Skip to main content

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

There are two populations of scientists who have, respectively, employed two different classes of voltage-sensitive dyes. The larger group, of cell biologists, has primarily used slow (response time > s) redistribution dyes for measurements of membrane potential changes in suspensions of cells or energytransducing organelles (Freedman and Laris, 1981, 1988; Waggoner, 1985; Chen, 1988; Smith, 1988). A smaller but growing group, of neurobiologists, are using fast (response time <ms) membrane-staining dyes to measure spatial and temporal patterns of electrical activity in excitable cells (Salzberg, 1983; Grinvald, 1985; Loew, 1988). Some dyes representing each of these classes are collected in Table 10.1, which also provides a summary of their properties. All of the dyes in Table 10.1 are commercially available. Because of the overwhelming number of published papers in which these dyes have been utilized, I have chosen to provide only one key reference for each; it is critical that the published idiosyncracies of a dye be thoroughly investigated, however, before any attempt is made to employ it in a new application. Indeed, for each class, there have been problems intrinsic to many of the dyes which have inhibited their application to microphotometry and microscope imaging. In the next section of this chapter, I shall highlight some of these problems and some of the more recent approaches to solving them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agard, D.A. (1984). Optical sectioning microscopy: cellular architecture in three dimensions. Ann. Rev. Biophys. Eng., 13, 191–219

    Article  CAS  Google Scholar 

  • Agard, D.A., Hiraoka, Y., Shaw, P. and Sedat, J.W. (1989). Fluorescence microscopy in three dimensions. In Taylor, D.L. and Wang, Y. (Eds), Methods in Cell Biology, Vol. 30. Academic Press, San Diego, pp. 353–377

    Google Scholar 

  • Bashford, C.L., Alder, G.M., Gray, M.A., Micklem, K.J., Taylor, C. C, Turek, P.J. and Pasternak, C.A. (1985). Oxonol dyes as monitors of membrane potential: the effect of viruses and toxins on the plasma membrane potential of animal cells in monolayer culture and in suspension. J. Cell Biol, 123, 326–336

    CAS  Google Scholar 

  • Blasdel, G.G. and Salama, G. (1986). Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature., 321, 579–585

    Article  CAS  PubMed  Google Scholar 

  • Brakenhoff, G.J., van Spronsen, E.A., van der Voort, H.T.M. and Nanninga, N. (1989). Three-dimensional confocal fluorescence microscopy. In Taylor, D.L. and Wang, Y. (Eds.), Methods in Cell Biology, Vol. 30. Academic Press, San Diego, pp. 379–398

    Google Scholar 

  • Bright, G.R., Fisher, G.W., Rogowska, J. and Taylor, D.L. (1987). Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J. Cell Biol, 104, 1019– 1033

    Google Scholar 

  • Chen, L.B. (1988). Mitochondrial membrane potential in living cells. Ann. Rev. Cell BioL, 4, 155–181

    Article  CAS  PubMed  Google Scholar 

  • Cohen, L.B., Salzberg, B.M., Davila, H.V., Ross, W.N., Landowne, D., Waggoner, A.S. and Wang, C.H. (1974). Changes in axon fluorescence during activity: molecular probes of membrane potential. J. Memb. Biol, 19, 1–36

    Article  CAS  Google Scholar 

  • Cohen, R.L., Muirhead, K.A., Gill, J.E., Waggoner, A.S. and Horan, P.K. (1981). A cyanine dye distinguishes between cycling and non-cycling fibroblasts. Nature, 290, 593–595

    Article  CAS  PubMed  Google Scholar 

  • Debiaso, R., Bright, G.R., Ernst, L.A., Waggoner, A.S. and Taylor, D.L. (1987). Five-parameter fluorescence imaging: wound healing of living Swiss 3T3 cells. J. Cell Biol, 106, 1613–1622

    Article  Google Scholar 

  • Ehrenberg, B., Montana, V., Wei, M.D., Wuskell, J.P. and Loew, L.M. (1988). Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys. J., 53, 785–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ehrenberg, B., Farkas, D.L., Fluhler, E.N., Lojewska, Z. and Loew, L.M. (1987a). Membrane potential induced by external electric field pulses can be followed with a potentiometric dye. Biophys. J., 51, 833–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ehrenberg, B., Wei, M.D. and Loew, L.M. (1987b). Nernstian dye distribution reports membrane potential in individual cells. In Goheen, S.C. (Ed.), Membrane Proteins. Bio-Rad Laboratories, Richmond, CA, pp. 279–294

    Google Scholar 

  • Farkas, D.L., Wei, M., Febbroriello, P., Carson, J.H. and Loew, L.M. (1989). Simultaneous imaging of cell and mitochondrial membrane potential. Biophys. J., 56, 1053–1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fluhler, E., Burnham, V.G. and Loew, L.M. (1985). Spectra, membrane binding and potentiometric responses of new charge shift probes. Biochemistry, 24, 5749–5755

    Article  CAS  PubMed  Google Scholar 

  • Freedman, J.C. and Laris, P.C. (1981). Electrophysiology of cells and organelles: studies with optical potentiometric indicators. In International Review of Cytology, Supplement 12. Academic Press, New York, pp. 177–246

    Google Scholar 

  • Freedman, J.C. and Laris, P.C. (1988). Potentiometric indicators in nonexcitable cells. In Loew, L.M. (Ed.), Spectroscopie Membrane Probes, Vol. III. CRC Press, Boca Raton, pp. 1– 50

    Google Scholar 

  • Freedman, J.C. and Novak, T.S. (1983). Membrane potentials associated with Ca-induced K conductance. J. Memb. Biol, 11, 59–74

    Article  Google Scholar 

  • Grinvald, A. (1985). Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain. Ann. Rev. Neurosci., 8, 263–305

    Article  CAS  PubMed  Google Scholar 

  • Grinvald, A., Fine, A., Färber, I.C. and Hildesheim, R. (1983). Fluorescence monitoring of electrical responses from small neurons and their processes. Biophys. J., 42, 195–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gross, D., Loew, L.M., Ryan, T.A. and Webb, W.W. (1985). Spatially resolved optical imaging of membrane potentials induced by applied electric fields. In Nuccitelli, R. (Ed.), Ionic Currents in Development. Alan R. Liss, New York, pp. 263–270

    Google Scholar 

  • Gross, D., Loew, L.M. and Webb, W.W. (1986). Optical imaging of cell membrane potential. Changes induced by applied electric fields. Biophys. J., 50, 339–348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grynkiewicz, G., Poenie, M. and Tsien, R.Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3440–3450

    CAS  PubMed  Google Scholar 

  • Handyside, A.H., Edidin, M. and Wolf, D.E. (1987). Polarized distribution of membrane components on two-cell mouse embryos. Roux’s Arch. Dev. Biol., 196, 273–278

    Article  Google Scholar 

  • Hiraoka, Y., Sedat, J.W. and Agard, D.A. (1987). The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science, N.Y., 238, 36–41

    Article  CAS  Google Scholar 

  • Inoué, S. (1986). Video Microscopy. Plenum Press, New York Jaffe, L.F. (1986). Ionic currents in development: an overview. In Nuccitelli, R. (Ed.), Ionic Currents in Development. Alan R. Liss, New York, pp. 351–357

    Google Scholar 

  • Jaffe, L.F. and Nuccitelli, R. (1977). Electrical controls of development. Ann. Rev. Biophys. Bioeng., 6, 445–476

    Article  CAS  Google Scholar 

  • Jeltsch, E. and Zimmermann, U. (1979). Particles in a homogeneous electric field: a model for the electrical breakdown of living cells in a Coulter counter. Bioelectrochem. Bioenerget., 6, 349–384

    Article  Google Scholar 

  • Johnson, L.V., Walsh, M.L., Bockus, B.J. and Chen, L.B. (1981). Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J. Cell Biol., 88, 526–535

    Article  CAS  PubMed  Google Scholar 

  • Kauer, J.S. (1988). Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature, 331, 166–168

    Article  CAS  PubMed  Google Scholar 

  • Kinosita, K., Ashikawa, I., Saita, N., Yoshimura, H., Itoh, H., Nagayama, K. and Ikegami, A. (1988). Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys. J., 53, 1015–1019

    Article  PubMed Central  PubMed  Google Scholar 

  • Knight, D.E. and Baker, P.F. (1982). Calcium dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J. Memb. Biol., 68, 107– 140

    Google Scholar 

  • Loew, L.M. (1988). Spectroscopie Membrane Probes. CRC Press, Boca Raton, Chapters 17–21

    Google Scholar 

  • Loew, L.M., Bonneville, G.W. and Surow, J. (1978). Charge shift optical probes of membrane potential. Theory. Biochemistry, 17, 4065–4071

    Google Scholar 

  • Loew, L.M., Cohen, L.B., Salzberg, B.M., Obaid, A.L. and Bezanilla, F. (1985). Charge shift probes of membrane potential. Characterization of aminostyrlpyridinium dyes on the squid giant axon. Biophys. J., 41, 71–77

    Article  Google Scholar 

  • Loew, L.M. and Simpson, L. (1981). Charge shift probes of membrane potential. A probable electrochromic mechanism for ASP probes on a hemispherical lipid bilayer. Biophys. J., 34, 353–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • London, J.A., Zecevic, D. and Cohen, L.B. (1987). Simultaneous optical recording of activity from many neurons during feeding in Navanax. J. Neurosci., 7, 649–661

    Google Scholar 

  • Mohr, C.F. and Fewtrell, C. (1987). IgE receptor-mediated depolarization of rat basophilic leukemia cells measured with the fluorescent probe bis-oxonol. J. Immunol., 138, 1564–1570

    CAS  PubMed  Google Scholar 

  • Montana, V., Farkas, D.L. and Loew, L.M. (1989). Dual wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry, 28, 4536–4539

    Article  CAS  PubMed  Google Scholar 

  • Nuccitelli, R. (1986). Ionic Currents in Development. Alan R. Liss, New York

    Google Scholar 

  • Orbach, H.S., Cohen, L.B. and Grinvald, A. (1985). Optical mapping of electrical activity in rat somatosensory and visual cortex. J. Neurosci., 5, 1886–1895

    Google Scholar 

  • Parsons, T.D., Kleinfeld, D., Raccuuia-Behling, F. and Salzberg, B.M. (1989). Optical recording of the electrical activity of synaptically interacting Aplysia neurons in culture using potentiometric probes. Biophys. J., 56, 213–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Platt, J.R. (1956). Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys., 25, 80–105

    Article  CAS  Google Scholar 

  • Salama, G., Lombardi, R. and Elson, J. (1987). Maps of optical action potentials and NADH fluorescence in intact working hearts. J. Am. Physiol. Soc, h384–h394

    Google Scholar 

  • Salzberg, B.M. (1983). Optical recording of electrical activity in neurons using molecular probes. In Barker, J.L. and McKelvy, J.F. (Eds), Current Methods in Cellular Neurobiology. New York, pp. 139–187

    Google Scholar 

  • Salzberg, B.M. (1989). Optical recording of voltage changes in nerve terminals and in fine neuronal processes. Ann. Rev. Physiol.,51, 507–526

    Google Scholar 

  • Seligmann, B.E. and Gallin, J.I. (1983). Comparison of indirect probes of membrane potential utilized in studies of human neutrophils. J. Cell. Physiol., 115, 105–115

    Article  CAS  PubMed  Google Scholar 

  • Shrager, P., Chiu, S.Y., Ritchie, J.M., Zecevic, D. and Cohen, L.B. (1987). Optical recording of action potential propagation in demyelinated frog nerve. Biophys. J., 51, 351–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sims, P.J., Waggoner, A.S., Wang, C. -H. and Hoffman, J.F. (1974). Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry, 13, 3315–3330

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.C. (1988). Potential-sensitive molecular probes in energy-transducing organelles. In Loew, L.M. (Ed.), Spectroscopie Membrane Probes, Vol. II. CRC Press, Boca Raton, pp. 153–191

    Google Scholar 

  • Tsien, R.Y. and Poenie, M. (1986). Fluorescence ratio imaging: a new window into intracellular ionic signaling. TIBS, 450–455

    Google Scholar 

  • Waggoner, A.S. (1985). Dye probes of cell, organelle, and vesicle membrane potentials. In Martonosi, A.N. (Ed.), The Enzymes of Biological Membranes. Plenum Press, New York, pp. 313–331

    Google Scholar 

  • White, J.G., Amos, W.B. and Fordham, M. (1987). An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol., 105, 41–8

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 The Macmillan Press Ltd

About this chapter

Cite this chapter

Loew, L.M. (1991). Membrane Potential Imaging. In: Cherry, R.J. (eds) New Techniques of Optical Microscopy and Microspectroscopy. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-10802-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-10802-2_10

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-10804-6

  • Online ISBN: 978-1-349-10802-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics