Differential Polarization Microscopy

  • William E. Mickols
Chapter
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

Differential polarization microscopy is the name given to a group of microscopic techniques that create images using changes in the polarization of light or changes in the amount of polarized light (linear or circular) transmitted or scattered by an object. This will be made clearer by first examining several better-known microscopic techniques. The classical example of polarization microscopy is that based on detecting a change in linear polarization. Using various optical analyses, we can show that there are eight different optical transmission effects as well as an equal number of scattering effects that can be detected in this manner. Many different polarization effects can produce images in interference microscopy and this is also true of microscopic techniques based on any phase effects (phase shear, holography, true phase, etc.). These techniques all generate an image by ‘comparing’ two light beams. In the interference microscope this may be done when one beam has a different path from the imaging beam, or when both beams take slightly different paths through the object, as is done in phase microscopy. The comparison of two beams always means that changes in the polarization of the light will change the interference between two beams. This effect generally decreases the measured intensity or contrast in these techniques. Many of these effects will be obvious to many readers but they are the reason for the complex optical analysis we have used to separate these many optical effects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohren, C.F. (1975). PhD thesis, University of Arizona, TucsonGoogle Scholar
  2. Bultmann, H. (1986a). Chromosoma, 93, 347–357Google Scholar
  3. Bultmann, H. (1986b). Chromosoma, 93, 358–366Google Scholar
  4. Bultmann, H. and Clever U. (1969). Chromosoma, 28, 120–135Google Scholar
  5. Brink, N.G. (1968). Mutat. Res., 5, 192–194Google Scholar
  6. Bustamante, C, Maestre, M.F., Keller, D. and Tinoco, I. Jr. (1984). J. Chem. Phys., 80, 4817– 4823Google Scholar
  7. Bustamante, C, Maestre, M.F. and Tinoco, I. Jr. (1980). J. Chem. Phys., 73, 4273–281Google Scholar
  8. Bustamante, C, Tinoco, I. Jr. and Maestre, M.F. (1982). J. Chem. Phys., 76, 3440–3446Google Scholar
  9. Bustamante, C, Wells, K.S., Keller, D., Samori, B., Maestre, M.F. and Tinoco, I. Jr. (1985) Mol. Cryst. Liq. Cryst., 111, 79–102Google Scholar
  10. Coletta, M., Hofrichter, J., Ferrone, F.A. and Eaton, W.A. (1982). Nature, 300, 194–197Google Scholar
  11. Cooper, K.W. (1950). In Demerc, M. (Ed.), The Biology of Drosophila. Wiley, New York, pp. 1– 60Google Scholar
  12. Dorman, B.P. and Maestre, M.F. (1973). Proc. Natl Acad. Sei. USA, 70, 255–257Google Scholar
  13. Downing, K.H. and Maestre, M.F. (1979). Biophys. J., 33, 68AGoogle Scholar
  14. Eaton, Wm. E. and Hofrichter, J. (1975). Meth. Enzymol, 76., 175–261Google Scholar
  15. Fraatz, R.J., Prakash, G. and Allen, F.A. (1988). Am. Biotech. Lab., 6, 24–28Google Scholar
  16. Ferrone, F.A., Hofrichter, J. and Eaton, W.E. (1985a). J. Mol. Biol, 183, 591–610Google Scholar
  17. Ferrone, F.A., Hofrichter, J. and Eaton, W.E. (1985b). J. Mol. Biol, 183, 611–630Google Scholar
  18. Go, N. (1965). J. Chem. Phys., 438, 1275–1280Google Scholar
  19. Goodman, J.W. (1968). Introduction to Fourier Optics. McGraw-Hill, San Francisco, pp. 77–80Google Scholar
  20. Goodman, J.W. (1985). Statistical Optics. Wiley, New York, p. 53Google Scholar
  21. Hamilton, D. and Wilson T. (1986). J. Phys. E. Sei Instrum., 19(1), 5320–5322Google Scholar
  22. Hess, O. and Meyer, G.F. (1968). Adv. Genet., 14, 171–223Google Scholar
  23. Hofrichter, J. (1986). J. Mol. Biol, 189, 553–571Google Scholar
  24. Jackson, J.D. (1982). Classical Electrodynamics. Wiley, New York, Ch. 7Google Scholar
  25. Jensen, H.P., Schellman, J.A. and Troxell, T. (1978). Appl. Spectrosc, 32, 192–200Google Scholar
  26. Keller, D. and Bustamante, C. (1986). J. Chem. Phys., 84, 2961–2971Google Scholar
  27. Keller, D., Bustamante, C, Maestre, M.F. and Tinoco, I. Jr. (1985). Proc. NatlAcad. Sei. USA, 82, 4KM05Google Scholar
  28. Kim, M., Keller, D. and Bustamante, C. (1987a). Biophys. J., 52, 911–927Google Scholar
  29. Kim, M., Ulibarri, L. and Bustamante, C. (1987b). Biophys. J., 52, 929–945Google Scholar
  30. Kuball, H., Karstens, T. and Schonhofer, A. (1976). Chem. Phys., 12, 1–13Google Scholar
  31. Lakowicz, J.R. (1983). Principles of Fluorescence Spectroscopy. Plenum Press, New York, Ch. 10Google Scholar
  32. Livolant, F., Mickols, W. and Maestre, M.F. (1987). Biopolymers (in press)Google Scholar
  33. McClain, W.M. and Ghoul, W.A. (1986). J. Chem. Phys., 84, 6609–6622Google Scholar
  34. Maclnnes, J.W. and Uretz, R.B. (1966). Science N.Y., 151, 689–691Google Scholar
  35. Maestre, M.F., Bustamante, B., Hayes, T.L., Subirana, J.A. and Tinoco, I. Jr. (1982). Nature, 298, 773–774Google Scholar
  36. Maestre, M.F. and Katz, J.E. (1982). Biopolymers, 21, 1899–1908Google Scholar
  37. Maestre, M.F., Salzman, T.G. C, Tobey, R.A. and Bustamante, C. (1985). Biochemistry, 24, 5152Google Scholar
  38. Meyer, G.F. and Henning, W. (1974). Chromosoma, 46, 121–144Google Scholar
  39. Mickols, Wm. E., Bustamante, C, Maestre, M.F., Tinoco, I. Jr. and Embury, S.H. (1985a). Biotechnology, 3, 711–714Google Scholar
  40. Mickols, W.E., Corbett, J.D. and Maestre, M.F. (1988). Proceeding of the NATO Advanced Study Inst. on Polarized Spectrocopy of Ordered Systems (in press)Google Scholar
  41. Mickols, W.E., Corbett, J.D., Maestre, M.F., Tinoco, I. Jr., Kropp, J. and Embury, S.H. (1987a). J. Biol. Chem., 263, 4338–4346Google Scholar
  42. Mickols, W.E. and Maestre, M.F. (1987). Rev. Sei. Instrum., 59, 867–872Google Scholar
  43. Mickols, Wm. E., Maestre, M.F. and Tinoco, I. Jr. (1985b). Proc. Natl Acad. Sei. USA, 82, 6527–6531Google Scholar
  44. Mickols, W.E., Maestre, M.F. and Tinoco, I. Jr. (1987b). Nature, 328, 452–545Google Scholar
  45. Mickols, Wm. E., Tinoco, I. Jr., Katz, M.F. and Bustamante, C. (1985c). Rev. Sei. Instrum., 56, 2228–2236Google Scholar
  46. Norden, B. (1978). Appl. Spectrosc. Rev., 148, 157–248Google Scholar
  47. Olivieri, G. and Olivieri, A. (1965). Mutat. Res., 2, 366–380Google Scholar
  48. Patel, D.J., Shapiro, L. and Hare, D. (1987). Ann. Rev. Biophys. Biophys. Chem., 16, 423–454Google Scholar
  49. Perutz, M.F. and Mitchison, J.M. (1950). Nature, 166, 677–682Google Scholar
  50. Petran, M., Hadravsky, M., Egger, M.D. and Galombos, R. (1967). J. Opt. Soc. Am., 58, 661–664Google Scholar
  51. Phillips, C.L., Mickols, Wm. E., Maestre, M.F. and Tinoco, I. Jr. (1986). Biochemistry, 25, 7803–7811Google Scholar
  52. Reich, C, Maestre, M.F., Edmondson, S. and Gray, D.M. (1980). Biochemistry, 19, 5208–5213Google Scholar
  53. Shurcliff, Wm. A. (1962). Polarized Light. Havard University Press, Cambridge, Mass., Ch. 8Google Scholar
  54. Thompson, R. C, Bottiger, J.R. and Fry, E.S. (1980). Appl. Opt., 8, 1323–1329Google Scholar
  55. Tinoco, I. Jr. and Hammerle, W. (1956). J. Phys. Chem., 60, 1619–1623CrossRefGoogle Scholar
  56. van de Hulst, H.C. (1981). Light Scattering by Small Particles, Dover, New York, Ch. 5 Whitten, J.M. (1969). Chromosoma, 26, 215–244Google Scholar
  57. Wilson, T. and Sheppard, C. (1984). Theory and Practice of Scanning Optical Microscopy. Academic Press, San Diego, p. 167Google Scholar
  58. Winchell, N.H. and Winchell, A.N. (1909). Elements of Optical Mineralogy. Van Nostrand, New YorkGoogle Scholar

Copyright information

© The Macmillan Press Ltd 1991

Authors and Affiliations

  • William E. Mickols

There are no affiliations available

Personalised recommendations