Skip to main content

Neural Transplantation in Degenerative Disease

  • Chapter
Molecular Genetics in Medicine

Abstract

The characteristic feature of neurodegenerative disease is progressive disability due to the death of a particular type of neurone or neuronal systems, the cause of which is usually unknown. Treatment is therefore often empirical and symptomatic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anden, N. E., A. Dahlstrom, K. Fuxe and K. Larsson (1966) ‘Functional role of the nigro-neostriatal dopamine neurones’, Acta Pharmacologica Toxicologica, vol. 24, pp. 263–74.

    Article  CAS  Google Scholar 

  • Backlund, E. O., P. O. Granberg, B. Hamberger, G. Gedvall, A. Seiger and L. Olsen (1985) ‘Transplantation of adrenal medullary tissue to striatum in Parkinsonism’. First clinical trials’, Journal of Neurosurgery, vol. 62, pp. 169–73.

    Article  CAS  PubMed  Google Scholar 

  • Backlund, E. O., L. Olson, A. Seiger and O. Lindvall (1987) ‘Towards a transplantation therapy in Parkinson’s Disease’, in E. Azmitia and A. Bjorklund (eds), ‘Cell and Tissue Transplantation into the Adult Brain’, New York Academy of Science, vol. 495, pp. 658–70.

    Google Scholar 

  • Backlund, E. O. (1987) ‘Adrenal to brain transplants and Parkinson’s Disease’, Journal of the American Medical Association, vol. 258, p. 1891.

    Article  CAS  PubMed  Google Scholar 

  • Bakay, R. A. E., M. S. Fiandaca, D. L. Barrow, A. Schiff and D. C. Collins (1985) ‘Preliminary report on the use of fetal tissue transplantation to correct MPTP-induced Parkinson like syndrome in primates’, Applied Neurophysiology, vol. 48, pp. 358–61.

    CAS  PubMed  Google Scholar 

  • Bankiewiez, K. S., D. M. Jacobowitz, R. J. Plunkett, E. H. Oldfield and I. J. Kopin (1987) ‘Injury induced sprouting into the caudate nucleus, after solid tissue implantation in MPTP-induced Parkinsonism monkeys’, Society of Neuroscience Abstract, vol. 46, p. 16.

    Google Scholar 

  • Barker, C. F. and R. E. Billingham (1977) ‘Immunologically privileged sites’, Advanced Immunology, vol. 25, pp. 1–54.

    Article  CAS  Google Scholar 

  • Becker, J. B. and W. J. Freed (1989) ‘Recovery of function in an animal model of Parkinson’s Disease following adrenal medulla grafts: Evidence for the role of dopamine’, in ‘Neural Transplantation from Molecular Bases to Clinical Application;, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Bjorklund, A., U. Stenevi and N. A. Svendgaard (1976) ‘Growth of transplanted monoaminergic neurones into the adult hippocampus along the perforant path’, Nature, vol. 262, pp. 787–90.

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund, A., S. B. Dunnett, U. Stenevi, M. E. Lewis and S. D. Iverson (1980) ‘Reinervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing’, Brain Research, vol. 199, pp. 307–33.

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund, A., U. Stenevi, R. H. Schmidt, S. B. Dunnett and F. H. Gage (1983) ‘Intracerebral grafting of neuronal cell suspensions. I. Introduction and general methods of preparation (1983). II. Survival and growth of nigral cell suspensions implanted in different brain sites’, Acta Physiologica Scan. Suppl. vol. 522, pp. 1–18.

    CAS  Google Scholar 

  • Bjorklund, A., L. F. Kromer and U. Stenevi (1979) ‘Cholinergic reinnervation of the rat hippocampus by septal implants is stimulated by perforant path lesion’, Brain Research, vol. 173, pp. 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund, A. and U. Stenevi (1979) ‘Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system’, Physiology Review, vol. 59, pp. 62–100.

    CAS  Google Scholar 

  • Bjorklund, A. and U. Stenevi (1979a) ‘Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants’, Brain Research, vol. 177, pp. 555–60.

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund, H., P. Bickford, D. Dahl, B. Hoffer and L. Olson (1984) Intracranial cerebellar grafts: Intermediate filament immunohistochemistry and electrophysiology’, Experimental Brain Research, vol. 55, pp. 372–85.

    Article  CAS  PubMed  Google Scholar 

  • Blunt, S. B. (1989) ‘Fetal brain tissue and Parkinson’s Disease’, Lancet, p. 1021.

    Google Scholar 

  • Bredesen, D. E., K. Hisanaga and F. R. Sharp (1989) ‘Transplantation of temperature sensitive immortalised neural cells’, in ‘Neural Transplantation: from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Brundin, P., O. G. Nilsson, R. E. Strecker, O. Lindvall, B. Astedt and A. Bjorklund (1986) ‘Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s Disease’, Experimental Brain Research vol. 65, pp. 235–40.

    Article  CAS  PubMed  Google Scholar 

  • Brundin, P., 0. Isaacson and A. Bjorklund (1985) ‘Monitoring of cell viability in suspensions of embryonic CNS tissue and its use as a criterion for intracerebral graft survival’, Brain Research, vol. 331, pp. 251–59.

    Article  CAS  PubMed  Google Scholar 

  • Brundin, P., R. E. Strecker, H. Widner et al. (1988) ‘Human fetal dopamine neurones grafted in a rat model of Parkinson’s Disease: immunological aspects, spontaneous and drug induced behaviour, and dopamine release’, Experimental Brain Research, vol. 70, pp. 192–208.

    CAS  PubMed  Google Scholar 

  • Bunge, R. P., N. Kleitman, M. D. Ard and I. D. Duncan (1988) ‘Culture preparations of neuroglial cells useful for studies of mifelin repair and axonal regeneration in the central nervous system’, in D. M. Gash and J. R. Sladek Jr (eds) Transplantation into the Mammalian CNS, Progress in Brain Research, vol. 78, pp. 141–54.

    Article  Google Scholar 

  • Burns, R. S., G. S. Allen and N. B. Tulipan (1989) ‘Transplantation of adrenal medullary tissue to caudate in Parkinson’s Disease’, in ‘Neural Transplantation from Molecular Bases to Clinical Application’, Restorative Neurology and Neurosurgery, Suppl.

    Google Scholar 

  • Carvey, P. M., A. McRae, L. R. Ptak, A. Dahlstrom and H. L. Klawans (1989) ‘Disappearance of the dopamine neuron antibody following adrenal medulla transplantation: Implications in the progression of Parkinson’s Disease’, in ‘Neural Transplantation from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Cheng, C. H. and F. C. Zhou (1989) ‘Molecular cloning a GAD gene-containing cell-line for transplantation’, in ‘Neural Transplantation: from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Clarke, D. J., P. Brundin, R. F. Strecker, 0. G. Nilsson, A. Bjorklund and 0. Lindvall (1988) ‘Human fetal dopamine neurones grafted in a rat model of Parkinson’s Disease: ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry’, Experimental Brain Research, vol. 73, pp. 125–6.

    Article  Google Scholar 

  • Coyle, J. T., D. L. Price and M. R. DeLong (1983) ‘Alzheimer’s Disease. A disorder of cortical cholinergic innervation’, Science, vol. 219, pp. 1184–90.

    Article  CAS  PubMed  Google Scholar 

  • Coyle, J. T. (1987) ‘Alzheimer’s Disease’ in Encyclopaedia of Neuroscience, vol. 1, pp. 29–31.

    Google Scholar 

  • Das, G. D. (1974) ‘Transplantation of embryonic neural tissue in the mammalian brain. Growth and differentiation of neuroblasts from various regions of the embryonic brain in the cerebellum of neonate rates’, Journal of Life Science, pp. 93–124.

    Google Scholar 

  • Das, G. D. and B. H. Hallas (1978) ‘Transplantation of brain tissue in the brain of adult rat’, Experimentia, vol. 34, pp. 1304–6.

    Article  CAS  Google Scholar 

  • Date, I., K. Kawamura and H. Nakashima (1988) ‘Histological signs of immune reactions against allogeneic solid neural grafts in the mouse cerebellum depend on the MHC locus’, Experimental Brain Research vol. 73, pp. 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Deckel, A. W., R. G. Robinson, J. T. Coyle and P. R. Sanberg (1983) ‘Reversal of long-term locomotor abnormalities in the Kannic Acid model of Huntington’s Disease by day 18 fetal striatal implants’, European Journal of Pharmacology, vol. 93, pp. 287–8.

    Article  CAS  PubMed  Google Scholar 

  • Del Conte, G. (1907)’ Empflanzungen von embryonalem Gewebe ins Gehurn’, Beatr. path anat. allg. pathol., vol. 42, pp. 193–203.

    Google Scholar 

  • Detta, A. and E. R. Hitchcock (1989) A rapid non-isotopic in situ hybridization technique: Demonstration of NGF in human foetal brain (in preparation).

    Google Scholar 

  • Detta, A. and E. R. Hitchcock (1990) ‘The selective viability of human foetal brain cells’, Brain Research, vol. 520, pp. 277–83.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, E. H. (1917) ‘Primary and secondary findings in a series of attempts to transplant cerebral cortex in albino rat’, Journal of Comparative Neurology, vol. 27, pp. 565–82.

    Article  Google Scholar 

  • Dunnett, S., A. Bjorklund and V. Stenevi (1983) ‘Transplant-induced recovery from brain lesions. A review of the nigro-striatal model’, in R. B. Wallace and G. D. Das (eds) Neural Tissue Transplantation Research, (Springer-Verlag) pp. 191–216.

    Chapter  Google Scholar 

  • Eriksdotter-Nilsson, M., S. Skirboll, T. Ebendal, L. Hersch, J. Grassi, J. Massonlie and L. Olson (1984) ‘NGF Treatment promotes development of basal forebrain tissue grafts in the anterior chamber of the eye’, Experimental Brain Research, vol. 74, pp. 89–98.

    Google Scholar 

  • Fiandaca, M. S., J. H. Kordower, J. T. Hansen, S. S. Jiao and D. M. Gash (1988) ‘Adrenal medullary autografts into the basal ganglia of cebus monkeys: injury induced regeneration’, Exp. Neurol., vol. 102, pp. 76–91.

    Article  CAS  PubMed  Google Scholar 

  • Fine, A., S. P. Hunt, W. H. Oertal, M. Nomoto, P. N. Chong, A. Bond, C. Waters, J. A. Temlett, L. Annett, S. B. Dunnett, P. Jenner and C. D. Marsden (1987) ‘Transplantation of embryonic marmoset dopaminergic neurons to the corpus striatum of marmosets rendered Parkinsonian by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine’, in D. M. Gash and J. R. Sladek Jr (eds) ‘Transplantation into the Mammalian CNS’, Progress in Brain Research, vol. 78, pp. 479–89.

    Google Scholar 

  • Freed, C. R., R. E. Breeze, N. L. Rosenberg, J. N. Barrett and D. A. Rottenberg (1981) ‘Therapeutic effects of human fetal dopamine cells transplanted in a patient with Parkinson’s Disease’, in ‘Neural Transplantation: from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Freed, C. R., J. B. Richards, C. Hutt, J. Whalen, R. Peterson and M. Reite (1987) ‘Behavioural effects of fetal dopamine cell transplantation in bonnet monkeys with MPTP-induced Parkinsonism’, Society of Neuroscience Abstract, vol. 219, p. 5.

    Google Scholar 

  • Freed, W. J., S. L. Cottingham, M. Schultzberg, B. M. Martin, M. E. LaMarca, S. M. Paul and E. I. Ginns (1989) ‘Retrovirally-mediated gene transfer and expression of human tyrosine hydroxylase in NIH-3T3 fibroblasts’, in ‘Neural Transplantation: from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Freed, W. J., J. M. Morihisa, E. Spoor, B. J. Hoffer, L. Olson, A. Seiger and R. J. Wyatt (1981) ‘Transplanted adrenal chromaffin cells in rat brain reduces lesion induced rotational behaviour’, Nature, vol. 292, pp. 351–2.

    Article  CAS  PubMed  Google Scholar 

  • Freed, W. J., F. Karoum, H. E. Spoor, J. M. Morihisa, L. Olson and R. J. Wyatt (1983) ‘Catecholamine content of intracerebral adrenal medulla grafts’, Brain Research, vol. 269, pp. 184–9.

    Article  CAS  PubMed  Google Scholar 

  • Gage, F. H., A. Bjorklund, U. Stenevi and S. Dunnett (1983) ‘Intracerebral grafting of neuronal cell suspensions. VIII. Survival and growth of implants in nigral and septal cell suspension in intact brains of aged rats’, Acta Physiologica Scandinavica Supplement, vol. 522, pp. 67–75.

    CAS  Google Scholar 

  • Gage, F. H., A. Bjorklund, U. Stenevi, S. Dunnett and P. Kelly (1984) ‘Intrahippocampal septal grafts ameliorate learning impairments in aged rats’, Science, vol. 225, pp. 533–6.

    Article  CAS  PubMed  Google Scholar 

  • Goetz, C. G., C. W. Olanow, W. C. Koller et al. (1989) ‘Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson’s Disease’, New England Journal of Medicine, vol. 320, pp. 337–41.

    Article  CAS  PubMed  Google Scholar 

  • Gumpel, M., N. Baumann, M. Raoul and C. Jacqne (1983) ‘Survival and differentiation of oligodentocytes from neural tissue transplanted into new-born mouse brain’, Neuroscience Letter, vol. 37, pp. 307–11.

    Article  CAS  Google Scholar 

  • Hitchcock, E. (1988) ‘Recent experience with dopamine transplantation for Parkinson’s Disease’, Proceedings of Society of British Neurosurgeons.

    Google Scholar 

  • Hitchcock, E. R. (1989) ‘Neurochemical transplants Plenary Lecture’, Proceedings of Association of Clinical Biochemists.

    Google Scholar 

  • Hitchcock, E. R., C. G. Clough, R. C. Hughes and B. G. Kenny (1988) ‘Embryos and Parkinson’s Disease’, Lancet, vol. i, p. 1274.

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock, E. R., C. G. Clough, R. C. Hughes and B. Kenny (1989a) ‘Fetal brain tissue’, Lancet, p. 839.

    Google Scholar 

  • Hitchcock, E. R., C. G. Clough, R. C. Hughes and B. Kenny (1989b) ‘Fetal brain tissue’, Lancet, p. 1021.

    Google Scholar 

  • Hitchcock, E. R., C. G. Clough, B. T. H. Henderson, R. C. Hughes and B. G. Kenny (1989) ‘Fetal brain tissue and Parkinson’s Disease’, Lancet.

    Google Scholar 

  • Hitchcock, E. R., C. G. Clough, R. C. Hughes and B. G. Kenny (1989) ‘Transplantation in Parkinson’s Disease; stereotactic implantation of adrenal medulla and foetal mesencephalon’, Acta Neurochirurgica Supplement 46, pp. 48–50.

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock, E. R., B. G. Kenny, C. G. Clough, R. C. Hughes, B. T. H. Henderson and A. Detta (1989) ‘Stereotactic implantation of foetal mesencephalon (STIM): the UK Experience’, in ‘Neural Transplantation: from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Hohmann, C. F., G. Capone, M. L. Oster-Granite and J. T. Coyle (1989) ‘Transplantation of foetal cortex from murine trisomy 16 and normal litter made controls into newborn mouse cortex’, in ‘Neural Transplantation from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Isaacson, O., P. Brundin, P. A. T. Kelly, F. H. Gage and A. Bjorklund (1984) ‘Functional neuronal replacement by grafted striatal neurons in the ibotenic-acid lesioned striatum’, Nature, vol. 311, pp. 458–60.

    Article  Google Scholar 

  • Isaacson, O., S. B. Dunnett and A. Bjorklund (1986) ‘Graft-induced behavioral recovery in an animal model of Huntington’s Disease’, Proc. Nat. Acad. Sci USA, vol. 83, pp. 27, 28, pp. 27–32.

    Article  Google Scholar 

  • Jiang, N., C. Jiang, Z. Tang, F. Zhung, S. Li and D. Jiang (1987) ‘Human foetal brain transplant trials in the treatment of Parkinsonism’, Acta Academia Medicinae Shanghai, vol. 14, no. 1.

    Google Scholar 

  • Jinnah, H. A., L. J. Fisher, J. A. Wolff, L. Xu, P. J. Langlais, P. M. Ivrone, K. L. O’Malley, M. B. Rosenberg, S. Shimohama, T. Friedmann and F. H. Gage (1989) ‘Grafting fibroblasts genetically modified to produce L-Dopa in a rat model of Parkinson’s Disease’, in ‘Neural Transplantation: from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Kobayashi, N., N. Allen, N. R. Clendenon et al. (1980) ‘An improved rat brain tumour model’, Journal of Neurosurgery, vol. 53, pp. 808–15.

    Article  CAS  PubMed  Google Scholar 

  • Kolarik, J., P. Nadvornik, K. Tabarka, M. Dvorak and O. Rozhold (1988) ‘Transplantation of human embryonic nerve tissue into a Schizophrenic’s Brain’, Zent. Bl. Neurochir., vol. 49, pp. 147–50.

    CAS  Google Scholar 

  • Kromer, L. F., A. Bjorklund and U. Stenevi (1981a) ‘Innervation of embryonic hippocampal implants by regenerating axons of cholinergic septal neurons in the adult rat’, Brain Research, vol. 210, pp. 153–71.

    Article  CAS  PubMed  Google Scholar 

  • Kromer, L. F., A. Bjorklund and U. Stenevi (1981b) ‘Regeneration of the septohippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implants as bridges’, Brain Research, vol. 210, pp. 173–200.

    Article  CAS  PubMed  Google Scholar 

  • Lampson, L. A. (1987) ‘Molecular bases of the immune response to neural antigens’, Trends in Neuroscience, vol. 10, pp. 211–16.

    Article  Google Scholar 

  • Le Gros Clarke, W. E. (1940) ‘Neuronal differentiation in implanted foetal cortical tissue’, Journal of Neurology and Psychiatry, vol. 3, pp. 263–72.

    Article  Google Scholar 

  • Levitt, P. and P. Rakic (1982) ‘The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus monkey’, Developments in Brain Research, vol. 4, pp. 35–57.

    Article  Google Scholar 

  • Levivier, M., J. R. Sladek Jr, T. Collier, S. H. Hagenmeyer-Houser and D. M. Gash (1989) ‘The protective effect of various striatal implants on intrastriatal quinolinic acid lesions’, in ‘Neural Transplantation from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Lindvall, O. (1989) ‘Transplantation into the human brain: present status and future possibilities’, Journal of Neurology, Neurosurgery and Psychiatry Special Supplement, pp. 39–54.

    Google Scholar 

  • Lindvall, 0., S. Rehncrona, P. Brundin et al. (1989) ‘Human Fetal Dopamine Neurones Grafted into the Striatum in two patients with severe Parkinson’s Disease’, Archives of Neurology, vol. 46, pp. 615–31.

    Article  CAS  PubMed  Google Scholar 

  • Lindvall, 0., S. Rehncrona, B. Gustavi et al. (1988) ‘Fetal dopamine-rich mesencephalic grafts in Parkinson’s Disease’, Lancet, no. ii, pp. 1483–4.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lozano, J. J., G. Bravo and J. Abascal (1989) ‘Autoimplants of perfused adrenal medulla into Parkinson’s patients: A 20 month follow up’, in ‘Neural Transplantation from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Lund, R. D. and S. D. Hauschka (1976) ‘Transplanted neural tissue develops connections with host rat brain’, Science, vol. 193, pp. 582–4.

    Article  CAS  PubMed  Google Scholar 

  • Madrazo, I., R. Drucker-Colin, V. Diaz, J. Martinez-Mata, C. Torres and J. J. Becurri (1987) ‘Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s Disease’, New England Journal of Medicine, vol. 316, pp. 831–4.

    Article  CAS  PubMed  Google Scholar 

  • Madrazo, I., R. Franco-Bourland, F. Ostrosky-Solis, M. C. Aquilera, C. Chevas, E. Magallon and C. Zamorano (1989) ‘Neural transplantation (auto-adrenal, fetal nigral and fetal adrenal) in Parkinson’s Disease — The Mexican Experience’, in ‘Neural Transplantation: from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Madrazo, I., V. Leon, C. Torres et al. (1988) ‘Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s Disease’, New England Journal of Medicine, vol. 318, p. 51.

    CAS  PubMed  Google Scholar 

  • Medawar, P. B. (1948) ‘Immunity to homologous grafted skin: III The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye’, British Journal of Experimental Pathology, pp. 58–69.

    Google Scholar 

  • Meyers, R. (1951) ‘Surgical experiments in the therapy of certain “extrapyramidal” diseases: a current evaluation’, Acta Psychiatr. Neurol., vol. 67 (Supplement 13) pp. 1–42.

    CAS  Google Scholar 

  • Mischell, B. B. and S. M. Shiigi (eds) (1980) Selected methods in cellular immunology (W. H. Freeman: San Francisco ) pp. 21–2.

    Google Scholar 

  • Molina, H. et al. (1989) ‘Neurotransplantation in Parkinson’s Disease — The Cuban Experience’, in ‘Neural Transplantation: from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Motti, D. F., G. Pezzoli, V. Silani and G. Scarlato (1988) ‘Surgical Lesions, Parkinsonism and brain graft operations’, Lancet, no. ii, p. 346.

    Article  CAS  PubMed  Google Scholar 

  • Neal, J. H. and M. L. J. Apuzzo (1989) ‘Unilateral and bilateral stereotactic adrenostriatal autografts for Parkinsonism: Technique and Observation’, in ‘Neural Transplantation from Molecular Bases to Clinical Application’, Restorative Neurology and Neurosurgery, Suppl.

    Google Scholar 

  • Nicholas, M. K. and B. G. W. Arnason (1989) ‘Immunologic considerations in transplantation to the central nervous system’, in F. J. Seil (ed.) ‘Neural Regeneration and Transplantation’, Frontiers of Clinical Neuroscience, vol. 6, pp. 227–37.

    Google Scholar 

  • Nieto-Sampedro, M. and C. W. Cotman (1986) ‘Growth factor induction and temporal order in CNS repair’, in C. W. Cotman (ed.) Synaptic Plasticity and Remodelling ( Gifford Press: New York ) pp. 407–56.

    Google Scholar 

  • Nieto-Sampedro, M., M. Manthorpe, G. Barbin, S. Varon and C. W. Cotman (1983) ‘Injury-induced neuronotrophic activity in adult rat brain: Correlation with survival of delayed implants in the wound cavity’, Journal of Neuroscience, vol. 3, pp. 2219–29.

    CAS  PubMed  Google Scholar 

  • Notter, M. F. D., J. H. Kordower and D. M. Gash (1986) ‘Differentiated neuronal cell lines as donor tissue for transplantation into the central nervous system’, in E. Azmitia and A. Bjorklund (eds) Cell and Tissue Transplantation into the Adult Brain (New York Academy of Science).

    Google Scholar 

  • Ortega, J. D., J. Sagen and G. D. Pappas (1989) ‘Survival and integration of chromaffin cell transplants in the CNS’, in ‘Neural Transplantation from Molecular to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • The Peel Report (1972) ‘The Use of Fetuses and Fetal Material for Research’ (HMSO).

    Google Scholar 

  • ‘Review of the Guidance on the Research Use of Fetuses and Fetal Material’, Report of the Polkinghorne Committee (1989) (HMSO: CM 762).

    Google Scholar 

  • Penn, G. R., C. G. Goetz, C. M. Tanner, G. T. Stebbins, D. W. Gilley, K. M. Shannon, H. L. Klawens, C. L. Conella and T. Witt (1989) ‘Adrenal medullary transplant to the striatum of patients with Advanced Parkinson’s Disease: One year motor and psychometric data’, in ‘Neural Transplantation: from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Perlow, M. J., W. J. Freed, B. J. Hoffer, A. Seiger, L. Olson and R. J. Wyatt (1979) ‘Brain grafts reduce motor abnormalities produced by destruction of nigro-striatal dopamine systems’, Science, vol. 204, pp. 643–6.

    Article  CAS  PubMed  Google Scholar 

  • Pezzoli, G., S. Fahn, A. Dwok et al. (1983) ‘Non-chromaffin tissue plus nerve growth factor reduces experimental Parkinsonism in aged rats’, Brain Research, vol. 269, pp. 184–9.

    Article  Google Scholar 

  • Plunkett, R. J., R. J. Weber and E. H. Oldfield (1988) ‘Stereotactic implantation of dispersed cell suspensions into brain’, Journal of Neurosurgery, vol. 69, pp. 228–33.

    Article  CAS  PubMed  Google Scholar 

  • Pycock, C. J. (1980) ‘Turning behaviour in animals’, Neuroscience, vol. 5, pp. 461–514.

    Article  CAS  PubMed  Google Scholar 

  • Redmond, D. E. J. Jr, J. R. Sladek Jr, R. H. Roth et al. (1986) ‘Fetal neuronal grafts in monkeys given methy1phenyltetrahydropyridine’, Lancet, no. i, pp. 1125–7.

    Article  CAS  PubMed  Google Scholar 

  • Reif, A. E. (1984) ‘Transplantation of nerve tissue into brain’, Applied Neurophysiology, vol. 47, pp. 23–32.

    CAS  PubMed  Google Scholar 

  • Sauer, H., P. Brundin, P. Odin, H. Widner and A. Bjorklund (1989) ‘Effects of cool storage on effectiveness and survival of intrastriatal ventral mesencephalic grafts’, in ‘Neural Transplantations from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

  • Scheinberg, L. C., F. L. Edelman and A. W. Levy (1964) ‘Is the brain an immunologically privileged site? I. Studies based on intracerebral tumour transplantation and iso-transplantation to sensitized hosts’, Archives of Neurology, vol. 11, pp. 248–64.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, R. H., A. Bjorklund and U. Stenevi (1981) ‘Intracerebral grafting of dissociated CNS tissue suspensions. A new approach for neuronal transplantation to deep brain sites’, Brain Research, vol. 218, pp. 347–56.

    Article  CAS  PubMed  Google Scholar 

  • Sladek, J. R., J. J. Collier, S. N. Haber, R. H. Roth and E. Redmond (1986) ‘Survival and growth of foetal catecholamine neurones transplanted into primate brain’, Brain Research, Bulletin 17, pp. 809–18.

    CAS  Google Scholar 

  • Sladek, J. R. Jr, E. Redmond, T. J. Collier, J. P. Blount, J. D. Elsworth, J. R. Taylor and R. H. Roth (1988) ‘In Transplantation in Mammalian CNS. Fetal dopamine grafts extended reversal of methylphenyltetrahydropyridine-induced Parkinsonism in monkeys’, Progress in Brain Research, vol. 78. D. M. Gash and J. R. Sladek Jr (eds) pp. 497–506.

