Skip to main content

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

The emission of light by molecules excited to upper electronic states has proved to be an extremely useful probe for obtaining information about molecules and their environment. The application of time-resolved techniques to a study of fluorescence produces information on the dynamics of probes and how such are influenced by environments; the application of microscopic methods yields spatial and positional information which, in biological milieux, can designate the type of environment of the probe. The coupling of temporal and spatial technology offers an interesting new way of studying spatially inhomogeneous situations, the biological cell being archetypal in this characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreoni, A., Cova, S., Bottiroli, G. and Prenna, G. (1979). Fluorescence of complexes of quinacrine mustard with DN A-Il. Dependence on the staining conditions. Photochem. Photobiol, 29, 951–957

    Article  CAS  Google Scholar 

  • Andreoni, A. and Cubeddu, R. (1983). Properties of the blue-shifted emission of hematopor-phyrin and related derivatives in aqueous solution. Chem. Phys. Lett., 100, 503–507

    Article  CAS  Google Scholar 

  • Andreoni, A., Sacchi, C.A., Cova, S., Bottiroli, G. and Prenna, G. (1975). Pulsed tunable laser in cytofluorometry: a study of the fluorescence pattern of chromosomes. In Joussot-Dubien, J. (Ed.), Lasers in Physical Chemistry and Biophysics. Elsevier, New York, pp. 413–423

    Google Scholar 

  • Arndt-Jovin, D.J., Latt, S.A., Striker, G. and Jovin, T.M. (1979). Fluorescence decay analysis

    Google Scholar 

  • in solution and in a microscope of DNA and chromosomes stained with quinacrine. J. Histochem. Cytochem., 27, 87–95

    Google Scholar 

  • Bebelaar, D. (1986). Time response of various types of photomultipliers and its wavelength dependence in time correlated single photon counting with ultimate resolution of 47 ps FWHM. Rev. Sei. Instrum., 57, 1116–1125

    Article  CAS  Google Scholar 

  • Birks, J.B. (1970). Photophysics of Aromatic Molecules. Wiley-Interscience, New York

    Google Scholar 

  • Bottiroli, G., Cionini, P.G., Docchio, F. and Sacchi, C.A. (1984). In situ evaluation of the functional state of chromatin by means of quinacrine mustard staining and time-resolved fluorescence microscopy. Histochem. J., 16, 223–233

    Google Scholar 

  • Bottiroli, G., Docchio F., Ramponi, R., Sacchi, C.A. and Supino, R. (1986). A 580 nm emission in haematoporphyrin-derivative solution and in treated cells. Lasers Med. Sei., 1, 33–39

    Article  Google Scholar 

  • Bottiroli, G., Prenna, G., Andreoni, A., Sacchi, C.A. and Svelto, O. (1979). Fluorescence of complexes of quinacrine mustard with DNA-I. Influence of the DNA base composition on the decay time in bacteria. Photochem. Photobiol., 29, 23–28

    Article  CAS  Google Scholar 

  • Bugiel, I., Konig, K. and Wabnitz, H. (1989). Investigation of cells by fluorescence laser scanning microscopy with subnanosecond time resolution. Lasers Life Sei. (submitted)

    Google Scholar 

  • Caspersson, T., Zech, L., Johansson, C. and Modest, E.J. (1970). Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma, 30, 215–217

    Google Scholar 

  • Docchio, F., Ramponi, R., Sacchi, C.A., Bottiroli, G. and Freitas, I. (1982). Time-resolved fluorescence microscopy of hematoporphyrin-derivative in cells. Lasers Surg. Med., 2, 21–28

    Article  CAS  PubMed  Google Scholar 

  • Docchio, F., Ramponi, R., Sacchi, C.A., Bottiroli, G. and Freitas, I. (1984a). An automatic pulsed laser microfluorometer with high spatial and temporal resolution. J. Mier ose., 134, 151–160

    CAS  Google Scholar 

  • Docchio, F., Ramponi, R., Sacchi, C.A., Bottiroli, G. and Freitas, I. (1984b). Time-resolved fluorescence spectroscopy of hematoporphyrin-derivative in human lymphocytes. Chem. Biol. Interact., 50, 135–141

    Article  CAS  PubMed  Google Scholar 

  • Docchio, F., Ramponi, R., Sacchi, C.A., Bottiroli, G. and Freitas, I. (1985). Time-resolved fluorescence microscopy: Examples of applications to biology. Ettore Majorana Int. Sei. Ser Phys. Sei. (Laser Photobiol. Photomed.), 22, 85–100

    CAS  Google Scholar 

  • Dougherty, T.J., Grindey, G.B., Fiel, R., Weishaupt, K.R. and Boyle, D.G. (1975). Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl . Cancer. Inst., 55, 115–120

    CAS  PubMed  Google Scholar 

  • Johnston, T.F. Jr. (1987). Tunable dye lasers. Encyclopedia of Physical Science and Technology, 14, 96–141

    Google Scholar 

  • Kessel, D. (1977). Effects of photoactivated porphyrins at the cell surface of leukemia L1210 cells. Biochemistry, 16, 3443–3449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinoshita, K., Ito, M. and Suzuki, Y. (1987). Femtosecond streak tube. Rev. Sei. Instrum., 58, 932–938

    Article  CAS  Google Scholar 

  • Minami, T., Kawahigashi, M., Sakai, Y., Shimamoto, K. and Hirayama, S. (1986). Fluorescence lifetime measurements under a microscope by the time-correlated single photon counting technique. J. Lumin., 35, 247–253

    Article  CAS  Google Scholar 

  • Moan, J. and Sommer, S. (1983). Uptake of the components of hematoporphyrin derivative by cells and tumors. Cancer Lett., 21, 167–174

    Article  CAS  PubMed  Google Scholar 

  • Moan, J. and Sommer, S. (1984). Action spectra for hematoporphyrin derivative and Photofrin II with respect to sensitization of human cells in vitro to photoinactivation. Photochem. Photobiol., 40, 631–634

    Google Scholar 

  • O’Connor, D.V. and Phillips, D. (1984). Time-correlated Single Photon Counting. Academic Press, New York

    Google Scholar 

  • Ramponi, R. and Rodgers, M.A.J. (1987). An instrument for simultaneous acquisition of fluorescence spectra and fluorescence lifetimes from single cells. Photochem. Photobiol., 45, 161–165

    Article  CAS  PubMed  Google Scholar 

  • Reuter, B.W., Egeler, T., Schneckenburger, H. and Schoberth, S.M. (1986). In vivo measurement of F420 fluorescence in cultures of Methanobacterium thermoautotrophicum. J. Biotechnol, 4, 325–332

    Google Scholar 

  • Ricchelli, F. and Grossweiner, L.I. (1984). Properties of a new state of hematoporphyrin in dilute aqueous solution. Photochem. Photobiol., 40, 599–606

    Article  CAS  PubMed  Google Scholar 

  • Rodgers, M.A.J. and Firey, P.A. (1985). Instrumentation for fluorescence microscopy with picosecond time resolution. Photochem. Photobiol., 42, 613–616

    Article  CAS  PubMed  Google Scholar 

  • Salet, C. and Moreno, G. (1981). Photodynamic effects of hematoporphyrin on respiration and calcium uptake in isolated mitochondria. Int. J. Radiat. Biol, 39, 227–230

    Article  CAS  Google Scholar 

  • Schneckenburger, H. (1985). Time resolved microfluoresence in biomedical diagnosis. Optical Eng., 24, 1042–1044

    Article  CAS  Google Scholar 

  • Schneckenburger, H., Feyh, J., Gotz, A., Frenz, M. and Brendel, W. (1987a). Quantitative in vivo measurement of the fluorescent components of photofrin II. Photochem. Photobiol., 46, 765–768

    Article  CAS  PubMed  Google Scholar 

  • Schneckenburger, H. and Frenz, M. (1986). Time-resolved fluorescence of conifers exposed to environmental pollutants. Radiat. Environ. Biophys., 25, 289–295

    Article  CAS  PubMed  Google Scholar 

  • Schneckenburger, H., Frenz, M., Tsuchiya, Y., Denzer, U. and Schleinkofer, L. (1987b).

    Google Scholar 

  • Picosecond fluorescence microscopy for measuring chlorophyll and porphyrin components in conifers and cultured cells. Lasers Life Sei., 1, 299–307

    Google Scholar 

  • Schneckenburger, H., Pauker, F., Unsold, E. and Jocham, D. (1985). Intracellular distribution and retention of the fluorescent components of photofrin II. Photochem. Photophys., 10, 61– 67

    Google Scholar 

  • Schneckenburger, H. and Reuter, B.W. (1984). Time-resolved fluorescence microscopy for measuring specific coenzymes in methanogenic bacteria. Anal. Chim. Acta., 163, 249–255

    Article  CAS  Google Scholar 

  • Schneckenburger, H., Seidlitz, H.K. and Eberz, J. (1988). Time-resolved fluorescence in photobiology. J. Photochem. Photobiol. B: Biol., 2, 1–19

    Article  CAS  Google Scholar 

  • Schneckenburger, H. and Wustrow, T.P.U. (1988). Intracellular fluorescence of photosensitizing porphyrins at different concentrations of mitochondria. Photochem. Photobiol., 47, 471– 473

    Google Scholar 

  • Schonbohm, E. (1987). Movement of Mougeotia. chloroplasts under continuous weak and strong light. Ada Physiol. Plant., 9, 109–135

    Google Scholar 

  • Selander, R.K. (1973). Interaction of quinacrine mustard with mononucleotides and polynuc-leotides . Bio ehe m. J., 131, 749–755

    Google Scholar 

  • Sommer, S., Rimington, C. and Moan, J. (1984). Formation of metal complex of tumor-localizing porphyrins. FEBS Lett., 172, 267–271

    Article  CAS  PubMed  Google Scholar 

  • Weisblum, B. and Haseth, P.L. de (1972). Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc. Natl. Acad. Sei. USA. 69, 629– 632

    Google Scholar 

  • Winkelman, J. (1961). Intracellular localization of hematoporphyrin in a transplanted tumor. J. Natl Cancer lnst., 27, 1369–1377

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 The Macmillan Press Ltd

About this chapter

Cite this chapter

Tian, R., Rodgers, M.A.J. (1991). Time-resolved Fluorescence Microscopy. In: Cherry, R.J. (eds) New Techniques of Optical Microscopy and Microspectroscopy. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-10802-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-10802-2_7

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-10804-6

  • Online ISBN: 978-1-349-10802-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics