B316, 121–34.

    Google Scholar 

  28. Itagaki, H., Hakoda, Y., Suzuki, Y., Haga, M. (1983) Drug Sensor: an enzyme immunoelectrode for theophylline. Chem. Pharm. Bull. 31, 1283–8.

    Article  CAS  Google Scholar 

  29. Boitieux, J.-L., Thomas, D., Desmet, G. (1984) Oxygen electrode-based enzyme immunoassay for the amperometric determination of hepatitis B surface antigen. Anal. Chim. Acta. 163, 309–13.

    Article  CAS  Google Scholar 

  30. Renneburg, R., Scholler, W., Scheller, F. (1983) Amperometric enzyme sensor-based enzyme immunoassay for factor VIII-related antigen. Anal. Lett. 16 (B16), 1279–89.

    Article  Google Scholar 

  31. de Alwis, W.U. and Wilson, G.S. (1985) Rapid sub-picomole electrochemical enzyme immunoassay for immunoglobulin G. Anal. Chem. 57, 2754–6.

    Article  PubMed  Google Scholar 

  32. Robinson, G.A., Hill, H.A.O., Philo, R.D., et al. (1985) Bioelectrochemical enzyme immunoassay of human choriogonadotropin with magnetic electrodes. Clin. Chem. 31, 144–952.

    Google Scholar 

  33. di Gleria, K., Hill, H.A.O., McNeil, C.J., Green, M.J. (1986) Homogeneous ferrocene-mediated amperometric immunoassay. Anal. Chem. 58, 1203–5.

    Article  PubMed  Google Scholar 

  34. Umana, M., Waller, J., Wani, M. et al. (1988) Enzyme enhanced electrochemical immunoassay for phenytoin. J. Res. Natl. Inst. Stand. Technol. 93, 659–61.

    Article  CAS  Google Scholar 

  35. Gyss, C. and Bourdillon, C. (1987) Enzyme electrocatalysis as a strategy for electrochemical detection in heterogeneous immunoassays. Anal. Chem. 59, 2350–5.

    Article  PubMed  CAS  Google Scholar 

  36. Eggers, H.M., Halsall, H.B., Heineman, W.R. (1982) Enzyme immunoassay with flow-amperometric detection of NADH. Clin. Chem. 28, 1848–51.

    PubMed  CAS  Google Scholar 

  37. Broyles, C.A. and Rechnitz, G.A. (1986) Drug antibody measurement by homogeneous enzyme immunoassay with amperometric detection. Anal. Chem. 58, 1241–5.

    Article  PubMed  CAS  Google Scholar 

  38. Wright, D., Halsall, H.B., Heineman, W.R. (1987) Digoxin homogeneous enzyme immunoassay with amperometric detection. In: Electrochemical Sensors In Immunological Analysis. (ed Ngo T.T. ) p 117–29, Plenum Press, New York.

    Chapter  Google Scholar 

  39. Ngo, T.T. (1987) Antibody to an enzyme as the modulator in separation-free enzyme immunoassays with electrochemical sensor. In: Electrochemical Sensors In Immunological Analysis. (ed Ngo T.T. ) p 131–43, Plenum Press, New York.

    Chapter  Google Scholar 

  40. Kulys, J., Razumas, V., Malinauskas, A. (1980) Electrochemical oxidation of catechol and p-aminophenol esters in the presence of hydrolases. Bioelectrochem. Bioenergenetics. 7, 11–24.

    Article  CAS  Google Scholar 

  41. McNeil, C.J., Higgins,j.J., Bannister, J.V. (1987/88) Amperometric determination of alkaline phosphatase activity: application to enzyme immunoassay. Biosensors. 3, 199–209.

    Article  CAS  Google Scholar 

  42. Tang, H.T., Lunte, C.E., Halsall, H.B., et al. (1988) p-Aminophenol phosphate: an improved substrate for electrochemical enzyme immunoassay. Anal. Chim. Acta. 214, 187–95.

    Article  CAS  Google Scholar 

  43. Doyle, M.J., Halsall, H.B., Heineman, W.R. (1984) Enzyme-linked immunoadsorbent assay with electrochemical detection for an al-acid glycoprotein. Anal. Chem. 56, 2355–60.

    Article  PubMed  CAS  Google Scholar 

  44. Wehmeyer, K.R., Halsall, H.B., Heineman, W.R. (1985) Heterogeneous enzyme immunoassay with electrochemical detection: competitive and `sandwich’-type immunoassays. Clin. Chem. 31, 1546–9.

    PubMed  CAS  Google Scholar 

  45. Jenkins, S.H., Heineman, W.R., Halsall, H.B. (1988) Extending the detection limit of solid-phase electrochemical enzyme immunoassay to the attomole level. Anal. Biochem. 168, 292–9.

    Article  PubMed  CAS  Google Scholar 

  46. Frew, J.E., Foulds, N.C., Wilshere, J.M., et al. (1989) Measurement of alkaline phosphatase activity by electrochemical detection of phosphate esters: application to amperometric enzyme immunoassay. J. Electroanal. Chem. 266, 309–16.

    Article  CAS  Google Scholar 

  47. Gil, E.L., Tang, H.T., Halsall, H.B., et al. (1990) Competitive heterogeneous enzyme immunoassay for theophylline by flow-injection analysis with electrochemical detection of p-aminophenol. Clin. Chem. 36, 662–5.

    PubMed  CAS  Google Scholar 

  48. Stanley, C.J., Ellis, D.H., Bates, D.L., Johannsson, A. (1987) Enzyme-amplified immunoassays. J. Pharm. Biomed. Anal. 5, 811–20.

    Article  PubMed  CAS  Google Scholar 

  49. Cardosi, M.F., Birch, S.W., Stanley, C.J., et al. (1989) An electrochemical immunoassay for prostatic acid phosphatase incorporating enzyme amplification. Am. Biotechnol. Lab. 7, 50–8.

    CAS  Google Scholar 

  50. Cardosi, M.F., Smith, B.M., Johansson, A. (1989) An enzyme-amplified electrochemical immunoassay for thyrotropin. Electroanalysis. 1, 297–304.

    Article  CAS  Google Scholar 

  51. Haga, M., Sugawara, S., Itagaki, H. (1981) Drug sensor: liposomal immunosensors for theophylline. Anal. Biochem. 118, 286–93.

    Article  PubMed  CAS  Google Scholar 

  52. Shiba, K., Umezawa, Y., Watanabe, T., et al. (1980) Thin-layer potentiometric analysis of lipid antigen-antibody reaction by tetrapentylammonium (TPA+) ion loaded liposomes and TPA+ ion selective electrode. Anal. Chem. 52, 1610–3.

    Article  PubMed  CAS  Google Scholar 

  53. Shiba, K., Watanabe, T., Umezawa, Y., Fujiwara, S. (1980) Liposome immunoelectrode. Chem. Lett. 155–8.

    Google Scholar 

  54. Umezawa, Y. (1983) Ion-selective immunoelectrode. In: Chemical Sensors, Anal. Chem. Symp. Ser. (eds. Seiyama, T., Fueki, K., Shiokawa J., Suzuki S. ) p 705–10, Elsevier, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 Palgrave Macmillan, a division of Macmillan Publishers Limited

About this chapter

Cite this chapter

Green, M., Barrance, D., Hilditch, P. (1991). Electrometric immunoassay. In: Price, C.P., Newman, D.J. (eds) Principles and Practice of Immunoassay. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-11234-0_17

Download citation

Publish with us

Policies and ethics