    Google Scholar 

  • Sladek, J. R., D. E. Redmond, T. J. Collier, S. N. Haber, J. D. Elsworth, A. Y. Deutsch and R. H. Roth (1987) ‘Transplantation of fetal dopamine neurons in primate brain reverses MPTP-induced Parkinsonism’, in F. J. Seil, E. Herbert and B. M. Carlson (eds) Progress in Brain Research, vol. 71, pp. 309–23. ( Elsevier Science Publications BV, Biomedical Division ).

    Google Scholar 

  • Sladek, J. R. and D. M. Gash (1988) ‘Nerve cell-grafting in Parkinson’s Disease’, Journal of Neurosurgery, vol. 68, pp. 337–51.

    Article  PubMed  Google Scholar 

  • Sotelo, S. and R. M. Alvarado-Mallart (1987) ‘Cerebellar transplantations in adult mice with heredo-degenerative ataxia’, in E. C. Azmita and A. Bjorklund (eds) ‘Cell and Tissue Transplantation into the Adult Brain’, Annals New York Academy of Sciences, vol. 495, pp. 242–67.

    Article  CAS  Google Scholar 

  • Sotelo, C. and R. M. Alvarado-Mallart (1988) ‘Integration of grafted Purkinje cell into the host cerebellar circuitry in Purkinje cell degeneration mutant mouse’, in D. M. Gash and J. R. Sladek Jr (eds) ‘Transplantation into the Mammalian CNS’, Progress in Brain Research, vol. 78, pp. 141–54.

    Article  CAS  PubMed  Google Scholar 

  • Stenevi, U., A. Bjorklund and N. A. Svengaard (1976) ‘Transplantation of central and peripheral monoamine neurones to the adult rat brain. Techniques and conditions for survival’, Brain Research, vol. 114, pp. 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Stromberg, I., M. Bygdeman, M. Goldstein, A. Seiger and L. Olson (1986) ‘Human substantia nigra grafted to the dopamine denervated striatum of immunosuppressed rats: evidence for functional reinnervation’, Neuroscience Letters, vol. 71, pp. 271–6.

    Article  CAS  PubMed  Google Scholar 

  • Stromberg, I., P. Almquist, M. Bygdemon et al. (1988) ‘Intracerebral xenografts of human mesencephalic tissue into athymic rats. Immunochemical and in vivo electrochemical studies’, Proc Nat Acad Sci USA, vol. 85, pp. 8331–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stromberg, I., M. Herrera-Marschitz, U. Ungerstedt, T. Ebendal and L. Olson (1985) ‘Chronic implants of chromaffin tissue into the dopamine-denervated striatum. Effects of NGF on graft survival fiber growth and rotational behaviour’, Experimental Brain Research, vol. 60, pp. 335–49.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, W. G. (1890) ‘Successful brain grafting’, New York Medical Journal, vol. 51, pp. 701–2.

    Google Scholar 

  • Whalley, L. J., A. D. Carothers, S. Collyer, R. De May and A. Frackiariez (1982) ‘A Study of familial factors in Alzheimer’s Disease’, British Journal of Psychiatry, vol. 140, pp. 249–56.

    Article  CAS  PubMed  Google Scholar 

  • Wiese, U. H., P. C. Emson and J. Price (1989) ‘Intraspinal grafting of BAG transformed embryonic neuronal cell suspensions in rats’, in ‘Neural Transplantation: from Molecular Bases to Clinical Application’, Restorative Neurology and Neuroscience, Suppl.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 The Galton Institute

About this chapter

Cite this chapter

Hitchcock, E.R. (1991). Neural Transplantation in Degenerative Disease. In: Roberts, D.F., Chester, R. (eds) Molecular Genetics in Medicine. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-10874-9_8

Download citation

Publish with us

Policies and ethics